3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #ifndef CONFIG_USER_ONLY
16 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
21 /* Definitions for the PMCCNTR and PMCR registers */
27 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
34 stfq_le_p(buf, env->vfp.regs[reg]);
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
54 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
60 env->vfp.regs[reg] = ldfq_le_p(buf);
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
79 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
89 stl_p(buf, vfp_get_fpsr(env));
93 stl_p(buf, vfp_get_fpcr(env));
100 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
110 vfp_set_fpsr(env, ldl_p(buf));
114 vfp_set_fpcr(env, ldl_p(buf));
121 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
123 assert(ri->fieldoffset);
124 if (cpreg_field_is_64bit(ri)) {
125 return CPREG_FIELD64(env, ri);
127 return CPREG_FIELD32(env, ri);
131 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(env, ri) = value;
138 CPREG_FIELD32(env, ri) = value;
142 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
144 return (char *)env + ri->fieldoffset;
147 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
149 /* Raw read of a coprocessor register (as needed for migration, etc). */
150 if (ri->type & ARM_CP_CONST) {
151 return ri->resetvalue;
152 } else if (ri->raw_readfn) {
153 return ri->raw_readfn(env, ri);
154 } else if (ri->readfn) {
155 return ri->readfn(env, ri);
157 return raw_read(env, ri);
161 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
164 /* Raw write of a coprocessor register (as needed for migration, etc).
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
169 if (ri->type & ARM_CP_CONST) {
171 } else if (ri->raw_writefn) {
172 ri->raw_writefn(env, ri, v);
173 } else if (ri->writefn) {
174 ri->writefn(env, ri, v);
176 raw_write(env, ri, v);
180 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
193 if ((ri->type & ARM_CP_CONST) ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
201 bool write_cpustate_to_list(ARMCPU *cpu)
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
216 if (ri->type & ARM_CP_NO_RAW) {
219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
224 bool write_list_to_cpustate(ARMCPU *cpu)
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
232 const ARMCPRegInfo *ri;
234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
239 if (ri->type & ARM_CP_NO_RAW) {
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
254 static void add_cpreg_to_list(gpointer key, gpointer opaque)
256 ARMCPU *cpu = opaque;
258 const ARMCPRegInfo *ri;
260 regidx = *(uint32_t *)key;
261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
270 static void count_cpreg(gpointer key, gpointer opaque)
272 ARMCPU *cpu = opaque;
274 const ARMCPRegInfo *ri;
276 regidx = *(uint32_t *)key;
277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 cpu->cpreg_array_len++;
284 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
298 void init_cpreg_list(ARMCPU *cpu)
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
306 keys = g_hash_table_get_keys(cpu->cp_regs);
307 keys = g_list_sort(keys, cpreg_key_compare);
309 cpu->cpreg_array_len = 0;
311 g_list_foreach(keys, count_cpreg, cpu);
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
323 assert(cpu->cpreg_array_len == arraylen);
329 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
330 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
332 * access_el3_aa32ns: Used to check AArch32 register views.
333 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
335 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
336 const ARMCPRegInfo *ri)
338 bool secure = arm_is_secure_below_el3(env);
340 assert(!arm_el_is_aa64(env, 3));
342 return CP_ACCESS_TRAP_UNCATEGORIZED;
347 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
348 const ARMCPRegInfo *ri)
350 if (!arm_el_is_aa64(env, 3)) {
351 return access_el3_aa32ns(env, ri);
356 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
358 ARMCPU *cpu = arm_env_get_cpu(env);
360 raw_write(env, ri, value);
361 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
364 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
366 ARMCPU *cpu = arm_env_get_cpu(env);
368 if (raw_read(env, ri) != value) {
369 /* Unlike real hardware the qemu TLB uses virtual addresses,
370 * not modified virtual addresses, so this causes a TLB flush.
372 tlb_flush(CPU(cpu), 1);
373 raw_write(env, ri, value);
377 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
380 ARMCPU *cpu = arm_env_get_cpu(env);
382 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
383 && !extended_addresses_enabled(env)) {
384 /* For VMSA (when not using the LPAE long descriptor page table
385 * format) this register includes the ASID, so do a TLB flush.
386 * For PMSA it is purely a process ID and no action is needed.
388 tlb_flush(CPU(cpu), 1);
390 raw_write(env, ri, value);
393 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
396 /* Invalidate all (TLBIALL) */
397 ARMCPU *cpu = arm_env_get_cpu(env);
399 tlb_flush(CPU(cpu), 1);
402 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
405 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
406 ARMCPU *cpu = arm_env_get_cpu(env);
408 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
411 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 /* Invalidate by ASID (TLBIASID) */
415 ARMCPU *cpu = arm_env_get_cpu(env);
417 tlb_flush(CPU(cpu), value == 0);
420 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
424 ARMCPU *cpu = arm_env_get_cpu(env);
426 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
429 /* IS variants of TLB operations must affect all cores */
430 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
435 CPU_FOREACH(other_cs) {
436 tlb_flush(other_cs, 1);
440 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 CPU_FOREACH(other_cs) {
446 tlb_flush(other_cs, value == 0);
450 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
455 CPU_FOREACH(other_cs) {
456 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
460 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
465 CPU_FOREACH(other_cs) {
466 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
470 static const ARMCPRegInfo cp_reginfo[] = {
471 /* Define the secure and non-secure FCSE identifier CP registers
472 * separately because there is no secure bank in V8 (no _EL3). This allows
473 * the secure register to be properly reset and migrated. There is also no
474 * v8 EL1 version of the register so the non-secure instance stands alone.
476 { .name = "FCSEIDR(NS)",
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
479 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
480 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
481 { .name = "FCSEIDR(S)",
482 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
483 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
484 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
485 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
486 /* Define the secure and non-secure context identifier CP registers
487 * separately because there is no secure bank in V8 (no _EL3). This allows
488 * the secure register to be properly reset and migrated. In the
489 * non-secure case, the 32-bit register will have reset and migration
490 * disabled during registration as it is handled by the 64-bit instance.
492 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
493 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
494 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
495 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
496 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
497 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
498 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
499 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
500 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
501 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
505 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
506 /* NB: Some of these registers exist in v8 but with more precise
507 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
509 /* MMU Domain access control / MPU write buffer control */
511 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
512 .access = PL1_RW, .resetvalue = 0,
513 .writefn = dacr_write, .raw_writefn = raw_write,
514 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
515 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
516 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
517 * For v6 and v5, these mappings are overly broad.
519 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
520 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
521 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
522 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
523 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
524 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
525 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
526 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
527 /* Cache maintenance ops; some of this space may be overridden later. */
528 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
529 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
530 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
534 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
535 /* Not all pre-v6 cores implemented this WFI, so this is slightly
538 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
539 .access = PL1_W, .type = ARM_CP_WFI },
543 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
544 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
545 * is UNPREDICTABLE; we choose to NOP as most implementations do).
547 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
548 .access = PL1_W, .type = ARM_CP_WFI },
549 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
550 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
551 * OMAPCP will override this space.
553 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
554 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
556 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
557 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
559 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
560 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
561 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
563 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
564 * implementing it as RAZ means the "debug architecture version" bits
565 * will read as a reserved value, which should cause Linux to not try
566 * to use the debug hardware.
568 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
569 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
570 /* MMU TLB control. Note that the wildcarding means we cover not just
571 * the unified TLB ops but also the dside/iside/inner-shareable variants.
573 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
574 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
575 .type = ARM_CP_NO_RAW },
576 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
577 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
578 .type = ARM_CP_NO_RAW },
579 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
580 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
581 .type = ARM_CP_NO_RAW },
582 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
583 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
584 .type = ARM_CP_NO_RAW },
585 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
586 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
587 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
588 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
592 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
598 if (!arm_feature(env, ARM_FEATURE_V8)) {
599 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
600 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
601 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
603 if (arm_feature(env, ARM_FEATURE_VFP)) {
604 /* VFP coprocessor: cp10 & cp11 [23:20] */
605 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
607 if (!arm_feature(env, ARM_FEATURE_NEON)) {
608 /* ASEDIS [31] bit is RAO/WI */
612 /* VFPv3 and upwards with NEON implement 32 double precision
613 * registers (D0-D31).
615 if (!arm_feature(env, ARM_FEATURE_NEON) ||
616 !arm_feature(env, ARM_FEATURE_VFP3)) {
617 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
623 env->cp15.cpacr_el1 = value;
626 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
628 if (arm_feature(env, ARM_FEATURE_V8)) {
629 /* Check if CPACR accesses are to be trapped to EL2 */
630 if (arm_current_el(env) == 1 &&
631 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
632 return CP_ACCESS_TRAP_EL2;
633 /* Check if CPACR accesses are to be trapped to EL3 */
634 } else if (arm_current_el(env) < 3 &&
635 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
636 return CP_ACCESS_TRAP_EL3;
643 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
645 /* Check if CPTR accesses are set to trap to EL3 */
646 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
647 return CP_ACCESS_TRAP_EL3;
653 static const ARMCPRegInfo v6_cp_reginfo[] = {
654 /* prefetch by MVA in v6, NOP in v7 */
655 { .name = "MVA_prefetch",
656 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
657 .access = PL1_W, .type = ARM_CP_NOP },
658 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
659 .access = PL0_W, .type = ARM_CP_NOP },
660 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
661 .access = PL0_W, .type = ARM_CP_NOP },
662 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
663 .access = PL0_W, .type = ARM_CP_NOP },
664 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
666 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
667 offsetof(CPUARMState, cp15.ifar_ns) },
669 /* Watchpoint Fault Address Register : should actually only be present
670 * for 1136, 1176, 11MPCore.
672 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
673 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
674 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
675 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
676 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
677 .resetvalue = 0, .writefn = cpacr_write },
681 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
683 /* Performance monitor registers user accessibility is controlled
686 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
687 return CP_ACCESS_TRAP;
692 #ifndef CONFIG_USER_ONLY
694 static inline bool arm_ccnt_enabled(CPUARMState *env)
696 /* This does not support checking PMCCFILTR_EL0 register */
698 if (!(env->cp15.c9_pmcr & PMCRE)) {
705 void pmccntr_sync(CPUARMState *env)
709 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
710 get_ticks_per_sec(), 1000000);
712 if (env->cp15.c9_pmcr & PMCRD) {
713 /* Increment once every 64 processor clock cycles */
717 if (arm_ccnt_enabled(env)) {
718 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
722 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
728 /* The counter has been reset */
729 env->cp15.c15_ccnt = 0;
732 /* only the DP, X, D and E bits are writable */
733 env->cp15.c9_pmcr &= ~0x39;
734 env->cp15.c9_pmcr |= (value & 0x39);
739 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
741 uint64_t total_ticks;
743 if (!arm_ccnt_enabled(env)) {
744 /* Counter is disabled, do not change value */
745 return env->cp15.c15_ccnt;
748 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
749 get_ticks_per_sec(), 1000000);
751 if (env->cp15.c9_pmcr & PMCRD) {
752 /* Increment once every 64 processor clock cycles */
755 return total_ticks - env->cp15.c15_ccnt;
758 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
761 uint64_t total_ticks;
763 if (!arm_ccnt_enabled(env)) {
764 /* Counter is disabled, set the absolute value */
765 env->cp15.c15_ccnt = value;
769 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
770 get_ticks_per_sec(), 1000000);
772 if (env->cp15.c9_pmcr & PMCRD) {
773 /* Increment once every 64 processor clock cycles */
776 env->cp15.c15_ccnt = total_ticks - value;
779 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
782 uint64_t cur_val = pmccntr_read(env, NULL);
784 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
787 #else /* CONFIG_USER_ONLY */
789 void pmccntr_sync(CPUARMState *env)
795 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
799 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
803 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 env->cp15.c9_pmcnten |= value;
810 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
814 env->cp15.c9_pmcnten &= ~value;
817 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 env->cp15.c9_pmovsr &= ~value;
823 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 env->cp15.c9_pmxevtyper = value & 0xff;
829 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 env->cp15.c9_pmuserenr = value & 1;
835 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 /* We have no event counters so only the C bit can be changed */
840 env->cp15.c9_pminten |= value;
843 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
847 env->cp15.c9_pminten &= ~value;
850 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
853 /* Note that even though the AArch64 view of this register has bits
854 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
855 * architectural requirements for bits which are RES0 only in some
856 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
857 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
859 raw_write(env, ri, value & ~0x1FULL);
862 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
864 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
865 * For bits that vary between AArch32/64, code needs to check the
866 * current execution mode before directly using the feature bit.
868 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
870 if (!arm_feature(env, ARM_FEATURE_EL2)) {
871 valid_mask &= ~SCR_HCE;
873 /* On ARMv7, SMD (or SCD as it is called in v7) is only
874 * supported if EL2 exists. The bit is UNK/SBZP when
875 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
876 * when EL2 is unavailable.
877 * On ARMv8, this bit is always available.
879 if (arm_feature(env, ARM_FEATURE_V7) &&
880 !arm_feature(env, ARM_FEATURE_V8)) {
881 valid_mask &= ~SCR_SMD;
885 /* Clear all-context RES0 bits. */
887 raw_write(env, ri, value);
890 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
892 ARMCPU *cpu = arm_env_get_cpu(env);
894 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
897 uint32_t index = A32_BANKED_REG_GET(env, csselr,
898 ri->secure & ARM_CP_SECSTATE_S);
900 return cpu->ccsidr[index];
903 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
906 raw_write(env, ri, value & 0xf);
909 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
911 CPUState *cs = ENV_GET_CPU(env);
914 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
917 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
920 /* External aborts are not possible in QEMU so A bit is always clear */
924 static const ARMCPRegInfo v7_cp_reginfo[] = {
925 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
926 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
927 .access = PL1_W, .type = ARM_CP_NOP },
928 /* Performance monitors are implementation defined in v7,
929 * but with an ARM recommended set of registers, which we
930 * follow (although we don't actually implement any counters)
932 * Performance registers fall into three categories:
933 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
934 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
935 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
936 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
937 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
939 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
940 .access = PL0_RW, .type = ARM_CP_ALIAS,
941 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
942 .writefn = pmcntenset_write,
943 .accessfn = pmreg_access,
944 .raw_writefn = raw_write },
945 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
946 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
947 .access = PL0_RW, .accessfn = pmreg_access,
948 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
949 .writefn = pmcntenset_write, .raw_writefn = raw_write },
950 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
952 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
953 .accessfn = pmreg_access,
954 .writefn = pmcntenclr_write,
955 .type = ARM_CP_ALIAS },
956 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
958 .access = PL0_RW, .accessfn = pmreg_access,
959 .type = ARM_CP_ALIAS,
960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
961 .writefn = pmcntenclr_write },
962 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
963 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
964 .accessfn = pmreg_access,
965 .writefn = pmovsr_write,
966 .raw_writefn = raw_write },
967 /* Unimplemented so WI. */
968 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
969 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
970 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
971 * We choose to RAZ/WI.
973 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
974 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
975 .accessfn = pmreg_access },
976 #ifndef CONFIG_USER_ONLY
977 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
978 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
979 .readfn = pmccntr_read, .writefn = pmccntr_write32,
980 .accessfn = pmreg_access },
981 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
983 .access = PL0_RW, .accessfn = pmreg_access,
985 .readfn = pmccntr_read, .writefn = pmccntr_write, },
987 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
988 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
989 .writefn = pmccfiltr_write,
990 .access = PL0_RW, .accessfn = pmreg_access,
992 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
994 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
997 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
998 .raw_writefn = raw_write },
999 /* Unimplemented, RAZ/WI. */
1000 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1001 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1002 .accessfn = pmreg_access },
1003 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1004 .access = PL0_R | PL1_RW,
1005 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1007 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1008 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1012 .writefn = pmintenset_write, .raw_writefn = raw_write },
1013 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1014 .access = PL1_RW, .type = ARM_CP_ALIAS,
1015 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1016 .writefn = pmintenclr_write, },
1017 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1018 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1019 .access = PL1_RW, .writefn = vbar_write,
1020 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1021 offsetof(CPUARMState, cp15.vbar_ns) },
1023 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1024 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1025 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1026 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1027 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1028 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1029 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1030 offsetof(CPUARMState, cp15.csselr_ns) } },
1031 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1032 * just RAZ for all cores:
1034 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1035 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1036 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1037 /* Auxiliary fault status registers: these also are IMPDEF, and we
1038 * choose to RAZ/WI for all cores.
1040 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1041 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1042 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1043 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1044 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1045 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1046 /* MAIR can just read-as-written because we don't implement caches
1047 * and so don't need to care about memory attributes.
1049 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1050 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1051 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1053 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1054 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1055 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1057 /* For non-long-descriptor page tables these are PRRR and NMRR;
1058 * regardless they still act as reads-as-written for QEMU.
1060 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1061 * allows them to assign the correct fieldoffset based on the endianness
1062 * handled in the field definitions.
1064 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1065 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1067 offsetof(CPUARMState, cp15.mair0_ns) },
1068 .resetfn = arm_cp_reset_ignore },
1069 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1070 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1071 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1072 offsetof(CPUARMState, cp15.mair1_ns) },
1073 .resetfn = arm_cp_reset_ignore },
1074 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1075 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1076 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1077 /* 32 bit ITLB invalidates */
1078 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1079 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1080 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1081 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1082 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1083 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1084 /* 32 bit DTLB invalidates */
1085 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1086 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1087 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1088 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1089 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1090 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1091 /* 32 bit TLB invalidates */
1092 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1093 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1094 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1095 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1096 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1097 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1098 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1099 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1103 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1104 /* 32 bit TLB invalidates, Inner Shareable */
1105 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1106 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1107 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1108 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1109 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1110 .type = ARM_CP_NO_RAW, .access = PL1_W,
1111 .writefn = tlbiasid_is_write },
1112 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1113 .type = ARM_CP_NO_RAW, .access = PL1_W,
1114 .writefn = tlbimvaa_is_write },
1118 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1125 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1127 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1128 return CP_ACCESS_TRAP;
1130 return CP_ACCESS_OK;
1133 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1134 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1135 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1137 .writefn = teecr_write },
1138 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1139 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1140 .accessfn = teehbr_access, .resetvalue = 0 },
1144 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1145 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1146 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1148 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1149 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1151 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1152 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1153 .resetfn = arm_cp_reset_ignore },
1154 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1155 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1156 .access = PL0_R|PL1_W,
1157 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1159 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1160 .access = PL0_R|PL1_W,
1161 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1162 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1163 .resetfn = arm_cp_reset_ignore },
1164 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1165 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1167 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1168 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1170 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1171 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1176 #ifndef CONFIG_USER_ONLY
1178 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1180 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1181 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1182 return CP_ACCESS_TRAP;
1184 return CP_ACCESS_OK;
1187 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1189 unsigned int cur_el = arm_current_el(env);
1190 bool secure = arm_is_secure(env);
1192 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1194 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1195 return CP_ACCESS_TRAP;
1198 if (arm_feature(env, ARM_FEATURE_EL2) &&
1199 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1200 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1201 return CP_ACCESS_TRAP_EL2;
1203 return CP_ACCESS_OK;
1206 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1208 unsigned int cur_el = arm_current_el(env);
1209 bool secure = arm_is_secure(env);
1211 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1212 * EL0[PV]TEN is zero.
1215 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1216 return CP_ACCESS_TRAP;
1219 if (arm_feature(env, ARM_FEATURE_EL2) &&
1220 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1221 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1222 return CP_ACCESS_TRAP_EL2;
1224 return CP_ACCESS_OK;
1227 static CPAccessResult gt_pct_access(CPUARMState *env,
1228 const ARMCPRegInfo *ri)
1230 return gt_counter_access(env, GTIMER_PHYS);
1233 static CPAccessResult gt_vct_access(CPUARMState *env,
1234 const ARMCPRegInfo *ri)
1236 return gt_counter_access(env, GTIMER_VIRT);
1239 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1241 return gt_timer_access(env, GTIMER_PHYS);
1244 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1246 return gt_timer_access(env, GTIMER_VIRT);
1249 static CPAccessResult gt_stimer_access(CPUARMState *env,
1250 const ARMCPRegInfo *ri)
1252 /* The AArch64 register view of the secure physical timer is
1253 * always accessible from EL3, and configurably accessible from
1256 switch (arm_current_el(env)) {
1258 if (!arm_is_secure(env)) {
1259 return CP_ACCESS_TRAP;
1261 if (!(env->cp15.scr_el3 & SCR_ST)) {
1262 return CP_ACCESS_TRAP_EL3;
1264 return CP_ACCESS_OK;
1267 return CP_ACCESS_TRAP;
1269 return CP_ACCESS_OK;
1271 g_assert_not_reached();
1275 static uint64_t gt_get_countervalue(CPUARMState *env)
1277 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1280 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1282 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1285 /* Timer enabled: calculate and set current ISTATUS, irq, and
1286 * reset timer to when ISTATUS next has to change
1288 uint64_t offset = timeridx == GTIMER_VIRT ?
1289 cpu->env.cp15.cntvoff_el2 : 0;
1290 uint64_t count = gt_get_countervalue(&cpu->env);
1291 /* Note that this must be unsigned 64 bit arithmetic: */
1292 int istatus = count - offset >= gt->cval;
1295 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1296 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1297 (istatus && !(gt->ctl & 2)));
1299 /* Next transition is when count rolls back over to zero */
1300 nexttick = UINT64_MAX;
1302 /* Next transition is when we hit cval */
1303 nexttick = gt->cval + offset;
1305 /* Note that the desired next expiry time might be beyond the
1306 * signed-64-bit range of a QEMUTimer -- in this case we just
1307 * set the timer for as far in the future as possible. When the
1308 * timer expires we will reset the timer for any remaining period.
1310 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1311 nexttick = INT64_MAX / GTIMER_SCALE;
1313 timer_mod(cpu->gt_timer[timeridx], nexttick);
1315 /* Timer disabled: ISTATUS and timer output always clear */
1317 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1318 timer_del(cpu->gt_timer[timeridx]);
1322 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1325 ARMCPU *cpu = arm_env_get_cpu(env);
1327 timer_del(cpu->gt_timer[timeridx]);
1330 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1332 return gt_get_countervalue(env);
1335 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1337 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1340 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1344 env->cp15.c14_timer[timeridx].cval = value;
1345 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1348 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1351 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1353 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1354 (gt_get_countervalue(env) - offset));
1357 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1361 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1363 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1364 sextract64(value, 0, 32);
1365 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1368 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1372 ARMCPU *cpu = arm_env_get_cpu(env);
1373 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1375 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1376 if ((oldval ^ value) & 1) {
1377 /* Enable toggled */
1378 gt_recalc_timer(cpu, timeridx);
1379 } else if ((oldval ^ value) & 2) {
1380 /* IMASK toggled: don't need to recalculate,
1381 * just set the interrupt line based on ISTATUS
1383 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1384 (oldval & 4) && !(value & 2));
1388 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1390 gt_timer_reset(env, ri, GTIMER_PHYS);
1393 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1396 gt_cval_write(env, ri, GTIMER_PHYS, value);
1399 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1401 return gt_tval_read(env, ri, GTIMER_PHYS);
1404 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1407 gt_tval_write(env, ri, GTIMER_PHYS, value);
1410 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1413 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1416 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1418 gt_timer_reset(env, ri, GTIMER_VIRT);
1421 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1424 gt_cval_write(env, ri, GTIMER_VIRT, value);
1427 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1429 return gt_tval_read(env, ri, GTIMER_VIRT);
1432 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1435 gt_tval_write(env, ri, GTIMER_VIRT, value);
1438 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1441 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1444 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 ARMCPU *cpu = arm_env_get_cpu(env);
1449 raw_write(env, ri, value);
1450 gt_recalc_timer(cpu, GTIMER_VIRT);
1453 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1455 gt_timer_reset(env, ri, GTIMER_HYP);
1458 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461 gt_cval_write(env, ri, GTIMER_HYP, value);
1464 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1466 return gt_tval_read(env, ri, GTIMER_HYP);
1469 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1472 gt_tval_write(env, ri, GTIMER_HYP, value);
1475 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 gt_ctl_write(env, ri, GTIMER_HYP, value);
1481 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1483 gt_timer_reset(env, ri, GTIMER_SEC);
1486 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 gt_cval_write(env, ri, GTIMER_SEC, value);
1492 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1494 return gt_tval_read(env, ri, GTIMER_SEC);
1497 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1500 gt_tval_write(env, ri, GTIMER_SEC, value);
1503 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1506 gt_ctl_write(env, ri, GTIMER_SEC, value);
1509 void arm_gt_ptimer_cb(void *opaque)
1511 ARMCPU *cpu = opaque;
1513 gt_recalc_timer(cpu, GTIMER_PHYS);
1516 void arm_gt_vtimer_cb(void *opaque)
1518 ARMCPU *cpu = opaque;
1520 gt_recalc_timer(cpu, GTIMER_VIRT);
1523 void arm_gt_htimer_cb(void *opaque)
1525 ARMCPU *cpu = opaque;
1527 gt_recalc_timer(cpu, GTIMER_HYP);
1530 void arm_gt_stimer_cb(void *opaque)
1532 ARMCPU *cpu = opaque;
1534 gt_recalc_timer(cpu, GTIMER_SEC);
1537 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1538 /* Note that CNTFRQ is purely reads-as-written for the benefit
1539 * of software; writing it doesn't actually change the timer frequency.
1540 * Our reset value matches the fixed frequency we implement the timer at.
1542 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1543 .type = ARM_CP_ALIAS,
1544 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1545 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1547 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1548 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1549 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1550 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1551 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1553 /* overall control: mostly access permissions */
1554 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1555 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1557 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1560 /* per-timer control */
1561 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1562 .secure = ARM_CP_SECSTATE_NS,
1563 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1564 .accessfn = gt_ptimer_access,
1565 .fieldoffset = offsetoflow32(CPUARMState,
1566 cp15.c14_timer[GTIMER_PHYS].ctl),
1567 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1569 { .name = "CNTP_CTL(S)",
1570 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1571 .secure = ARM_CP_SECSTATE_S,
1572 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1573 .accessfn = gt_ptimer_access,
1574 .fieldoffset = offsetoflow32(CPUARMState,
1575 cp15.c14_timer[GTIMER_SEC].ctl),
1576 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1578 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1579 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1580 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1581 .accessfn = gt_ptimer_access,
1582 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1584 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1586 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1587 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1588 .accessfn = gt_vtimer_access,
1589 .fieldoffset = offsetoflow32(CPUARMState,
1590 cp15.c14_timer[GTIMER_VIRT].ctl),
1591 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1593 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1594 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1595 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1596 .accessfn = gt_vtimer_access,
1597 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1599 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1601 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1602 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1603 .secure = ARM_CP_SECSTATE_NS,
1604 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1605 .accessfn = gt_ptimer_access,
1606 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1608 { .name = "CNTP_TVAL(S)",
1609 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1610 .secure = ARM_CP_SECSTATE_S,
1611 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1612 .accessfn = gt_ptimer_access,
1613 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1615 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1616 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1617 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1618 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1619 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1621 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1622 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1623 .accessfn = gt_vtimer_access,
1624 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1626 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1627 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1628 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1629 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1630 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1632 /* The counter itself */
1633 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1634 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1635 .accessfn = gt_pct_access,
1636 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1638 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1639 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1640 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1641 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1643 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1644 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1645 .accessfn = gt_vct_access,
1646 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1648 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1649 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1650 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1651 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1653 /* Comparison value, indicating when the timer goes off */
1654 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1655 .secure = ARM_CP_SECSTATE_NS,
1656 .access = PL1_RW | PL0_R,
1657 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1658 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1659 .accessfn = gt_ptimer_access,
1660 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1662 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1663 .secure = ARM_CP_SECSTATE_S,
1664 .access = PL1_RW | PL0_R,
1665 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1666 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1667 .accessfn = gt_ptimer_access,
1668 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1670 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1671 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1672 .access = PL1_RW | PL0_R,
1674 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1675 .resetvalue = 0, .accessfn = gt_ptimer_access,
1676 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1678 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1679 .access = PL1_RW | PL0_R,
1680 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1681 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1682 .accessfn = gt_vtimer_access,
1683 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1685 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1686 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1687 .access = PL1_RW | PL0_R,
1689 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1690 .resetvalue = 0, .accessfn = gt_vtimer_access,
1691 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1693 /* Secure timer -- this is actually restricted to only EL3
1694 * and configurably Secure-EL1 via the accessfn.
1696 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1697 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1698 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1699 .accessfn = gt_stimer_access,
1700 .readfn = gt_sec_tval_read,
1701 .writefn = gt_sec_tval_write,
1702 .resetfn = gt_sec_timer_reset,
1704 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1705 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1706 .type = ARM_CP_IO, .access = PL1_RW,
1707 .accessfn = gt_stimer_access,
1708 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1710 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1712 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1713 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1714 .type = ARM_CP_IO, .access = PL1_RW,
1715 .accessfn = gt_stimer_access,
1716 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1717 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1723 /* In user-mode none of the generic timer registers are accessible,
1724 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1725 * so instead just don't register any of them.
1727 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1733 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1735 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1736 raw_write(env, ri, value);
1737 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1738 raw_write(env, ri, value & 0xfffff6ff);
1740 raw_write(env, ri, value & 0xfffff1ff);
1744 #ifndef CONFIG_USER_ONLY
1745 /* get_phys_addr() isn't present for user-mode-only targets */
1747 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1750 /* The ATS12NSO* operations must trap to EL3 if executed in
1751 * Secure EL1 (which can only happen if EL3 is AArch64).
1752 * They are simply UNDEF if executed from NS EL1.
1753 * They function normally from EL2 or EL3.
1755 if (arm_current_el(env) == 1) {
1756 if (arm_is_secure_below_el3(env)) {
1757 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1759 return CP_ACCESS_TRAP_UNCATEGORIZED;
1762 return CP_ACCESS_OK;
1765 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1766 int access_type, ARMMMUIdx mmu_idx)
1769 target_ulong page_size;
1774 MemTxAttrs attrs = {};
1776 ret = get_phys_addr(env, value, access_type, mmu_idx,
1777 &phys_addr, &attrs, &prot, &page_size, &fsr);
1778 if (extended_addresses_enabled(env)) {
1779 /* fsr is a DFSR/IFSR value for the long descriptor
1780 * translation table format, but with WnR always clear.
1781 * Convert it to a 64-bit PAR.
1783 par64 = (1 << 11); /* LPAE bit always set */
1785 par64 |= phys_addr & ~0xfffULL;
1786 if (!attrs.secure) {
1787 par64 |= (1 << 9); /* NS */
1789 /* We don't set the ATTR or SH fields in the PAR. */
1792 par64 |= (fsr & 0x3f) << 1; /* FS */
1793 /* Note that S2WLK and FSTAGE are always zero, because we don't
1794 * implement virtualization and therefore there can't be a stage 2
1799 /* fsr is a DFSR/IFSR value for the short descriptor
1800 * translation table format (with WnR always clear).
1801 * Convert it to a 32-bit PAR.
1804 /* We do not set any attribute bits in the PAR */
1805 if (page_size == (1 << 24)
1806 && arm_feature(env, ARM_FEATURE_V7)) {
1807 par64 = (phys_addr & 0xff000000) | (1 << 1);
1809 par64 = phys_addr & 0xfffff000;
1811 if (!attrs.secure) {
1812 par64 |= (1 << 9); /* NS */
1815 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1816 ((fsr & 0xf) << 1) | 1;
1822 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1824 int access_type = ri->opc2 & 1;
1827 int el = arm_current_el(env);
1828 bool secure = arm_is_secure_below_el3(env);
1830 switch (ri->opc2 & 6) {
1832 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1835 mmu_idx = ARMMMUIdx_S1E3;
1838 mmu_idx = ARMMMUIdx_S1NSE1;
1841 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1844 g_assert_not_reached();
1848 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1851 mmu_idx = ARMMMUIdx_S1SE0;
1854 mmu_idx = ARMMMUIdx_S1NSE0;
1857 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1860 g_assert_not_reached();
1864 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1865 mmu_idx = ARMMMUIdx_S12NSE1;
1868 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1869 mmu_idx = ARMMMUIdx_S12NSE0;
1872 g_assert_not_reached();
1875 par64 = do_ats_write(env, value, access_type, mmu_idx);
1877 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1880 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1883 int access_type = ri->opc2 & 1;
1886 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1888 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1891 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1893 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1894 return CP_ACCESS_TRAP;
1896 return CP_ACCESS_OK;
1899 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1902 int access_type = ri->opc2 & 1;
1904 int secure = arm_is_secure_below_el3(env);
1906 switch (ri->opc2 & 6) {
1909 case 0: /* AT S1E1R, AT S1E1W */
1910 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1912 case 4: /* AT S1E2R, AT S1E2W */
1913 mmu_idx = ARMMMUIdx_S1E2;
1915 case 6: /* AT S1E3R, AT S1E3W */
1916 mmu_idx = ARMMMUIdx_S1E3;
1919 g_assert_not_reached();
1922 case 2: /* AT S1E0R, AT S1E0W */
1923 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1925 case 4: /* AT S12E1R, AT S12E1W */
1926 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1928 case 6: /* AT S12E0R, AT S12E0W */
1929 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1932 g_assert_not_reached();
1935 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1939 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1940 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1941 .access = PL1_RW, .resetvalue = 0,
1942 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1943 offsetoflow32(CPUARMState, cp15.par_ns) },
1944 .writefn = par_write },
1945 #ifndef CONFIG_USER_ONLY
1946 /* This underdecoding is safe because the reginfo is NO_RAW. */
1947 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1948 .access = PL1_W, .accessfn = ats_access,
1949 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1954 /* Return basic MPU access permission bits. */
1955 static uint32_t simple_mpu_ap_bits(uint32_t val)
1962 for (i = 0; i < 16; i += 2) {
1963 ret |= (val >> i) & mask;
1969 /* Pad basic MPU access permission bits to extended format. */
1970 static uint32_t extended_mpu_ap_bits(uint32_t val)
1977 for (i = 0; i < 16; i += 2) {
1978 ret |= (val & mask) << i;
1984 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1987 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1990 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1992 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1995 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1998 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2001 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2006 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2014 u32p += env->cp15.c6_rgnr;
2018 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2021 ARMCPU *cpu = arm_env_get_cpu(env);
2022 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2028 u32p += env->cp15.c6_rgnr;
2029 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2033 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2035 ARMCPU *cpu = arm_env_get_cpu(env);
2036 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2042 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2045 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2048 ARMCPU *cpu = arm_env_get_cpu(env);
2049 uint32_t nrgs = cpu->pmsav7_dregion;
2051 if (value >= nrgs) {
2052 qemu_log_mask(LOG_GUEST_ERROR,
2053 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2054 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2058 raw_write(env, ri, value);
2061 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2062 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2063 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2064 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2065 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2066 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2067 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2068 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2069 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2070 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2071 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2072 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2073 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2074 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2076 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2077 .writefn = pmsav7_rgnr_write },
2081 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2082 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2083 .access = PL1_RW, .type = ARM_CP_ALIAS,
2084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2085 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2086 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2087 .access = PL1_RW, .type = ARM_CP_ALIAS,
2088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2089 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2090 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2094 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2096 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2098 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2101 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2103 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2104 /* Protection region base and size registers */
2105 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2108 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2111 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2114 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2117 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2120 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2123 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2126 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2127 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2132 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2135 TCR *tcr = raw_ptr(env, ri);
2136 int maskshift = extract32(value, 0, 3);
2138 if (!arm_feature(env, ARM_FEATURE_V8)) {
2139 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2140 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2141 * using Long-desciptor translation table format */
2142 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2143 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2144 /* In an implementation that includes the Security Extensions
2145 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2146 * Short-descriptor translation table format.
2148 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2154 /* Update the masks corresponding to the TCR bank being written
2155 * Note that we always calculate mask and base_mask, but
2156 * they are only used for short-descriptor tables (ie if EAE is 0);
2157 * for long-descriptor tables the TCR fields are used differently
2158 * and the mask and base_mask values are meaningless.
2160 tcr->raw_tcr = value;
2161 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2162 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2165 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2168 ARMCPU *cpu = arm_env_get_cpu(env);
2170 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2171 /* With LPAE the TTBCR could result in a change of ASID
2172 * via the TTBCR.A1 bit, so do a TLB flush.
2174 tlb_flush(CPU(cpu), 1);
2176 vmsa_ttbcr_raw_write(env, ri, value);
2179 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2181 TCR *tcr = raw_ptr(env, ri);
2183 /* Reset both the TCR as well as the masks corresponding to the bank of
2184 * the TCR being reset.
2188 tcr->base_mask = 0xffffc000u;
2191 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 ARMCPU *cpu = arm_env_get_cpu(env);
2195 TCR *tcr = raw_ptr(env, ri);
2197 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2198 tlb_flush(CPU(cpu), 1);
2199 tcr->raw_tcr = value;
2202 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2205 /* 64 bit accesses to the TTBRs can change the ASID and so we
2206 * must flush the TLB.
2208 if (cpreg_field_is_64bit(ri)) {
2209 ARMCPU *cpu = arm_env_get_cpu(env);
2211 tlb_flush(CPU(cpu), 1);
2213 raw_write(env, ri, value);
2216 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2219 ARMCPU *cpu = arm_env_get_cpu(env);
2220 CPUState *cs = CPU(cpu);
2222 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2223 if (raw_read(env, ri) != value) {
2224 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2225 ARMMMUIdx_S2NS, -1);
2226 raw_write(env, ri, value);
2230 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2231 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2232 .access = PL1_RW, .type = ARM_CP_ALIAS,
2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2234 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2235 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2236 .access = PL1_RW, .resetvalue = 0,
2237 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2238 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2239 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2240 .access = PL1_RW, .resetvalue = 0,
2241 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2242 offsetof(CPUARMState, cp15.dfar_ns) } },
2243 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2245 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2250 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2251 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2254 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2255 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2256 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2257 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2259 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2260 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2262 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2264 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2265 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2266 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2267 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2268 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2269 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2270 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2271 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2272 .raw_writefn = vmsa_ttbcr_raw_write,
2273 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2274 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2278 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2281 env->cp15.c15_ticonfig = value & 0xe7;
2282 /* The OS_TYPE bit in this register changes the reported CPUID! */
2283 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2284 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2287 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2290 env->cp15.c15_threadid = value & 0xffff;
2293 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2296 /* Wait-for-interrupt (deprecated) */
2297 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2300 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2303 /* On OMAP there are registers indicating the max/min index of dcache lines
2304 * containing a dirty line; cache flush operations have to reset these.
2306 env->cp15.c15_i_max = 0x000;
2307 env->cp15.c15_i_min = 0xff0;
2310 static const ARMCPRegInfo omap_cp_reginfo[] = {
2311 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2312 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2313 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2315 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2316 .access = PL1_RW, .type = ARM_CP_NOP },
2317 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2319 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2320 .writefn = omap_ticonfig_write },
2321 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2323 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2324 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2325 .access = PL1_RW, .resetvalue = 0xff0,
2326 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2327 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2329 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2330 .writefn = omap_threadid_write },
2331 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2332 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2333 .type = ARM_CP_NO_RAW,
2334 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2335 /* TODO: Peripheral port remap register:
2336 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2337 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2340 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2341 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2342 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2343 .writefn = omap_cachemaint_write },
2344 { .name = "C9", .cp = 15, .crn = 9,
2345 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2346 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2350 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2353 env->cp15.c15_cpar = value & 0x3fff;
2356 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2357 { .name = "XSCALE_CPAR",
2358 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2359 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2360 .writefn = xscale_cpar_write, },
2361 { .name = "XSCALE_AUXCR",
2362 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2363 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2365 /* XScale specific cache-lockdown: since we have no cache we NOP these
2366 * and hope the guest does not really rely on cache behaviour.
2368 { .name = "XSCALE_LOCK_ICACHE_LINE",
2369 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2370 .access = PL1_W, .type = ARM_CP_NOP },
2371 { .name = "XSCALE_UNLOCK_ICACHE",
2372 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2373 .access = PL1_W, .type = ARM_CP_NOP },
2374 { .name = "XSCALE_DCACHE_LOCK",
2375 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2376 .access = PL1_RW, .type = ARM_CP_NOP },
2377 { .name = "XSCALE_UNLOCK_DCACHE",
2378 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2379 .access = PL1_W, .type = ARM_CP_NOP },
2383 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2384 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2385 * implementation of this implementation-defined space.
2386 * Ideally this should eventually disappear in favour of actually
2387 * implementing the correct behaviour for all cores.
2389 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2392 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2397 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2398 /* Cache status: RAZ because we have no cache so it's always clean */
2399 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2400 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2405 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2406 /* We never have a a block transfer operation in progress */
2407 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2408 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2410 /* The cache ops themselves: these all NOP for QEMU */
2411 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2412 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2413 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2414 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2415 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2416 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2417 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2418 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2419 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2420 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2421 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2422 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2426 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2427 /* The cache test-and-clean instructions always return (1 << 30)
2428 * to indicate that there are no dirty cache lines.
2430 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2431 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2432 .resetvalue = (1 << 30) },
2433 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2434 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2435 .resetvalue = (1 << 30) },
2439 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2440 /* Ignore ReadBuffer accesses */
2441 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2442 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2443 .access = PL1_RW, .resetvalue = 0,
2444 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2448 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2450 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2451 uint64_t mpidr = cpu->mp_affinity;
2453 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2454 mpidr |= (1U << 31);
2455 /* Cores which are uniprocessor (non-coherent)
2456 * but still implement the MP extensions set
2457 * bit 30. (For instance, Cortex-R5).
2459 if (cpu->mp_is_up) {
2460 mpidr |= (1u << 30);
2466 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2467 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2468 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2469 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2473 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2475 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2476 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2477 .access = PL1_RW, .type = ARM_CP_CONST,
2479 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2480 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2481 .access = PL1_RW, .type = ARM_CP_CONST,
2483 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2484 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2485 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2486 offsetof(CPUARMState, cp15.par_ns)} },
2487 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2488 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2489 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2490 offsetof(CPUARMState, cp15.ttbr0_ns) },
2491 .writefn = vmsa_ttbr_write, },
2492 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2493 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2494 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2495 offsetof(CPUARMState, cp15.ttbr1_ns) },
2496 .writefn = vmsa_ttbr_write, },
2500 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2502 return vfp_get_fpcr(env);
2505 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2508 vfp_set_fpcr(env, value);
2511 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2513 return vfp_get_fpsr(env);
2516 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2519 vfp_set_fpsr(env, value);
2522 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2524 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2525 return CP_ACCESS_TRAP;
2527 return CP_ACCESS_OK;
2530 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2533 env->daif = value & PSTATE_DAIF;
2536 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2537 const ARMCPRegInfo *ri)
2539 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2540 * SCTLR_EL1.UCI is set.
2542 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2543 return CP_ACCESS_TRAP;
2545 return CP_ACCESS_OK;
2548 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2549 * Page D4-1736 (DDI0487A.b)
2552 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2555 ARMCPU *cpu = arm_env_get_cpu(env);
2556 CPUState *cs = CPU(cpu);
2558 if (arm_is_secure_below_el3(env)) {
2559 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2561 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2565 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2568 bool sec = arm_is_secure_below_el3(env);
2571 CPU_FOREACH(other_cs) {
2573 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2575 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2576 ARMMMUIdx_S12NSE0, -1);
2581 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584 /* Note that the 'ALL' scope must invalidate both stage 1 and
2585 * stage 2 translations, whereas most other scopes only invalidate
2586 * stage 1 translations.
2588 ARMCPU *cpu = arm_env_get_cpu(env);
2589 CPUState *cs = CPU(cpu);
2591 if (arm_is_secure_below_el3(env)) {
2592 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2594 if (arm_feature(env, ARM_FEATURE_EL2)) {
2595 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2596 ARMMMUIdx_S2NS, -1);
2598 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2603 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2606 ARMCPU *cpu = arm_env_get_cpu(env);
2607 CPUState *cs = CPU(cpu);
2609 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2612 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615 ARMCPU *cpu = arm_env_get_cpu(env);
2616 CPUState *cs = CPU(cpu);
2618 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2621 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2624 /* Note that the 'ALL' scope must invalidate both stage 1 and
2625 * stage 2 translations, whereas most other scopes only invalidate
2626 * stage 1 translations.
2628 bool sec = arm_is_secure_below_el3(env);
2629 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2632 CPU_FOREACH(other_cs) {
2634 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2635 } else if (has_el2) {
2636 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2637 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2639 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2640 ARMMMUIdx_S12NSE0, -1);
2645 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650 CPU_FOREACH(other_cs) {
2651 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2655 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660 CPU_FOREACH(other_cs) {
2661 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2665 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2668 /* Invalidate by VA, EL1&0 (AArch64 version).
2669 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2670 * since we don't support flush-for-specific-ASID-only or
2671 * flush-last-level-only.
2673 ARMCPU *cpu = arm_env_get_cpu(env);
2674 CPUState *cs = CPU(cpu);
2675 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2677 if (arm_is_secure_below_el3(env)) {
2678 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2679 ARMMMUIdx_S1SE0, -1);
2681 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2682 ARMMMUIdx_S12NSE0, -1);
2686 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2689 /* Invalidate by VA, EL2
2690 * Currently handles both VAE2 and VALE2, since we don't support
2691 * flush-last-level-only.
2693 ARMCPU *cpu = arm_env_get_cpu(env);
2694 CPUState *cs = CPU(cpu);
2695 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2700 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2703 /* Invalidate by VA, EL3
2704 * Currently handles both VAE3 and VALE3, since we don't support
2705 * flush-last-level-only.
2707 ARMCPU *cpu = arm_env_get_cpu(env);
2708 CPUState *cs = CPU(cpu);
2709 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2711 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2714 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2717 bool sec = arm_is_secure_below_el3(env);
2719 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2721 CPU_FOREACH(other_cs) {
2723 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2724 ARMMMUIdx_S1SE0, -1);
2726 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2727 ARMMMUIdx_S12NSE0, -1);
2732 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2736 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2738 CPU_FOREACH(other_cs) {
2739 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2743 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2747 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2749 CPU_FOREACH(other_cs) {
2750 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2754 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2757 /* Invalidate by IPA. This has to invalidate any structures that
2758 * contain only stage 2 translation information, but does not need
2759 * to apply to structures that contain combined stage 1 and stage 2
2760 * translation information.
2761 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2763 ARMCPU *cpu = arm_env_get_cpu(env);
2764 CPUState *cs = CPU(cpu);
2767 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2771 pageaddr = sextract64(value << 12, 0, 48);
2773 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2776 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2786 pageaddr = sextract64(value << 12, 0, 48);
2788 CPU_FOREACH(other_cs) {
2789 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2793 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2795 /* We don't implement EL2, so the only control on DC ZVA is the
2796 * bit in the SCTLR which can prohibit access for EL0.
2798 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2799 return CP_ACCESS_TRAP;
2801 return CP_ACCESS_OK;
2804 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2806 ARMCPU *cpu = arm_env_get_cpu(env);
2807 int dzp_bit = 1 << 4;
2809 /* DZP indicates whether DC ZVA access is allowed */
2810 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2813 return cpu->dcz_blocksize | dzp_bit;
2816 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2818 if (!(env->pstate & PSTATE_SP)) {
2819 /* Access to SP_EL0 is undefined if it's being used as
2820 * the stack pointer.
2822 return CP_ACCESS_TRAP_UNCATEGORIZED;
2824 return CP_ACCESS_OK;
2827 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2829 return env->pstate & PSTATE_SP;
2832 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2834 update_spsel(env, val);
2837 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840 ARMCPU *cpu = arm_env_get_cpu(env);
2842 if (raw_read(env, ri) == value) {
2843 /* Skip the TLB flush if nothing actually changed; Linux likes
2844 * to do a lot of pointless SCTLR writes.
2849 raw_write(env, ri, value);
2850 /* ??? Lots of these bits are not implemented. */
2851 /* This may enable/disable the MMU, so do a TLB flush. */
2852 tlb_flush(CPU(cpu), 1);
2855 static const ARMCPRegInfo v8_cp_reginfo[] = {
2856 /* Minimal set of EL0-visible registers. This will need to be expanded
2857 * significantly for system emulation of AArch64 CPUs.
2859 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2860 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2861 .access = PL0_RW, .type = ARM_CP_NZCV },
2862 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2863 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2864 .type = ARM_CP_NO_RAW,
2865 .access = PL0_RW, .accessfn = aa64_daif_access,
2866 .fieldoffset = offsetof(CPUARMState, daif),
2867 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2868 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2869 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2870 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2871 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2872 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2873 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2874 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2875 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2876 .access = PL0_R, .type = ARM_CP_NO_RAW,
2877 .readfn = aa64_dczid_read },
2878 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2879 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2880 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2881 #ifndef CONFIG_USER_ONLY
2882 /* Avoid overhead of an access check that always passes in user-mode */
2883 .accessfn = aa64_zva_access,
2886 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2887 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2888 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2889 /* Cache ops: all NOPs since we don't emulate caches */
2890 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2891 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2892 .access = PL1_W, .type = ARM_CP_NOP },
2893 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2894 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2895 .access = PL1_W, .type = ARM_CP_NOP },
2896 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2897 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2898 .access = PL0_W, .type = ARM_CP_NOP,
2899 .accessfn = aa64_cacheop_access },
2900 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2901 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2902 .access = PL1_W, .type = ARM_CP_NOP },
2903 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2904 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2905 .access = PL1_W, .type = ARM_CP_NOP },
2906 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2907 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2908 .access = PL0_W, .type = ARM_CP_NOP,
2909 .accessfn = aa64_cacheop_access },
2910 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2911 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2912 .access = PL1_W, .type = ARM_CP_NOP },
2913 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2914 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2915 .access = PL0_W, .type = ARM_CP_NOP,
2916 .accessfn = aa64_cacheop_access },
2917 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2918 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2919 .access = PL0_W, .type = ARM_CP_NOP,
2920 .accessfn = aa64_cacheop_access },
2921 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2923 .access = PL1_W, .type = ARM_CP_NOP },
2924 /* TLBI operations */
2925 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2927 .access = PL1_W, .type = ARM_CP_NO_RAW,
2928 .writefn = tlbi_aa64_vmalle1is_write },
2929 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2930 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2931 .access = PL1_W, .type = ARM_CP_NO_RAW,
2932 .writefn = tlbi_aa64_vae1is_write },
2933 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2934 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2935 .access = PL1_W, .type = ARM_CP_NO_RAW,
2936 .writefn = tlbi_aa64_vmalle1is_write },
2937 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2938 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2939 .access = PL1_W, .type = ARM_CP_NO_RAW,
2940 .writefn = tlbi_aa64_vae1is_write },
2941 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2942 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2943 .access = PL1_W, .type = ARM_CP_NO_RAW,
2944 .writefn = tlbi_aa64_vae1is_write },
2945 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2946 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2947 .access = PL1_W, .type = ARM_CP_NO_RAW,
2948 .writefn = tlbi_aa64_vae1is_write },
2949 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2950 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2951 .access = PL1_W, .type = ARM_CP_NO_RAW,
2952 .writefn = tlbi_aa64_vmalle1_write },
2953 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2954 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2955 .access = PL1_W, .type = ARM_CP_NO_RAW,
2956 .writefn = tlbi_aa64_vae1_write },
2957 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2958 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2959 .access = PL1_W, .type = ARM_CP_NO_RAW,
2960 .writefn = tlbi_aa64_vmalle1_write },
2961 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2963 .access = PL1_W, .type = ARM_CP_NO_RAW,
2964 .writefn = tlbi_aa64_vae1_write },
2965 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2967 .access = PL1_W, .type = ARM_CP_NO_RAW,
2968 .writefn = tlbi_aa64_vae1_write },
2969 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2971 .access = PL1_W, .type = ARM_CP_NO_RAW,
2972 .writefn = tlbi_aa64_vae1_write },
2973 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
2974 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
2975 .access = PL2_W, .type = ARM_CP_NO_RAW,
2976 .writefn = tlbi_aa64_ipas2e1is_write },
2977 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
2978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
2979 .access = PL2_W, .type = ARM_CP_NO_RAW,
2980 .writefn = tlbi_aa64_ipas2e1is_write },
2981 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2982 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2983 .access = PL2_W, .type = ARM_CP_NO_RAW,
2984 .writefn = tlbi_aa64_alle1is_write },
2985 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
2986 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
2987 .access = PL2_W, .type = ARM_CP_NO_RAW,
2988 .writefn = tlbi_aa64_alle1is_write },
2989 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
2990 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
2991 .access = PL2_W, .type = ARM_CP_NO_RAW,
2992 .writefn = tlbi_aa64_ipas2e1_write },
2993 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
2994 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
2995 .access = PL2_W, .type = ARM_CP_NO_RAW,
2996 .writefn = tlbi_aa64_ipas2e1_write },
2997 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2999 .access = PL2_W, .type = ARM_CP_NO_RAW,
3000 .writefn = tlbi_aa64_alle1_write },
3001 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3003 .access = PL2_W, .type = ARM_CP_NO_RAW,
3004 .writefn = tlbi_aa64_alle1is_write },
3005 #ifndef CONFIG_USER_ONLY
3006 /* 64 bit address translation operations */
3007 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3008 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3009 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3010 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3012 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3013 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3014 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3015 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3016 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3017 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3018 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3019 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3020 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3021 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3022 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3023 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3024 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3025 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3026 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3027 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3028 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3029 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3030 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3031 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3032 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3033 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3034 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3035 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3036 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3037 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3038 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3039 .type = ARM_CP_ALIAS,
3040 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3041 .access = PL1_RW, .resetvalue = 0,
3042 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3043 .writefn = par_write },
3045 /* TLB invalidate last level of translation table walk */
3046 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3047 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3048 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3049 .type = ARM_CP_NO_RAW, .access = PL1_W,
3050 .writefn = tlbimvaa_is_write },
3051 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3052 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3053 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3054 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3055 /* 32 bit cache operations */
3056 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3057 .type = ARM_CP_NOP, .access = PL1_W },
3058 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3059 .type = ARM_CP_NOP, .access = PL1_W },
3060 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3061 .type = ARM_CP_NOP, .access = PL1_W },
3062 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3063 .type = ARM_CP_NOP, .access = PL1_W },
3064 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3065 .type = ARM_CP_NOP, .access = PL1_W },
3066 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3067 .type = ARM_CP_NOP, .access = PL1_W },
3068 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3069 .type = ARM_CP_NOP, .access = PL1_W },
3070 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3071 .type = ARM_CP_NOP, .access = PL1_W },
3072 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3073 .type = ARM_CP_NOP, .access = PL1_W },
3074 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3075 .type = ARM_CP_NOP, .access = PL1_W },
3076 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3077 .type = ARM_CP_NOP, .access = PL1_W },
3078 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3079 .type = ARM_CP_NOP, .access = PL1_W },
3080 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3081 .type = ARM_CP_NOP, .access = PL1_W },
3082 /* MMU Domain access control / MPU write buffer control */
3083 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3084 .access = PL1_RW, .resetvalue = 0,
3085 .writefn = dacr_write, .raw_writefn = raw_write,
3086 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3087 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3088 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3089 .type = ARM_CP_ALIAS,
3090 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3092 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3093 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3094 .type = ARM_CP_ALIAS,
3095 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3096 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
3097 /* We rely on the access checks not allowing the guest to write to the
3098 * state field when SPSel indicates that it's being used as the stack
3101 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3102 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3103 .access = PL1_RW, .accessfn = sp_el0_access,
3104 .type = ARM_CP_ALIAS,
3105 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3106 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3108 .access = PL2_RW, .type = ARM_CP_ALIAS,
3109 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3110 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3111 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3112 .type = ARM_CP_NO_RAW,
3113 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3117 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3118 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3119 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3120 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3122 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3123 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3124 .type = ARM_CP_NO_RAW,
3125 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3127 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3128 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3129 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3130 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3131 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3132 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3133 .access = PL2_RW, .type = ARM_CP_CONST,
3135 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3136 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3137 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3138 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3139 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3140 .access = PL2_RW, .type = ARM_CP_CONST,
3142 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3143 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3144 .access = PL2_RW, .type = ARM_CP_CONST,
3146 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3147 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3148 .access = PL2_RW, .type = ARM_CP_CONST,
3150 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3151 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3152 .access = PL2_RW, .type = ARM_CP_CONST,
3154 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3155 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3157 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3158 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3159 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3160 .type = ARM_CP_CONST, .resetvalue = 0 },
3161 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3162 .cp = 15, .opc1 = 6, .crm = 2,
3163 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3164 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3165 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3167 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3168 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3169 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3170 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3171 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3172 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3173 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3174 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3175 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3177 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3178 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3180 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3181 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3182 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3183 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3184 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3185 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3186 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3187 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3189 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3190 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3191 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3192 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3193 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3195 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3196 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3197 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3198 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3199 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3204 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3206 ARMCPU *cpu = arm_env_get_cpu(env);
3207 uint64_t valid_mask = HCR_MASK;
3209 if (arm_feature(env, ARM_FEATURE_EL3)) {
3210 valid_mask &= ~HCR_HCD;
3212 valid_mask &= ~HCR_TSC;
3215 /* Clear RES0 bits. */
3216 value &= valid_mask;
3218 /* These bits change the MMU setup:
3219 * HCR_VM enables stage 2 translation
3220 * HCR_PTW forbids certain page-table setups
3221 * HCR_DC Disables stage1 and enables stage2 translation
3223 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3224 tlb_flush(CPU(cpu), 1);
3226 raw_write(env, ri, value);
3229 static const ARMCPRegInfo el2_cp_reginfo[] = {
3230 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3232 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3233 .writefn = hcr_write },
3234 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3236 .access = PL2_RW, .resetvalue = 0,
3237 .writefn = dacr_write, .raw_writefn = raw_write,
3238 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3239 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3240 .type = ARM_CP_ALIAS,
3241 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3243 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3244 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3245 .type = ARM_CP_ALIAS,
3246 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3247 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3248 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3250 .access = PL2_RW, .resetvalue = 0,
3251 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3252 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3254 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3255 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3256 .type = ARM_CP_ALIAS,
3257 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3258 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
3259 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3260 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3261 .access = PL2_RW, .writefn = vbar_write,
3262 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3264 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3265 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3266 .access = PL3_RW, .type = ARM_CP_ALIAS,
3267 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3268 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3269 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3270 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3271 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3272 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3273 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3274 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3276 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3277 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3278 .access = PL2_RW, .type = ARM_CP_ALIAS,
3279 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3280 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3281 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3282 .access = PL2_RW, .type = ARM_CP_CONST,
3284 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3285 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3286 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3287 .access = PL2_RW, .type = ARM_CP_CONST,
3289 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3290 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3291 .access = PL2_RW, .type = ARM_CP_CONST,
3293 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3294 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3295 .access = PL2_RW, .type = ARM_CP_CONST,
3297 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3298 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3299 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3300 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3301 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3302 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3303 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3304 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3305 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3306 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3308 .access = PL2_RW, .type = ARM_CP_ALIAS,
3309 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3310 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3311 .cp = 15, .opc1 = 6, .crm = 2,
3312 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3313 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3314 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3315 .writefn = vttbr_write },
3316 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3318 .access = PL2_RW, .writefn = vttbr_write,
3319 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3320 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3321 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3322 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3323 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3324 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3325 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3326 .access = PL2_RW, .resetvalue = 0,
3327 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3328 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3330 .access = PL2_RW, .resetvalue = 0,
3331 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3332 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3333 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3334 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3335 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3337 .type = ARM_CP_NO_RAW, .access = PL2_W,
3338 .writefn = tlbi_aa64_alle2_write },
3339 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3341 .type = ARM_CP_NO_RAW, .access = PL2_W,
3342 .writefn = tlbi_aa64_vae2_write },
3343 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3345 .access = PL2_W, .type = ARM_CP_NO_RAW,
3346 .writefn = tlbi_aa64_vae2_write },
3347 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3349 .access = PL2_W, .type = ARM_CP_NO_RAW,
3350 .writefn = tlbi_aa64_alle2is_write },
3351 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3353 .type = ARM_CP_NO_RAW, .access = PL2_W,
3354 .writefn = tlbi_aa64_vae2is_write },
3355 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3357 .access = PL2_W, .type = ARM_CP_NO_RAW,
3358 .writefn = tlbi_aa64_vae2is_write },
3359 #ifndef CONFIG_USER_ONLY
3360 /* Unlike the other EL2-related AT operations, these must
3361 * UNDEF from EL3 if EL2 is not implemented, which is why we
3362 * define them here rather than with the rest of the AT ops.
3364 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3366 .access = PL2_W, .accessfn = at_s1e2_access,
3367 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3368 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3370 .access = PL2_W, .accessfn = at_s1e2_access,
3371 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3372 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3373 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3374 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3375 * to behave as if SCR.NS was 1.
3377 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3379 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3380 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3382 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3383 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3384 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3385 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3386 * reset values as IMPDEF. We choose to reset to 3 to comply with
3387 * both ARMv7 and ARMv8.
3389 .access = PL2_RW, .resetvalue = 3,
3390 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3391 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3393 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3394 .writefn = gt_cntvoff_write,
3395 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3396 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3397 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3398 .writefn = gt_cntvoff_write,
3399 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3400 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3401 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3403 .type = ARM_CP_IO, .access = PL2_RW,
3404 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3405 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3406 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3407 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3408 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3409 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3410 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3411 .type = ARM_CP_IO, .access = PL2_RW,
3412 .resetfn = gt_hyp_timer_reset,
3413 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3414 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3416 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3418 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3420 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3425 static const ARMCPRegInfo el3_cp_reginfo[] = {
3426 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3428 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3429 .resetvalue = 0, .writefn = scr_write },
3430 { .name = "SCR", .type = ARM_CP_ALIAS,
3431 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3432 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3433 .writefn = scr_write },
3434 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3436 .access = PL3_RW, .resetvalue = 0,
3437 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3439 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3440 .access = PL3_RW, .resetvalue = 0,
3441 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3442 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3443 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3444 .access = PL3_W | PL1_R, .resetvalue = 0,
3445 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3446 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3447 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3448 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3449 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3450 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3451 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3452 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3453 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3454 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3456 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3457 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3458 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3460 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3461 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3462 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3463 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3464 .type = ARM_CP_ALIAS,
3465 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3467 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3468 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3469 .type = ARM_CP_ALIAS,
3470 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3471 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3472 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3473 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3474 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3475 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3476 .type = ARM_CP_ALIAS,
3477 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3478 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3479 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3480 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3481 .access = PL3_RW, .writefn = vbar_write,
3482 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3484 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3486 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3487 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3488 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3490 .access = PL3_RW, .resetvalue = 0,
3491 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3492 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3494 .access = PL3_RW, .type = ARM_CP_CONST,
3496 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3497 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3498 .access = PL3_RW, .type = ARM_CP_CONST,
3500 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3501 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3502 .access = PL3_RW, .type = ARM_CP_CONST,
3504 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3506 .access = PL3_W, .type = ARM_CP_NO_RAW,
3507 .writefn = tlbi_aa64_alle3is_write },
3508 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3510 .access = PL3_W, .type = ARM_CP_NO_RAW,
3511 .writefn = tlbi_aa64_vae3is_write },
3512 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3514 .access = PL3_W, .type = ARM_CP_NO_RAW,
3515 .writefn = tlbi_aa64_vae3is_write },
3516 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3518 .access = PL3_W, .type = ARM_CP_NO_RAW,
3519 .writefn = tlbi_aa64_alle3_write },
3520 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3522 .access = PL3_W, .type = ARM_CP_NO_RAW,
3523 .writefn = tlbi_aa64_vae3_write },
3524 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3526 .access = PL3_W, .type = ARM_CP_NO_RAW,
3527 .writefn = tlbi_aa64_vae3_write },
3531 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3533 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3534 * but the AArch32 CTR has its own reginfo struct)
3536 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3537 return CP_ACCESS_TRAP;
3539 return CP_ACCESS_OK;
3542 static const ARMCPRegInfo debug_cp_reginfo[] = {
3543 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3544 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3545 * unlike DBGDRAR it is never accessible from EL0.
3546 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3549 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3550 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3551 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3552 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3553 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3554 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3555 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3556 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3557 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3558 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3560 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3562 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3563 * We don't implement the configurable EL0 access.
3565 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3566 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3567 .type = ARM_CP_ALIAS,
3569 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3570 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3571 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3572 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3573 .access = PL1_W, .type = ARM_CP_NOP },
3574 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3575 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3576 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3577 .access = PL1_RW, .type = ARM_CP_NOP },
3578 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3579 * implement vector catch debug events yet.
3582 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3583 .access = PL1_RW, .type = ARM_CP_NOP },
3587 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3588 /* 64 bit access versions of the (dummy) debug registers */
3589 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3590 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3591 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3592 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3596 void hw_watchpoint_update(ARMCPU *cpu, int n)
3598 CPUARMState *env = &cpu->env;
3600 vaddr wvr = env->cp15.dbgwvr[n];
3601 uint64_t wcr = env->cp15.dbgwcr[n];
3603 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3605 if (env->cpu_watchpoint[n]) {
3606 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3607 env->cpu_watchpoint[n] = NULL;
3610 if (!extract64(wcr, 0, 1)) {
3611 /* E bit clear : watchpoint disabled */
3615 switch (extract64(wcr, 3, 2)) {
3617 /* LSC 00 is reserved and must behave as if the wp is disabled */
3620 flags |= BP_MEM_READ;
3623 flags |= BP_MEM_WRITE;
3626 flags |= BP_MEM_ACCESS;
3630 /* Attempts to use both MASK and BAS fields simultaneously are
3631 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3632 * thus generating a watchpoint for every byte in the masked region.
3634 mask = extract64(wcr, 24, 4);
3635 if (mask == 1 || mask == 2) {
3636 /* Reserved values of MASK; we must act as if the mask value was
3637 * some non-reserved value, or as if the watchpoint were disabled.
3638 * We choose the latter.
3642 /* Watchpoint covers an aligned area up to 2GB in size */
3644 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3645 * whether the watchpoint fires when the unmasked bits match; we opt
3646 * to generate the exceptions.
3650 /* Watchpoint covers bytes defined by the byte address select bits */
3651 int bas = extract64(wcr, 5, 8);
3655 /* This must act as if the watchpoint is disabled */
3659 if (extract64(wvr, 2, 1)) {
3660 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3661 * ignored, and BAS[3:0] define which bytes to watch.
3665 /* The BAS bits are supposed to be programmed to indicate a contiguous
3666 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3667 * we fire for each byte in the word/doubleword addressed by the WVR.
3668 * We choose to ignore any non-zero bits after the first range of 1s.
3670 basstart = ctz32(bas);
3671 len = cto32(bas >> basstart);
3675 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3676 &env->cpu_watchpoint[n]);
3679 void hw_watchpoint_update_all(ARMCPU *cpu)
3682 CPUARMState *env = &cpu->env;
3684 /* Completely clear out existing QEMU watchpoints and our array, to
3685 * avoid possible stale entries following migration load.
3687 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3688 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3690 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3691 hw_watchpoint_update(cpu, i);
3695 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3698 ARMCPU *cpu = arm_env_get_cpu(env);
3701 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3702 * register reads and behaves as if values written are sign extended.
3703 * Bits [1:0] are RES0.
3705 value = sextract64(value, 0, 49) & ~3ULL;
3707 raw_write(env, ri, value);
3708 hw_watchpoint_update(cpu, i);
3711 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3714 ARMCPU *cpu = arm_env_get_cpu(env);
3717 raw_write(env, ri, value);
3718 hw_watchpoint_update(cpu, i);
3721 void hw_breakpoint_update(ARMCPU *cpu, int n)
3723 CPUARMState *env = &cpu->env;
3724 uint64_t bvr = env->cp15.dbgbvr[n];
3725 uint64_t bcr = env->cp15.dbgbcr[n];
3730 if (env->cpu_breakpoint[n]) {
3731 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3732 env->cpu_breakpoint[n] = NULL;
3735 if (!extract64(bcr, 0, 1)) {
3736 /* E bit clear : watchpoint disabled */
3740 bt = extract64(bcr, 20, 4);
3743 case 4: /* unlinked address mismatch (reserved if AArch64) */
3744 case 5: /* linked address mismatch (reserved if AArch64) */
3745 qemu_log_mask(LOG_UNIMP,
3746 "arm: address mismatch breakpoint types not implemented");
3748 case 0: /* unlinked address match */
3749 case 1: /* linked address match */
3751 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3752 * we behave as if the register was sign extended. Bits [1:0] are
3753 * RES0. The BAS field is used to allow setting breakpoints on 16
3754 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3755 * a bp will fire if the addresses covered by the bp and the addresses
3756 * covered by the insn overlap but the insn doesn't start at the
3757 * start of the bp address range. We choose to require the insn and
3758 * the bp to have the same address. The constraints on writing to
3759 * BAS enforced in dbgbcr_write mean we have only four cases:
3760 * 0b0000 => no breakpoint
3761 * 0b0011 => breakpoint on addr
3762 * 0b1100 => breakpoint on addr + 2
3763 * 0b1111 => breakpoint on addr
3764 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3766 int bas = extract64(bcr, 5, 4);
3767 addr = sextract64(bvr, 0, 49) & ~3ULL;
3776 case 2: /* unlinked context ID match */
3777 case 8: /* unlinked VMID match (reserved if no EL2) */
3778 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3779 qemu_log_mask(LOG_UNIMP,
3780 "arm: unlinked context breakpoint types not implemented");
3782 case 9: /* linked VMID match (reserved if no EL2) */
3783 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3784 case 3: /* linked context ID match */
3786 /* We must generate no events for Linked context matches (unless
3787 * they are linked to by some other bp/wp, which is handled in
3788 * updates for the linking bp/wp). We choose to also generate no events
3789 * for reserved values.
3794 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3797 void hw_breakpoint_update_all(ARMCPU *cpu)
3800 CPUARMState *env = &cpu->env;
3802 /* Completely clear out existing QEMU breakpoints and our array, to
3803 * avoid possible stale entries following migration load.
3805 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3806 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3808 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3809 hw_breakpoint_update(cpu, i);
3813 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3816 ARMCPU *cpu = arm_env_get_cpu(env);
3819 raw_write(env, ri, value);
3820 hw_breakpoint_update(cpu, i);
3823 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3826 ARMCPU *cpu = arm_env_get_cpu(env);
3829 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3832 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3833 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3835 raw_write(env, ri, value);
3836 hw_breakpoint_update(cpu, i);
3839 static void define_debug_regs(ARMCPU *cpu)
3841 /* Define v7 and v8 architectural debug registers.
3842 * These are just dummy implementations for now.
3845 int wrps, brps, ctx_cmps;
3846 ARMCPRegInfo dbgdidr = {
3847 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3848 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3851 /* Note that all these register fields hold "number of Xs minus 1". */
3852 brps = extract32(cpu->dbgdidr, 24, 4);
3853 wrps = extract32(cpu->dbgdidr, 28, 4);
3854 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3856 assert(ctx_cmps <= brps);
3858 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3859 * of the debug registers such as number of breakpoints;
3860 * check that if they both exist then they agree.
3862 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3863 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3864 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3865 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3868 define_one_arm_cp_reg(cpu, &dbgdidr);
3869 define_arm_cp_regs(cpu, debug_cp_reginfo);
3871 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3872 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3875 for (i = 0; i < brps + 1; i++) {
3876 ARMCPRegInfo dbgregs[] = {
3877 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3878 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3880 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3881 .writefn = dbgbvr_write, .raw_writefn = raw_write
3883 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3884 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3886 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3887 .writefn = dbgbcr_write, .raw_writefn = raw_write
3891 define_arm_cp_regs(cpu, dbgregs);
3894 for (i = 0; i < wrps + 1; i++) {
3895 ARMCPRegInfo dbgregs[] = {
3896 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3897 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3899 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3900 .writefn = dbgwvr_write, .raw_writefn = raw_write
3902 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3903 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3905 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3906 .writefn = dbgwcr_write, .raw_writefn = raw_write
3910 define_arm_cp_regs(cpu, dbgregs);
3914 void register_cp_regs_for_features(ARMCPU *cpu)
3916 /* Register all the coprocessor registers based on feature bits */
3917 CPUARMState *env = &cpu->env;
3918 if (arm_feature(env, ARM_FEATURE_M)) {
3919 /* M profile has no coprocessor registers */
3923 define_arm_cp_regs(cpu, cp_reginfo);
3924 if (!arm_feature(env, ARM_FEATURE_V8)) {
3925 /* Must go early as it is full of wildcards that may be
3926 * overridden by later definitions.
3928 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3931 if (arm_feature(env, ARM_FEATURE_V6)) {
3932 /* The ID registers all have impdef reset values */
3933 ARMCPRegInfo v6_idregs[] = {
3934 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3936 .access = PL1_R, .type = ARM_CP_CONST,
3937 .resetvalue = cpu->id_pfr0 },
3938 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3940 .access = PL1_R, .type = ARM_CP_CONST,
3941 .resetvalue = cpu->id_pfr1 },
3942 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3944 .access = PL1_R, .type = ARM_CP_CONST,
3945 .resetvalue = cpu->id_dfr0 },
3946 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3948 .access = PL1_R, .type = ARM_CP_CONST,
3949 .resetvalue = cpu->id_afr0 },
3950 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3952 .access = PL1_R, .type = ARM_CP_CONST,
3953 .resetvalue = cpu->id_mmfr0 },
3954 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3956 .access = PL1_R, .type = ARM_CP_CONST,
3957 .resetvalue = cpu->id_mmfr1 },
3958 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3960 .access = PL1_R, .type = ARM_CP_CONST,
3961 .resetvalue = cpu->id_mmfr2 },
3962 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3964 .access = PL1_R, .type = ARM_CP_CONST,
3965 .resetvalue = cpu->id_mmfr3 },
3966 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3968 .access = PL1_R, .type = ARM_CP_CONST,
3969 .resetvalue = cpu->id_isar0 },
3970 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3972 .access = PL1_R, .type = ARM_CP_CONST,
3973 .resetvalue = cpu->id_isar1 },
3974 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3976 .access = PL1_R, .type = ARM_CP_CONST,
3977 .resetvalue = cpu->id_isar2 },
3978 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3980 .access = PL1_R, .type = ARM_CP_CONST,
3981 .resetvalue = cpu->id_isar3 },
3982 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3984 .access = PL1_R, .type = ARM_CP_CONST,
3985 .resetvalue = cpu->id_isar4 },
3986 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3988 .access = PL1_R, .type = ARM_CP_CONST,
3989 .resetvalue = cpu->id_isar5 },
3990 /* 6..7 are as yet unallocated and must RAZ */
3991 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3992 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3994 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3995 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3999 define_arm_cp_regs(cpu, v6_idregs);
4000 define_arm_cp_regs(cpu, v6_cp_reginfo);
4002 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4004 if (arm_feature(env, ARM_FEATURE_V6K)) {
4005 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4007 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4008 !arm_feature(env, ARM_FEATURE_MPU)) {
4009 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4011 if (arm_feature(env, ARM_FEATURE_V7)) {
4012 /* v7 performance monitor control register: same implementor
4013 * field as main ID register, and we implement only the cycle
4016 #ifndef CONFIG_USER_ONLY
4017 ARMCPRegInfo pmcr = {
4018 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4020 .type = ARM_CP_IO | ARM_CP_ALIAS,
4021 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4022 .accessfn = pmreg_access, .writefn = pmcr_write,
4023 .raw_writefn = raw_write,
4025 ARMCPRegInfo pmcr64 = {
4026 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4027 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4028 .access = PL0_RW, .accessfn = pmreg_access,
4030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4031 .resetvalue = cpu->midr & 0xff000000,
4032 .writefn = pmcr_write, .raw_writefn = raw_write,
4034 define_one_arm_cp_reg(cpu, &pmcr);
4035 define_one_arm_cp_reg(cpu, &pmcr64);
4037 ARMCPRegInfo clidr = {
4038 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4039 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4040 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4042 define_one_arm_cp_reg(cpu, &clidr);
4043 define_arm_cp_regs(cpu, v7_cp_reginfo);
4044 define_debug_regs(cpu);
4046 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4048 if (arm_feature(env, ARM_FEATURE_V8)) {
4049 /* AArch64 ID registers, which all have impdef reset values */
4050 ARMCPRegInfo v8_idregs[] = {
4051 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4053 .access = PL1_R, .type = ARM_CP_CONST,
4054 .resetvalue = cpu->id_aa64pfr0 },
4055 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4057 .access = PL1_R, .type = ARM_CP_CONST,
4058 .resetvalue = cpu->id_aa64pfr1},
4059 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4061 .access = PL1_R, .type = ARM_CP_CONST,
4062 /* We mask out the PMUVer field, because we don't currently
4063 * implement the PMU. Not advertising it prevents the guest
4064 * from trying to use it and getting UNDEFs on registers we
4067 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4068 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4070 .access = PL1_R, .type = ARM_CP_CONST,
4071 .resetvalue = cpu->id_aa64dfr1 },
4072 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4074 .access = PL1_R, .type = ARM_CP_CONST,
4075 .resetvalue = cpu->id_aa64afr0 },
4076 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4078 .access = PL1_R, .type = ARM_CP_CONST,
4079 .resetvalue = cpu->id_aa64afr1 },
4080 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4082 .access = PL1_R, .type = ARM_CP_CONST,
4083 .resetvalue = cpu->id_aa64isar0 },
4084 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4086 .access = PL1_R, .type = ARM_CP_CONST,
4087 .resetvalue = cpu->id_aa64isar1 },
4088 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4090 .access = PL1_R, .type = ARM_CP_CONST,
4091 .resetvalue = cpu->id_aa64mmfr0 },
4092 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4094 .access = PL1_R, .type = ARM_CP_CONST,
4095 .resetvalue = cpu->id_aa64mmfr1 },
4096 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4098 .access = PL1_R, .type = ARM_CP_CONST,
4099 .resetvalue = cpu->mvfr0 },
4100 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4102 .access = PL1_R, .type = ARM_CP_CONST,
4103 .resetvalue = cpu->mvfr1 },
4104 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4106 .access = PL1_R, .type = ARM_CP_CONST,
4107 .resetvalue = cpu->mvfr2 },
4110 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4111 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4112 !arm_feature(env, ARM_FEATURE_EL2)) {
4113 ARMCPRegInfo rvbar = {
4114 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4116 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4118 define_one_arm_cp_reg(cpu, &rvbar);
4120 define_arm_cp_regs(cpu, v8_idregs);
4121 define_arm_cp_regs(cpu, v8_cp_reginfo);
4123 if (arm_feature(env, ARM_FEATURE_EL2)) {
4124 define_arm_cp_regs(cpu, el2_cp_reginfo);
4125 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4126 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4127 ARMCPRegInfo rvbar = {
4128 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4129 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4130 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4132 define_one_arm_cp_reg(cpu, &rvbar);
4135 /* If EL2 is missing but higher ELs are enabled, we need to
4136 * register the no_el2 reginfos.
4138 if (arm_feature(env, ARM_FEATURE_EL3)) {
4139 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4142 if (arm_feature(env, ARM_FEATURE_EL3)) {
4143 define_arm_cp_regs(cpu, el3_cp_reginfo);
4144 ARMCPRegInfo rvbar = {
4145 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4147 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4149 define_one_arm_cp_reg(cpu, &rvbar);
4151 if (arm_feature(env, ARM_FEATURE_MPU)) {
4152 if (arm_feature(env, ARM_FEATURE_V6)) {
4153 /* PMSAv6 not implemented */
4154 assert(arm_feature(env, ARM_FEATURE_V7));
4155 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4156 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4158 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4161 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4162 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4164 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4165 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4167 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4168 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4170 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4171 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4173 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4174 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4176 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4177 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4179 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4180 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4182 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4183 define_arm_cp_regs(cpu, omap_cp_reginfo);
4185 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4186 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4188 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4189 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4191 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4192 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4194 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4195 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4197 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4198 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4199 * be read-only (ie write causes UNDEF exception).
4202 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4203 /* Pre-v8 MIDR space.
4204 * Note that the MIDR isn't a simple constant register because
4205 * of the TI925 behaviour where writes to another register can
4206 * cause the MIDR value to change.
4208 * Unimplemented registers in the c15 0 0 0 space default to
4209 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4210 * and friends override accordingly.
4213 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4214 .access = PL1_R, .resetvalue = cpu->midr,
4215 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4216 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4217 .type = ARM_CP_OVERRIDE },
4218 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4220 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4221 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4223 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4224 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4226 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4227 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4229 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4230 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4232 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4233 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4236 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4237 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4239 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
4240 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4241 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4242 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4243 .access = PL1_R, .resetvalue = cpu->midr },
4244 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4245 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4246 .access = PL1_R, .resetvalue = cpu->midr },
4247 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4249 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4252 ARMCPRegInfo id_cp_reginfo[] = {
4253 /* These are common to v8 and pre-v8 */
4255 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4256 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4257 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4258 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4259 .access = PL0_R, .accessfn = ctr_el0_access,
4260 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4261 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4263 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4264 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4267 /* TLBTR is specific to VMSA */
4268 ARMCPRegInfo id_tlbtr_reginfo = {
4270 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4271 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4273 /* MPUIR is specific to PMSA V6+ */
4274 ARMCPRegInfo id_mpuir_reginfo = {
4276 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4277 .access = PL1_R, .type = ARM_CP_CONST,
4278 .resetvalue = cpu->pmsav7_dregion << 8
4280 ARMCPRegInfo crn0_wi_reginfo = {
4281 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4282 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4283 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4285 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4286 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4288 /* Register the blanket "writes ignored" value first to cover the
4289 * whole space. Then update the specific ID registers to allow write
4290 * access, so that they ignore writes rather than causing them to
4293 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4294 for (r = id_pre_v8_midr_cp_reginfo;
4295 r->type != ARM_CP_SENTINEL; r++) {
4298 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4301 id_tlbtr_reginfo.access = PL1_RW;
4302 id_tlbtr_reginfo.access = PL1_RW;
4304 if (arm_feature(env, ARM_FEATURE_V8)) {
4305 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4307 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4309 define_arm_cp_regs(cpu, id_cp_reginfo);
4310 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4311 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4312 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4313 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4317 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4318 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4321 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4322 ARMCPRegInfo auxcr_reginfo[] = {
4323 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4324 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4325 .access = PL1_RW, .type = ARM_CP_CONST,
4326 .resetvalue = cpu->reset_auxcr },
4327 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4328 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4329 .access = PL2_RW, .type = ARM_CP_CONST,
4331 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4332 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4333 .access = PL3_RW, .type = ARM_CP_CONST,
4337 define_arm_cp_regs(cpu, auxcr_reginfo);
4340 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4341 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4342 /* 32 bit view is [31:18] 0...0 [43:32]. */
4343 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4344 | extract64(cpu->reset_cbar, 32, 12);
4345 ARMCPRegInfo cbar_reginfo[] = {
4347 .type = ARM_CP_CONST,
4348 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4349 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4350 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4351 .type = ARM_CP_CONST,
4352 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4353 .access = PL1_R, .resetvalue = cbar32 },
4356 /* We don't implement a r/w 64 bit CBAR currently */
4357 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4358 define_arm_cp_regs(cpu, cbar_reginfo);
4360 ARMCPRegInfo cbar = {
4362 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4363 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4364 .fieldoffset = offsetof(CPUARMState,
4365 cp15.c15_config_base_address)
4367 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4368 cbar.access = PL1_R;
4369 cbar.fieldoffset = 0;
4370 cbar.type = ARM_CP_CONST;
4372 define_one_arm_cp_reg(cpu, &cbar);
4376 /* Generic registers whose values depend on the implementation */
4378 ARMCPRegInfo sctlr = {
4379 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4380 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4383 offsetof(CPUARMState, cp15.sctlr_ns) },
4384 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4385 .raw_writefn = raw_write,
4387 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4388 /* Normally we would always end the TB on an SCTLR write, but Linux
4389 * arch/arm/mach-pxa/sleep.S expects two instructions following
4390 * an MMU enable to execute from cache. Imitate this behaviour.
4392 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4394 define_one_arm_cp_reg(cpu, &sctlr);
4398 ARMCPU *cpu_arm_init(const char *cpu_model)
4400 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4403 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4405 CPUState *cs = CPU(cpu);
4406 CPUARMState *env = &cpu->env;
4408 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4409 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4410 aarch64_fpu_gdb_set_reg,
4411 34, "aarch64-fpu.xml", 0);
4412 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4413 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4414 51, "arm-neon.xml", 0);
4415 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4416 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4417 35, "arm-vfp3.xml", 0);
4418 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4419 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4420 19, "arm-vfp.xml", 0);
4424 /* Sort alphabetically by type name, except for "any". */
4425 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4427 ObjectClass *class_a = (ObjectClass *)a;
4428 ObjectClass *class_b = (ObjectClass *)b;
4429 const char *name_a, *name_b;
4431 name_a = object_class_get_name(class_a);
4432 name_b = object_class_get_name(class_b);
4433 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4435 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4438 return strcmp(name_a, name_b);
4442 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4444 ObjectClass *oc = data;
4445 CPUListState *s = user_data;
4446 const char *typename;
4449 typename = object_class_get_name(oc);
4450 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4451 (*s->cpu_fprintf)(s->file, " %s\n",
4456 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4460 .cpu_fprintf = cpu_fprintf,
4464 list = object_class_get_list(TYPE_ARM_CPU, false);
4465 list = g_slist_sort(list, arm_cpu_list_compare);
4466 (*cpu_fprintf)(f, "Available CPUs:\n");
4467 g_slist_foreach(list, arm_cpu_list_entry, &s);
4470 /* The 'host' CPU type is dynamically registered only if KVM is
4471 * enabled, so we have to special-case it here:
4473 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4477 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4479 ObjectClass *oc = data;
4480 CpuDefinitionInfoList **cpu_list = user_data;
4481 CpuDefinitionInfoList *entry;
4482 CpuDefinitionInfo *info;
4483 const char *typename;
4485 typename = object_class_get_name(oc);
4486 info = g_malloc0(sizeof(*info));
4487 info->name = g_strndup(typename,
4488 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4490 entry = g_malloc0(sizeof(*entry));
4491 entry->value = info;
4492 entry->next = *cpu_list;
4496 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4498 CpuDefinitionInfoList *cpu_list = NULL;
4501 list = object_class_get_list(TYPE_ARM_CPU, false);
4502 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4508 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4509 void *opaque, int state, int secstate,
4510 int crm, int opc1, int opc2)
4512 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4513 * add a single reginfo struct to the hash table.
4515 uint32_t *key = g_new(uint32_t, 1);
4516 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4517 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4518 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4520 /* Reset the secure state to the specific incoming state. This is
4521 * necessary as the register may have been defined with both states.
4523 r2->secure = secstate;
4525 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4526 /* Register is banked (using both entries in array).
4527 * Overwriting fieldoffset as the array is only used to define
4528 * banked registers but later only fieldoffset is used.
4530 r2->fieldoffset = r->bank_fieldoffsets[ns];
4533 if (state == ARM_CP_STATE_AA32) {
4534 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4535 /* If the register is banked then we don't need to migrate or
4536 * reset the 32-bit instance in certain cases:
4538 * 1) If the register has both 32-bit and 64-bit instances then we
4539 * can count on the 64-bit instance taking care of the
4541 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4542 * taking care of the secure bank. This requires that separate
4543 * 32 and 64-bit definitions are provided.
4545 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4546 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4547 r2->type |= ARM_CP_ALIAS;
4549 } else if ((secstate != r->secure) && !ns) {
4550 /* The register is not banked so we only want to allow migration of
4551 * the non-secure instance.
4553 r2->type |= ARM_CP_ALIAS;
4556 if (r->state == ARM_CP_STATE_BOTH) {
4557 /* We assume it is a cp15 register if the .cp field is left unset.
4563 #ifdef HOST_WORDS_BIGENDIAN
4564 if (r2->fieldoffset) {
4565 r2->fieldoffset += sizeof(uint32_t);
4570 if (state == ARM_CP_STATE_AA64) {
4571 /* To allow abbreviation of ARMCPRegInfo
4572 * definitions, we treat cp == 0 as equivalent to
4573 * the value for "standard guest-visible sysreg".
4574 * STATE_BOTH definitions are also always "standard
4575 * sysreg" in their AArch64 view (the .cp value may
4576 * be non-zero for the benefit of the AArch32 view).
4578 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4579 r2->cp = CP_REG_ARM64_SYSREG_CP;
4581 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4582 r2->opc0, opc1, opc2);
4584 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4587 r2->opaque = opaque;
4589 /* reginfo passed to helpers is correct for the actual access,
4590 * and is never ARM_CP_STATE_BOTH:
4593 /* Make sure reginfo passed to helpers for wildcarded regs
4594 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4599 /* By convention, for wildcarded registers only the first
4600 * entry is used for migration; the others are marked as
4601 * ALIAS so we don't try to transfer the register
4602 * multiple times. Special registers (ie NOP/WFI) are
4603 * never migratable and not even raw-accessible.
4605 if ((r->type & ARM_CP_SPECIAL)) {
4606 r2->type |= ARM_CP_NO_RAW;
4608 if (((r->crm == CP_ANY) && crm != 0) ||
4609 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4610 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4611 r2->type |= ARM_CP_ALIAS;
4614 /* Check that raw accesses are either forbidden or handled. Note that
4615 * we can't assert this earlier because the setup of fieldoffset for
4616 * banked registers has to be done first.
4618 if (!(r2->type & ARM_CP_NO_RAW)) {
4619 assert(!raw_accessors_invalid(r2));
4622 /* Overriding of an existing definition must be explicitly
4625 if (!(r->type & ARM_CP_OVERRIDE)) {
4626 ARMCPRegInfo *oldreg;
4627 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4628 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4629 fprintf(stderr, "Register redefined: cp=%d %d bit "
4630 "crn=%d crm=%d opc1=%d opc2=%d, "
4631 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4632 r2->crn, r2->crm, r2->opc1, r2->opc2,
4633 oldreg->name, r2->name);
4634 g_assert_not_reached();
4637 g_hash_table_insert(cpu->cp_regs, key, r2);
4641 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4642 const ARMCPRegInfo *r, void *opaque)
4644 /* Define implementations of coprocessor registers.
4645 * We store these in a hashtable because typically
4646 * there are less than 150 registers in a space which
4647 * is 16*16*16*8*8 = 262144 in size.
4648 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4649 * If a register is defined twice then the second definition is
4650 * used, so this can be used to define some generic registers and
4651 * then override them with implementation specific variations.
4652 * At least one of the original and the second definition should
4653 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4654 * against accidental use.
4656 * The state field defines whether the register is to be
4657 * visible in the AArch32 or AArch64 execution state. If the
4658 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4659 * reginfo structure for the AArch32 view, which sees the lower
4660 * 32 bits of the 64 bit register.
4662 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4663 * be wildcarded. AArch64 registers are always considered to be 64
4664 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4665 * the register, if any.
4667 int crm, opc1, opc2, state;
4668 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4669 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4670 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4671 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4672 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4673 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4674 /* 64 bit registers have only CRm and Opc1 fields */
4675 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4676 /* op0 only exists in the AArch64 encodings */
4677 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4678 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4679 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4680 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4681 * encodes a minimum access level for the register. We roll this
4682 * runtime check into our general permission check code, so check
4683 * here that the reginfo's specified permissions are strict enough
4684 * to encompass the generic architectural permission check.
4686 if (r->state != ARM_CP_STATE_AA32) {
4689 case 0: case 1: case 2:
4702 /* unallocated encoding, so not possible */
4710 /* min_EL EL1, secure mode only (we don't check the latter) */
4714 /* broken reginfo with out-of-range opc1 */
4718 /* assert our permissions are not too lax (stricter is fine) */
4719 assert((r->access & ~mask) == 0);
4722 /* Check that the register definition has enough info to handle
4723 * reads and writes if they are permitted.
4725 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4726 if (r->access & PL3_R) {
4727 assert((r->fieldoffset ||
4728 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4731 if (r->access & PL3_W) {
4732 assert((r->fieldoffset ||
4733 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4737 /* Bad type field probably means missing sentinel at end of reg list */
4738 assert(cptype_valid(r->type));
4739 for (crm = crmmin; crm <= crmmax; crm++) {
4740 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4741 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4742 for (state = ARM_CP_STATE_AA32;
4743 state <= ARM_CP_STATE_AA64; state++) {
4744 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4747 if (state == ARM_CP_STATE_AA32) {
4748 /* Under AArch32 CP registers can be common
4749 * (same for secure and non-secure world) or banked.
4751 switch (r->secure) {
4752 case ARM_CP_SECSTATE_S:
4753 case ARM_CP_SECSTATE_NS:
4754 add_cpreg_to_hashtable(cpu, r, opaque, state,
4755 r->secure, crm, opc1, opc2);
4758 add_cpreg_to_hashtable(cpu, r, opaque, state,
4761 add_cpreg_to_hashtable(cpu, r, opaque, state,
4767 /* AArch64 registers get mapped to non-secure instance
4769 add_cpreg_to_hashtable(cpu, r, opaque, state,
4779 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4780 const ARMCPRegInfo *regs, void *opaque)
4782 /* Define a whole list of registers */
4783 const ARMCPRegInfo *r;
4784 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4785 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4789 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4791 return g_hash_table_lookup(cpregs, &encoded_cp);
4794 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4797 /* Helper coprocessor write function for write-ignore registers */
4800 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4802 /* Helper coprocessor write function for read-as-zero registers */
4806 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4808 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4811 static int bad_mode_switch(CPUARMState *env, int mode)
4813 /* Return true if it is not valid for us to switch to
4814 * this CPU mode (ie all the UNPREDICTABLE cases in
4815 * the ARM ARM CPSRWriteByInstr pseudocode).
4818 case ARM_CPU_MODE_USR:
4819 case ARM_CPU_MODE_SYS:
4820 case ARM_CPU_MODE_SVC:
4821 case ARM_CPU_MODE_ABT:
4822 case ARM_CPU_MODE_UND:
4823 case ARM_CPU_MODE_IRQ:
4824 case ARM_CPU_MODE_FIQ:
4826 case ARM_CPU_MODE_MON:
4827 return !arm_is_secure(env);
4833 uint32_t cpsr_read(CPUARMState *env)
4836 ZF = (env->ZF == 0);
4837 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4838 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4839 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4840 | ((env->condexec_bits & 0xfc) << 8)
4841 | (env->GE << 16) | (env->daif & CPSR_AIF);
4844 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4846 uint32_t changed_daif;
4848 if (mask & CPSR_NZCV) {
4849 env->ZF = (~val) & CPSR_Z;
4851 env->CF = (val >> 29) & 1;
4852 env->VF = (val << 3) & 0x80000000;
4855 env->QF = ((val & CPSR_Q) != 0);
4857 env->thumb = ((val & CPSR_T) != 0);
4858 if (mask & CPSR_IT_0_1) {
4859 env->condexec_bits &= ~3;
4860 env->condexec_bits |= (val >> 25) & 3;
4862 if (mask & CPSR_IT_2_7) {
4863 env->condexec_bits &= 3;
4864 env->condexec_bits |= (val >> 8) & 0xfc;
4866 if (mask & CPSR_GE) {
4867 env->GE = (val >> 16) & 0xf;
4870 /* In a V7 implementation that includes the security extensions but does
4871 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4872 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4873 * bits respectively.
4875 * In a V8 implementation, it is permitted for privileged software to
4876 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4878 if (!arm_feature(env, ARM_FEATURE_V8) &&
4879 arm_feature(env, ARM_FEATURE_EL3) &&
4880 !arm_feature(env, ARM_FEATURE_EL2) &&
4881 !arm_is_secure(env)) {
4883 changed_daif = (env->daif ^ val) & mask;
4885 if (changed_daif & CPSR_A) {
4886 /* Check to see if we are allowed to change the masking of async
4887 * abort exceptions from a non-secure state.
4889 if (!(env->cp15.scr_el3 & SCR_AW)) {
4890 qemu_log_mask(LOG_GUEST_ERROR,
4891 "Ignoring attempt to switch CPSR_A flag from "
4892 "non-secure world with SCR.AW bit clear\n");
4897 if (changed_daif & CPSR_F) {
4898 /* Check to see if we are allowed to change the masking of FIQ
4899 * exceptions from a non-secure state.
4901 if (!(env->cp15.scr_el3 & SCR_FW)) {
4902 qemu_log_mask(LOG_GUEST_ERROR,
4903 "Ignoring attempt to switch CPSR_F flag from "
4904 "non-secure world with SCR.FW bit clear\n");
4908 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4909 * If this bit is set software is not allowed to mask
4910 * FIQs, but is allowed to set CPSR_F to 0.
4912 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4914 qemu_log_mask(LOG_GUEST_ERROR,
4915 "Ignoring attempt to enable CPSR_F flag "
4916 "(non-maskable FIQ [NMFI] support enabled)\n");
4922 env->daif &= ~(CPSR_AIF & mask);
4923 env->daif |= val & CPSR_AIF & mask;
4925 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4926 if (bad_mode_switch(env, val & CPSR_M)) {
4927 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4928 * We choose to ignore the attempt and leave the CPSR M field
4933 switch_mode(env, val & CPSR_M);
4936 mask &= ~CACHED_CPSR_BITS;
4937 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4940 /* Sign/zero extend */
4941 uint32_t HELPER(sxtb16)(uint32_t x)
4944 res = (uint16_t)(int8_t)x;
4945 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4949 uint32_t HELPER(uxtb16)(uint32_t x)
4952 res = (uint16_t)(uint8_t)x;
4953 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4957 uint32_t HELPER(clz)(uint32_t x)
4962 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4966 if (num == INT_MIN && den == -1)
4971 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4978 uint32_t HELPER(rbit)(uint32_t x)
4980 x = ((x & 0xff000000) >> 24)
4981 | ((x & 0x00ff0000) >> 8)
4982 | ((x & 0x0000ff00) << 8)
4983 | ((x & 0x000000ff) << 24);
4984 x = ((x & 0xf0f0f0f0) >> 4)
4985 | ((x & 0x0f0f0f0f) << 4);
4986 x = ((x & 0x88888888) >> 3)
4987 | ((x & 0x44444444) >> 1)
4988 | ((x & 0x22222222) << 1)
4989 | ((x & 0x11111111) << 3);
4993 #if defined(CONFIG_USER_ONLY)
4995 /* These should probably raise undefined insn exceptions. */
4996 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4998 ARMCPU *cpu = arm_env_get_cpu(env);
5000 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5003 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5005 ARMCPU *cpu = arm_env_get_cpu(env);
5007 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5011 void switch_mode(CPUARMState *env, int mode)
5013 ARMCPU *cpu = arm_env_get_cpu(env);
5015 if (mode != ARM_CPU_MODE_USR) {
5016 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5020 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5022 ARMCPU *cpu = arm_env_get_cpu(env);
5024 cpu_abort(CPU(cpu), "banked r13 write\n");
5027 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5029 ARMCPU *cpu = arm_env_get_cpu(env);
5031 cpu_abort(CPU(cpu), "banked r13 read\n");
5035 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5036 uint32_t cur_el, bool secure)
5041 void aarch64_sync_64_to_32(CPUARMState *env)
5043 g_assert_not_reached();
5048 /* Map CPU modes onto saved register banks. */
5049 int bank_number(int mode)
5052 case ARM_CPU_MODE_USR:
5053 case ARM_CPU_MODE_SYS:
5055 case ARM_CPU_MODE_SVC:
5057 case ARM_CPU_MODE_ABT:
5059 case ARM_CPU_MODE_UND:
5061 case ARM_CPU_MODE_IRQ:
5063 case ARM_CPU_MODE_FIQ:
5065 case ARM_CPU_MODE_HYP:
5067 case ARM_CPU_MODE_MON:
5070 g_assert_not_reached();
5073 void switch_mode(CPUARMState *env, int mode)
5078 old_mode = env->uncached_cpsr & CPSR_M;
5079 if (mode == old_mode)
5082 if (old_mode == ARM_CPU_MODE_FIQ) {
5083 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5084 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5085 } else if (mode == ARM_CPU_MODE_FIQ) {
5086 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5087 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5090 i = bank_number(old_mode);
5091 env->banked_r13[i] = env->regs[13];
5092 env->banked_r14[i] = env->regs[14];
5093 env->banked_spsr[i] = env->spsr;
5095 i = bank_number(mode);
5096 env->regs[13] = env->banked_r13[i];
5097 env->regs[14] = env->banked_r14[i];
5098 env->spsr = env->banked_spsr[i];
5101 /* Physical Interrupt Target EL Lookup Table
5103 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5105 * The below multi-dimensional table is used for looking up the target
5106 * exception level given numerous condition criteria. Specifically, the
5107 * target EL is based on SCR and HCR routing controls as well as the
5108 * currently executing EL and secure state.
5111 * target_el_table[2][2][2][2][2][4]
5112 * | | | | | +--- Current EL
5113 * | | | | +------ Non-secure(0)/Secure(1)
5114 * | | | +--------- HCR mask override
5115 * | | +------------ SCR exec state control
5116 * | +--------------- SCR mask override
5117 * +------------------ 32-bit(0)/64-bit(1) EL3
5119 * The table values are as such:
5123 * The ARM ARM target EL table includes entries indicating that an "exception
5124 * is not taken". The two cases where this is applicable are:
5125 * 1) An exception is taken from EL3 but the SCR does not have the exception
5127 * 2) An exception is taken from EL2 but the HCR does not have the exception
5129 * In these two cases, the below table contain a target of EL1. This value is
5130 * returned as it is expected that the consumer of the table data will check
5131 * for "target EL >= current EL" to ensure the exception is not taken.
5135 * BIT IRQ IMO Non-secure Secure
5136 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5138 const int8_t target_el_table[2][2][2][2][2][4] = {
5139 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5140 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5141 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5142 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5143 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5144 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5145 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5146 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5147 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5148 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5149 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5150 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5151 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5152 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5153 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5154 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5158 * Determine the target EL for physical exceptions
5160 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5161 uint32_t cur_el, bool secure)
5163 CPUARMState *env = cs->env_ptr;
5164 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5168 int is64 = arm_el_is_aa64(env, 3);
5172 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5173 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5176 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5177 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5180 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5181 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5185 /* If HCR.TGE is set then HCR is treated as being 1 */
5186 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5188 /* Perform a table-lookup for the target EL given the current state */
5189 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5191 assert(target_el > 0);
5196 static void v7m_push(CPUARMState *env, uint32_t val)
5198 CPUState *cs = CPU(arm_env_get_cpu(env));
5201 stl_phys(cs->as, env->regs[13], val);
5204 static uint32_t v7m_pop(CPUARMState *env)
5206 CPUState *cs = CPU(arm_env_get_cpu(env));
5209 val = ldl_phys(cs->as, env->regs[13]);
5214 /* Switch to V7M main or process stack pointer. */
5215 static void switch_v7m_sp(CPUARMState *env, int process)
5218 if (env->v7m.current_sp != process) {
5219 tmp = env->v7m.other_sp;
5220 env->v7m.other_sp = env->regs[13];
5221 env->regs[13] = tmp;
5222 env->v7m.current_sp = process;
5226 static void do_v7m_exception_exit(CPUARMState *env)
5231 type = env->regs[15];
5232 if (env->v7m.exception != 0)
5233 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5235 /* Switch to the target stack. */
5236 switch_v7m_sp(env, (type & 4) != 0);
5237 /* Pop registers. */
5238 env->regs[0] = v7m_pop(env);
5239 env->regs[1] = v7m_pop(env);
5240 env->regs[2] = v7m_pop(env);
5241 env->regs[3] = v7m_pop(env);
5242 env->regs[12] = v7m_pop(env);
5243 env->regs[14] = v7m_pop(env);
5244 env->regs[15] = v7m_pop(env);
5245 if (env->regs[15] & 1) {
5246 qemu_log_mask(LOG_GUEST_ERROR,
5247 "M profile return from interrupt with misaligned "
5248 "PC is UNPREDICTABLE\n");
5249 /* Actual hardware seems to ignore the lsbit, and there are several
5250 * RTOSes out there which incorrectly assume the r15 in the stack
5251 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5253 env->regs[15] &= ~1U;
5255 xpsr = v7m_pop(env);
5256 xpsr_write(env, xpsr, 0xfffffdff);
5257 /* Undo stack alignment. */
5260 /* ??? The exception return type specifies Thread/Handler mode. However
5261 this is also implied by the xPSR value. Not sure what to do
5262 if there is a mismatch. */
5263 /* ??? Likewise for mismatches between the CONTROL register and the stack
5267 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5269 ARMCPU *cpu = ARM_CPU(cs);
5270 CPUARMState *env = &cpu->env;
5271 uint32_t xpsr = xpsr_read(env);
5275 arm_log_exception(cs->exception_index);
5278 if (env->v7m.current_sp)
5280 if (env->v7m.exception == 0)
5283 /* For exceptions we just mark as pending on the NVIC, and let that
5285 /* TODO: Need to escalate if the current priority is higher than the
5286 one we're raising. */
5287 switch (cs->exception_index) {
5289 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5292 /* The PC already points to the next instruction. */
5293 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5295 case EXCP_PREFETCH_ABORT:
5296 case EXCP_DATA_ABORT:
5297 /* TODO: if we implemented the MPU registers, this is where we
5298 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5300 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5303 if (semihosting_enabled()) {
5305 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5308 qemu_log_mask(CPU_LOG_INT,
5309 "...handling as semihosting call 0x%x\n",
5311 env->regs[0] = do_arm_semihosting(env);
5315 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5318 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5320 case EXCP_EXCEPTION_EXIT:
5321 do_v7m_exception_exit(env);
5324 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5325 return; /* Never happens. Keep compiler happy. */
5328 /* Align stack pointer. */
5329 /* ??? Should only do this if Configuration Control Register
5330 STACKALIGN bit is set. */
5331 if (env->regs[13] & 4) {
5335 /* Switch to the handler mode. */
5336 v7m_push(env, xpsr);
5337 v7m_push(env, env->regs[15]);
5338 v7m_push(env, env->regs[14]);
5339 v7m_push(env, env->regs[12]);
5340 v7m_push(env, env->regs[3]);
5341 v7m_push(env, env->regs[2]);
5342 v7m_push(env, env->regs[1]);
5343 v7m_push(env, env->regs[0]);
5344 switch_v7m_sp(env, 0);
5346 env->condexec_bits = 0;
5348 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5349 env->regs[15] = addr & 0xfffffffe;
5350 env->thumb = addr & 1;
5353 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5354 * register set. This is necessary when switching between AArch32 and AArch64
5357 void aarch64_sync_32_to_64(CPUARMState *env)
5360 uint32_t mode = env->uncached_cpsr & CPSR_M;
5362 /* We can blanket copy R[0:7] to X[0:7] */
5363 for (i = 0; i < 8; i++) {
5364 env->xregs[i] = env->regs[i];
5367 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5368 * Otherwise, they come from the banked user regs.
5370 if (mode == ARM_CPU_MODE_FIQ) {
5371 for (i = 8; i < 13; i++) {
5372 env->xregs[i] = env->usr_regs[i - 8];
5375 for (i = 8; i < 13; i++) {
5376 env->xregs[i] = env->regs[i];
5380 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5381 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5382 * from the mode banked register.
5384 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5385 env->xregs[13] = env->regs[13];
5386 env->xregs[14] = env->regs[14];
5388 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5389 /* HYP is an exception in that it is copied from r14 */
5390 if (mode == ARM_CPU_MODE_HYP) {
5391 env->xregs[14] = env->regs[14];
5393 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5397 if (mode == ARM_CPU_MODE_HYP) {
5398 env->xregs[15] = env->regs[13];
5400 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5403 if (mode == ARM_CPU_MODE_IRQ) {
5404 env->xregs[16] = env->regs[14];
5405 env->xregs[17] = env->regs[13];
5407 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5408 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5411 if (mode == ARM_CPU_MODE_SVC) {
5412 env->xregs[18] = env->regs[14];
5413 env->xregs[19] = env->regs[13];
5415 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5416 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5419 if (mode == ARM_CPU_MODE_ABT) {
5420 env->xregs[20] = env->regs[14];
5421 env->xregs[21] = env->regs[13];
5423 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5424 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5427 if (mode == ARM_CPU_MODE_UND) {
5428 env->xregs[22] = env->regs[14];
5429 env->xregs[23] = env->regs[13];
5431 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5432 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5435 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5436 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5437 * FIQ bank for r8-r14.
5439 if (mode == ARM_CPU_MODE_FIQ) {
5440 for (i = 24; i < 31; i++) {
5441 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5444 for (i = 24; i < 29; i++) {
5445 env->xregs[i] = env->fiq_regs[i - 24];
5447 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5448 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5451 env->pc = env->regs[15];
5454 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5455 * register set. This is necessary when switching between AArch32 and AArch64
5458 void aarch64_sync_64_to_32(CPUARMState *env)
5461 uint32_t mode = env->uncached_cpsr & CPSR_M;
5463 /* We can blanket copy X[0:7] to R[0:7] */
5464 for (i = 0; i < 8; i++) {
5465 env->regs[i] = env->xregs[i];
5468 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5469 * Otherwise, we copy x8-x12 into the banked user regs.
5471 if (mode == ARM_CPU_MODE_FIQ) {
5472 for (i = 8; i < 13; i++) {
5473 env->usr_regs[i - 8] = env->xregs[i];
5476 for (i = 8; i < 13; i++) {
5477 env->regs[i] = env->xregs[i];
5481 /* Registers r13 & r14 depend on the current mode.
5482 * If we are in a given mode, we copy the corresponding x registers to r13
5483 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5486 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5487 env->regs[13] = env->xregs[13];
5488 env->regs[14] = env->xregs[14];
5490 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5492 /* HYP is an exception in that it does not have its own banked r14 but
5493 * shares the USR r14
5495 if (mode == ARM_CPU_MODE_HYP) {
5496 env->regs[14] = env->xregs[14];
5498 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5502 if (mode == ARM_CPU_MODE_HYP) {
5503 env->regs[13] = env->xregs[15];
5505 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5508 if (mode == ARM_CPU_MODE_IRQ) {
5509 env->regs[14] = env->xregs[16];
5510 env->regs[13] = env->xregs[17];
5512 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5513 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5516 if (mode == ARM_CPU_MODE_SVC) {
5517 env->regs[14] = env->xregs[18];
5518 env->regs[13] = env->xregs[19];
5520 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5521 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5524 if (mode == ARM_CPU_MODE_ABT) {
5525 env->regs[14] = env->xregs[20];
5526 env->regs[13] = env->xregs[21];
5528 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5529 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5532 if (mode == ARM_CPU_MODE_UND) {
5533 env->regs[14] = env->xregs[22];
5534 env->regs[13] = env->xregs[23];
5536 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5537 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5540 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5541 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5542 * FIQ bank for r8-r14.
5544 if (mode == ARM_CPU_MODE_FIQ) {
5545 for (i = 24; i < 31; i++) {
5546 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5549 for (i = 24; i < 29; i++) {
5550 env->fiq_regs[i - 24] = env->xregs[i];
5552 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5553 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5556 env->regs[15] = env->pc;
5559 /* Handle a CPU exception. */
5560 void arm_cpu_do_interrupt(CPUState *cs)
5562 ARMCPU *cpu = ARM_CPU(cs);
5563 CPUARMState *env = &cpu->env;
5572 arm_log_exception(cs->exception_index);
5574 if (arm_is_psci_call(cpu, cs->exception_index)) {
5575 arm_handle_psci_call(cpu);
5576 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5580 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5581 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5583 case EC_BREAKPOINT_SAME_EL:
5587 case EC_WATCHPOINT_SAME_EL:
5593 case EC_VECTORCATCH:
5602 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5605 /* TODO: Vectored interrupt controller. */
5606 switch (cs->exception_index) {
5608 new_mode = ARM_CPU_MODE_UND;
5617 if (semihosting_enabled()) {
5618 /* Check for semihosting interrupt. */
5620 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5623 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
5626 /* Only intercept calls from privileged modes, to provide some
5627 semblance of security. */
5628 if (((mask == 0x123456 && !env->thumb)
5629 || (mask == 0xab && env->thumb))
5630 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5631 qemu_log_mask(CPU_LOG_INT,
5632 "...handling as semihosting call 0x%x\n",
5634 env->regs[0] = do_arm_semihosting(env);
5638 new_mode = ARM_CPU_MODE_SVC;
5641 /* The PC already points to the next instruction. */
5645 /* See if this is a semihosting syscall. */
5646 if (env->thumb && semihosting_enabled()) {
5647 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5649 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5651 qemu_log_mask(CPU_LOG_INT,
5652 "...handling as semihosting call 0x%x\n",
5654 env->regs[0] = do_arm_semihosting(env);
5658 env->exception.fsr = 2;
5659 /* Fall through to prefetch abort. */
5660 case EXCP_PREFETCH_ABORT:
5661 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5662 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5663 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5664 env->exception.fsr, (uint32_t)env->exception.vaddress);
5665 new_mode = ARM_CPU_MODE_ABT;
5667 mask = CPSR_A | CPSR_I;
5670 case EXCP_DATA_ABORT:
5671 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5672 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5673 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5675 (uint32_t)env->exception.vaddress);
5676 new_mode = ARM_CPU_MODE_ABT;
5678 mask = CPSR_A | CPSR_I;
5682 new_mode = ARM_CPU_MODE_IRQ;
5684 /* Disable IRQ and imprecise data aborts. */
5685 mask = CPSR_A | CPSR_I;
5687 if (env->cp15.scr_el3 & SCR_IRQ) {
5688 /* IRQ routed to monitor mode */
5689 new_mode = ARM_CPU_MODE_MON;
5694 new_mode = ARM_CPU_MODE_FIQ;
5696 /* Disable FIQ, IRQ and imprecise data aborts. */
5697 mask = CPSR_A | CPSR_I | CPSR_F;
5698 if (env->cp15.scr_el3 & SCR_FIQ) {
5699 /* FIQ routed to monitor mode */
5700 new_mode = ARM_CPU_MODE_MON;
5705 new_mode = ARM_CPU_MODE_MON;
5707 mask = CPSR_A | CPSR_I | CPSR_F;
5711 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5712 return; /* Never happens. Keep compiler happy. */
5715 if (new_mode == ARM_CPU_MODE_MON) {
5716 addr += env->cp15.mvbar;
5717 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5718 /* High vectors. When enabled, base address cannot be remapped. */
5721 /* ARM v7 architectures provide a vector base address register to remap
5722 * the interrupt vector table.
5723 * This register is only followed in non-monitor mode, and is banked.
5724 * Note: only bits 31:5 are valid.
5726 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5729 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5730 env->cp15.scr_el3 &= ~SCR_NS;
5733 switch_mode (env, new_mode);
5734 /* For exceptions taken to AArch32 we must clear the SS bit in both
5735 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5737 env->uncached_cpsr &= ~PSTATE_SS;
5738 env->spsr = cpsr_read(env);
5739 /* Clear IT bits. */
5740 env->condexec_bits = 0;
5741 /* Switch to the new mode, and to the correct instruction set. */
5742 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5744 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5745 * and we should just guard the thumb mode on V4 */
5746 if (arm_feature(env, ARM_FEATURE_V4T)) {
5747 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5749 env->regs[14] = env->regs[15] + offset;
5750 env->regs[15] = addr;
5751 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5755 /* Return the exception level which controls this address translation regime */
5756 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5759 case ARMMMUIdx_S2NS:
5760 case ARMMMUIdx_S1E2:
5762 case ARMMMUIdx_S1E3:
5764 case ARMMMUIdx_S1SE0:
5765 return arm_el_is_aa64(env, 3) ? 1 : 3;
5766 case ARMMMUIdx_S1SE1:
5767 case ARMMMUIdx_S1NSE0:
5768 case ARMMMUIdx_S1NSE1:
5771 g_assert_not_reached();
5775 /* Return true if this address translation regime is secure */
5776 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5779 case ARMMMUIdx_S12NSE0:
5780 case ARMMMUIdx_S12NSE1:
5781 case ARMMMUIdx_S1NSE0:
5782 case ARMMMUIdx_S1NSE1:
5783 case ARMMMUIdx_S1E2:
5784 case ARMMMUIdx_S2NS:
5786 case ARMMMUIdx_S1E3:
5787 case ARMMMUIdx_S1SE0:
5788 case ARMMMUIdx_S1SE1:
5791 g_assert_not_reached();
5795 /* Return the SCTLR value which controls this address translation regime */
5796 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5798 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5801 /* Return true if the specified stage of address translation is disabled */
5802 static inline bool regime_translation_disabled(CPUARMState *env,
5805 if (mmu_idx == ARMMMUIdx_S2NS) {
5806 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5808 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5811 /* Return the TCR controlling this translation regime */
5812 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5814 if (mmu_idx == ARMMMUIdx_S2NS) {
5815 return &env->cp15.vtcr_el2;
5817 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5820 /* Return the TTBR associated with this translation regime */
5821 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5824 if (mmu_idx == ARMMMUIdx_S2NS) {
5825 return env->cp15.vttbr_el2;
5828 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5830 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5834 /* Return true if the translation regime is using LPAE format page tables */
5835 static inline bool regime_using_lpae_format(CPUARMState *env,
5838 int el = regime_el(env, mmu_idx);
5839 if (el == 2 || arm_el_is_aa64(env, el)) {
5842 if (arm_feature(env, ARM_FEATURE_LPAE)
5843 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5849 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5852 case ARMMMUIdx_S1SE0:
5853 case ARMMMUIdx_S1NSE0:
5857 case ARMMMUIdx_S12NSE0:
5858 case ARMMMUIdx_S12NSE1:
5859 g_assert_not_reached();
5863 /* Translate section/page access permissions to page
5864 * R/W protection flags
5867 * @mmu_idx: MMU index indicating required translation regime
5868 * @ap: The 3-bit access permissions (AP[2:0])
5869 * @domain_prot: The 2-bit domain access permissions
5871 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5872 int ap, int domain_prot)
5874 bool is_user = regime_is_user(env, mmu_idx);
5876 if (domain_prot == 3) {
5877 return PAGE_READ | PAGE_WRITE;
5882 if (arm_feature(env, ARM_FEATURE_V7)) {
5885 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5887 return is_user ? 0 : PAGE_READ;
5894 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5899 return PAGE_READ | PAGE_WRITE;
5902 return PAGE_READ | PAGE_WRITE;
5903 case 4: /* Reserved. */
5906 return is_user ? 0 : PAGE_READ;
5910 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5915 g_assert_not_reached();
5919 /* Translate section/page access permissions to page
5920 * R/W protection flags.
5922 * @ap: The 2-bit simple AP (AP[2:1])
5923 * @is_user: TRUE if accessing from PL0
5925 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5929 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5931 return PAGE_READ | PAGE_WRITE;
5933 return is_user ? 0 : PAGE_READ;
5937 g_assert_not_reached();
5942 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5944 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5947 /* Translate section/page access permissions to protection flags
5950 * @mmu_idx: MMU index indicating required translation regime
5951 * @is_aa64: TRUE if AArch64
5952 * @ap: The 2-bit simple AP (AP[2:1])
5953 * @ns: NS (non-secure) bit
5954 * @xn: XN (execute-never) bit
5955 * @pxn: PXN (privileged execute-never) bit
5957 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5958 int ap, int ns, int xn, int pxn)
5960 bool is_user = regime_is_user(env, mmu_idx);
5961 int prot_rw, user_rw;
5965 assert(mmu_idx != ARMMMUIdx_S2NS);
5967 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5971 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5974 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5978 /* TODO have_wxn should be replaced with
5979 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5980 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5981 * compatible processors have EL2, which is required for [U]WXN.
5983 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5986 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5990 switch (regime_el(env, mmu_idx)) {
5993 xn = pxn || (user_rw & PAGE_WRITE);
6000 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6001 switch (regime_el(env, mmu_idx)) {
6005 xn = xn || !(user_rw & PAGE_READ);
6009 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6011 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6012 (uwxn && (user_rw & PAGE_WRITE));
6022 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6025 return prot_rw | PAGE_EXEC;
6028 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6029 uint32_t *table, uint32_t address)
6031 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6032 TCR *tcr = regime_tcr(env, mmu_idx);
6034 if (address & tcr->mask) {
6035 if (tcr->raw_tcr & TTBCR_PD1) {
6036 /* Translation table walk disabled for TTBR1 */
6039 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6041 if (tcr->raw_tcr & TTBCR_PD0) {
6042 /* Translation table walk disabled for TTBR0 */
6045 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6047 *table |= (address >> 18) & 0x3ffc;
6051 /* All loads done in the course of a page table walk go through here.
6052 * TODO: rather than ignoring errors from physical memory reads (which
6053 * are external aborts in ARM terminology) we should propagate this
6054 * error out so that we can turn it into a Data Abort if this walk
6055 * was being done for a CPU load/store or an address translation instruction
6056 * (but not if it was for a debug access).
6058 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6060 MemTxAttrs attrs = {};
6062 attrs.secure = is_secure;
6063 return address_space_ldl(cs->as, addr, attrs, NULL);
6066 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6068 MemTxAttrs attrs = {};
6070 attrs.secure = is_secure;
6071 return address_space_ldq(cs->as, addr, attrs, NULL);
6074 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6075 int access_type, ARMMMUIdx mmu_idx,
6076 hwaddr *phys_ptr, int *prot,
6077 target_ulong *page_size, uint32_t *fsr)
6079 CPUState *cs = CPU(arm_env_get_cpu(env));
6090 /* Pagetable walk. */
6091 /* Lookup l1 descriptor. */
6092 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6093 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6097 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6099 domain = (desc >> 5) & 0x0f;
6100 if (regime_el(env, mmu_idx) == 1) {
6101 dacr = env->cp15.dacr_ns;
6103 dacr = env->cp15.dacr_s;
6105 domain_prot = (dacr >> (domain * 2)) & 3;
6107 /* Section translation fault. */
6111 if (domain_prot == 0 || domain_prot == 2) {
6113 code = 9; /* Section domain fault. */
6115 code = 11; /* Page domain fault. */
6120 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6121 ap = (desc >> 10) & 3;
6123 *page_size = 1024 * 1024;
6125 /* Lookup l2 entry. */
6127 /* Coarse pagetable. */
6128 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6130 /* Fine pagetable. */
6131 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6133 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6135 case 0: /* Page translation fault. */
6138 case 1: /* 64k page. */
6139 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6140 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6141 *page_size = 0x10000;
6143 case 2: /* 4k page. */
6144 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6145 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6146 *page_size = 0x1000;
6148 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6150 /* ARMv6/XScale extended small page format */
6151 if (arm_feature(env, ARM_FEATURE_XSCALE)
6152 || arm_feature(env, ARM_FEATURE_V6)) {
6153 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6154 *page_size = 0x1000;
6156 /* UNPREDICTABLE in ARMv5; we choose to take a
6157 * page translation fault.
6163 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6166 ap = (desc >> 4) & 3;
6169 /* Never happens, but compiler isn't smart enough to tell. */
6174 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6175 *prot |= *prot ? PAGE_EXEC : 0;
6176 if (!(*prot & (1 << access_type))) {
6177 /* Access permission fault. */
6180 *phys_ptr = phys_addr;
6183 *fsr = code | (domain << 4);
6187 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6188 int access_type, ARMMMUIdx mmu_idx,
6189 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6190 target_ulong *page_size, uint32_t *fsr)
6192 CPUState *cs = CPU(arm_env_get_cpu(env));
6206 /* Pagetable walk. */
6207 /* Lookup l1 descriptor. */
6208 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6209 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6213 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6215 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6216 /* Section translation fault, or attempt to use the encoding
6217 * which is Reserved on implementations without PXN.
6222 if ((type == 1) || !(desc & (1 << 18))) {
6223 /* Page or Section. */
6224 domain = (desc >> 5) & 0x0f;
6226 if (regime_el(env, mmu_idx) == 1) {
6227 dacr = env->cp15.dacr_ns;
6229 dacr = env->cp15.dacr_s;
6231 domain_prot = (dacr >> (domain * 2)) & 3;
6232 if (domain_prot == 0 || domain_prot == 2) {
6234 code = 9; /* Section domain fault. */
6236 code = 11; /* Page domain fault. */
6241 if (desc & (1 << 18)) {
6243 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6244 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6245 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6246 *page_size = 0x1000000;
6249 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6250 *page_size = 0x100000;
6252 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6253 xn = desc & (1 << 4);
6256 ns = extract32(desc, 19, 1);
6258 if (arm_feature(env, ARM_FEATURE_PXN)) {
6259 pxn = (desc >> 2) & 1;
6261 ns = extract32(desc, 3, 1);
6262 /* Lookup l2 entry. */
6263 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6264 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6265 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6267 case 0: /* Page translation fault. */
6270 case 1: /* 64k page. */
6271 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6272 xn = desc & (1 << 15);
6273 *page_size = 0x10000;
6275 case 2: case 3: /* 4k page. */
6276 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6278 *page_size = 0x1000;
6281 /* Never happens, but compiler isn't smart enough to tell. */
6286 if (domain_prot == 3) {
6287 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6289 if (pxn && !regime_is_user(env, mmu_idx)) {
6292 if (xn && access_type == 2)
6295 if (arm_feature(env, ARM_FEATURE_V6K) &&
6296 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6297 /* The simplified model uses AP[0] as an access control bit. */
6298 if ((ap & 1) == 0) {
6299 /* Access flag fault. */
6300 code = (code == 15) ? 6 : 3;
6303 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6305 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6310 if (!(*prot & (1 << access_type))) {
6311 /* Access permission fault. */
6316 /* The NS bit will (as required by the architecture) have no effect if
6317 * the CPU doesn't support TZ or this is a non-secure translation
6318 * regime, because the attribute will already be non-secure.
6320 attrs->secure = false;
6322 *phys_ptr = phys_addr;
6325 *fsr = code | (domain << 4);
6329 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6330 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6333 translation_fault = 1,
6335 permission_fault = 3,
6338 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6339 int access_type, ARMMMUIdx mmu_idx,
6340 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6341 target_ulong *page_size_ptr, uint32_t *fsr)
6343 CPUState *cs = CPU(arm_env_get_cpu(env));
6344 /* Read an LPAE long-descriptor translation table. */
6345 MMUFaultType fault_type = translation_fault;
6352 hwaddr descaddr, descmask;
6353 uint32_t tableattrs;
6354 target_ulong page_size;
6356 int32_t granule_sz = 9;
6357 int32_t va_size = 32;
6359 TCR *tcr = regime_tcr(env, mmu_idx);
6360 int ap, ns, xn, pxn;
6361 uint32_t el = regime_el(env, mmu_idx);
6362 bool ttbr1_valid = true;
6365 * This code does not handle the different format TCR for VTCR_EL2.
6366 * This code also does not support shareability levels.
6367 * Attribute and permission bit handling should also be checked when adding
6368 * support for those page table walks.
6370 if (arm_el_is_aa64(env, el)) {
6373 tbi = extract64(tcr->raw_tcr, 20, 1);
6375 if (extract64(address, 55, 1)) {
6376 tbi = extract64(tcr->raw_tcr, 38, 1);
6378 tbi = extract64(tcr->raw_tcr, 37, 1);
6383 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6387 ttbr1_valid = false;
6390 /* There is no TTBR1 for EL2 */
6392 ttbr1_valid = false;
6396 /* Determine whether this address is in the region controlled by
6397 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6398 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6399 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6401 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
6402 if (va_size == 64) {
6403 t0sz = MIN(t0sz, 39);
6404 t0sz = MAX(t0sz, 16);
6406 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
6407 if (va_size == 64) {
6408 t1sz = MIN(t1sz, 39);
6409 t1sz = MAX(t1sz, 16);
6411 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6412 /* there is a ttbr0 region and we are in it (high bits all zero) */
6414 } else if (ttbr1_valid && t1sz &&
6415 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6416 /* there is a ttbr1 region and we are in it (high bits all one) */
6419 /* ttbr0 region is "everything not in the ttbr1 region" */
6421 } else if (!t1sz && ttbr1_valid) {
6422 /* ttbr1 region is "everything not in the ttbr0 region" */
6425 /* in the gap between the two regions, this is a Translation fault */
6426 fault_type = translation_fault;
6430 /* Note that QEMU ignores shareability and cacheability attributes,
6431 * so we don't need to do anything with the SH, ORGN, IRGN fields
6432 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6433 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6434 * implement any ASID-like capability so we can ignore it (instead
6435 * we will always flush the TLB any time the ASID is changed).
6437 if (ttbr_select == 0) {
6438 ttbr = regime_ttbr(env, mmu_idx, 0);
6439 epd = extract32(tcr->raw_tcr, 7, 1);
6442 tg = extract32(tcr->raw_tcr, 14, 2);
6443 if (tg == 1) { /* 64KB pages */
6446 if (tg == 2) { /* 16KB pages */
6450 /* We should only be here if TTBR1 is valid */
6451 assert(ttbr1_valid);
6453 ttbr = regime_ttbr(env, mmu_idx, 1);
6454 epd = extract32(tcr->raw_tcr, 23, 1);
6457 tg = extract32(tcr->raw_tcr, 30, 2);
6458 if (tg == 3) { /* 64KB pages */
6461 if (tg == 1) { /* 16KB pages */
6466 /* Here we should have set up all the parameters for the translation:
6467 * va_size, ttbr, epd, tsz, granule_sz, tbi
6471 /* Translation table walk disabled => Translation fault on TLB miss
6472 * Note: This is always 0 on 64-bit EL2 and EL3.
6477 /* The starting level depends on the virtual address size (which can be
6478 * up to 48 bits) and the translation granule size. It indicates the number
6479 * of strides (granule_sz bits at a time) needed to consume the bits
6480 * of the input address. In the pseudocode this is:
6481 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6482 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6483 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6484 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6485 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6486 * = 4 - (va_size - tsz - 4) / granule_sz;
6488 level = 4 - (va_size - tsz - 4) / granule_sz;
6490 /* Clear the vaddr bits which aren't part of the within-region address,
6491 * so that we don't have to special case things when calculating the
6492 * first descriptor address.
6495 address &= (1ULL << (va_size - tsz)) - 1;
6498 descmask = (1ULL << (granule_sz + 3)) - 1;
6500 /* Now we can extract the actual base address from the TTBR */
6501 descaddr = extract64(ttbr, 0, 48);
6502 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6504 /* Secure accesses start with the page table in secure memory and
6505 * can be downgraded to non-secure at any step. Non-secure accesses
6506 * remain non-secure. We implement this by just ORing in the NSTable/NS
6507 * bits at each step.
6509 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6511 uint64_t descriptor;
6514 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6516 nstable = extract32(tableattrs, 4, 1);
6517 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6518 if (!(descriptor & 1) ||
6519 (!(descriptor & 2) && (level == 3))) {
6520 /* Invalid, or the Reserved level 3 encoding */
6523 descaddr = descriptor & 0xfffffff000ULL;
6525 if ((descriptor & 2) && (level < 3)) {
6526 /* Table entry. The top five bits are attributes which may
6527 * propagate down through lower levels of the table (and
6528 * which are all arranged so that 0 means "no effect", so
6529 * we can gather them up by ORing in the bits at each level).
6531 tableattrs |= extract64(descriptor, 59, 5);
6535 /* Block entry at level 1 or 2, or page entry at level 3.
6536 * These are basically the same thing, although the number
6537 * of bits we pull in from the vaddr varies.
6539 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6540 descaddr |= (address & (page_size - 1));
6541 /* Extract attributes from the descriptor and merge with table attrs */
6542 attrs = extract64(descriptor, 2, 10)
6543 | (extract64(descriptor, 52, 12) << 10);
6544 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6545 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6546 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6547 * means "force PL1 access only", which means forcing AP[1] to 0.
6549 if (extract32(tableattrs, 2, 1)) {
6552 attrs |= nstable << 3; /* NS */
6555 /* Here descaddr is the final physical address, and attributes
6558 fault_type = access_fault;
6559 if ((attrs & (1 << 8)) == 0) {
6564 ap = extract32(attrs, 4, 2);
6565 ns = extract32(attrs, 3, 1);
6566 xn = extract32(attrs, 12, 1);
6567 pxn = extract32(attrs, 11, 1);
6569 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6571 fault_type = permission_fault;
6572 if (!(*prot & (1 << access_type))) {
6577 /* The NS bit will (as required by the architecture) have no effect if
6578 * the CPU doesn't support TZ or this is a non-secure translation
6579 * regime, because the attribute will already be non-secure.
6581 txattrs->secure = false;
6583 *phys_ptr = descaddr;
6584 *page_size_ptr = page_size;
6588 /* Long-descriptor format IFSR/DFSR value */
6589 *fsr = (1 << 9) | (fault_type << 2) | level;
6593 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6595 int32_t address, int *prot)
6597 *prot = PAGE_READ | PAGE_WRITE;
6599 case 0xF0000000 ... 0xFFFFFFFF:
6600 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6604 case 0x00000000 ... 0x7FFFFFFF:
6611 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6612 int access_type, ARMMMUIdx mmu_idx,
6613 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6615 ARMCPU *cpu = arm_env_get_cpu(env);
6617 bool is_user = regime_is_user(env, mmu_idx);
6619 *phys_ptr = address;
6622 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6623 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6624 } else { /* MPU enabled */
6625 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6627 uint32_t base = env->pmsav7.drbar[n];
6628 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6632 if (!(env->pmsav7.drsr[n] & 0x1)) {
6637 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6641 rmask = (1ull << rsize) - 1;
6644 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6645 "to DRSR region size, mask = %" PRIx32,
6650 if (address < base || address > base + rmask) {
6654 /* Region matched */
6656 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6658 uint32_t srdis_mask;
6660 rsize -= 3; /* sub region size (power of 2) */
6661 snd = ((address - base) >> rsize) & 0x7;
6662 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6664 srdis_mask = srdis ? 0x3 : 0x0;
6665 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6666 /* This will check in groups of 2, 4 and then 8, whether
6667 * the subregion bits are consistent. rsize is incremented
6668 * back up to give the region size, considering consistent
6669 * adjacent subregions as one region. Stop testing if rsize
6670 * is already big enough for an entire QEMU page.
6672 int snd_rounded = snd & ~(i - 1);
6673 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6674 snd_rounded + 8, i);
6675 if (srdis_mask ^ srdis_multi) {
6678 srdis_mask = (srdis_mask << i) | srdis_mask;
6682 if (rsize < TARGET_PAGE_BITS) {
6683 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6684 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6685 rsize, TARGET_PAGE_BITS);
6694 if (n == -1) { /* no hits */
6695 if (cpu->pmsav7_dregion &&
6696 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6697 /* background fault */
6701 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6702 } else { /* a MPU hit! */
6703 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6705 if (is_user) { /* User mode AP bit decoding */
6710 break; /* no access */
6712 *prot |= PAGE_WRITE;
6716 *prot |= PAGE_READ | PAGE_EXEC;
6719 qemu_log_mask(LOG_GUEST_ERROR,
6720 "Bad value for AP bits in DRACR %"
6723 } else { /* Priv. mode AP bits decoding */
6726 break; /* no access */
6730 *prot |= PAGE_WRITE;
6734 *prot |= PAGE_READ | PAGE_EXEC;
6737 qemu_log_mask(LOG_GUEST_ERROR,
6738 "Bad value for AP bits in DRACR %"
6744 if (env->pmsav7.dracr[n] & (1 << 12)) {
6745 *prot &= ~PAGE_EXEC;
6750 *fsr = 0x00d; /* Permission fault */
6751 return !(*prot & (1 << access_type));
6754 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6755 int access_type, ARMMMUIdx mmu_idx,
6756 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6761 bool is_user = regime_is_user(env, mmu_idx);
6763 *phys_ptr = address;
6764 for (n = 7; n >= 0; n--) {
6765 base = env->cp15.c6_region[n];
6766 if ((base & 1) == 0) {
6769 mask = 1 << ((base >> 1) & 0x1f);
6770 /* Keep this shift separate from the above to avoid an
6771 (undefined) << 32. */
6772 mask = (mask << 1) - 1;
6773 if (((base ^ address) & ~mask) == 0) {
6782 if (access_type == 2) {
6783 mask = env->cp15.pmsav5_insn_ap;
6785 mask = env->cp15.pmsav5_data_ap;
6787 mask = (mask >> (n * 4)) & 0xf;
6797 *prot = PAGE_READ | PAGE_WRITE;
6802 *prot |= PAGE_WRITE;
6806 *prot = PAGE_READ | PAGE_WRITE;
6819 /* Bad permission. */
6827 /* get_phys_addr - get the physical address for this virtual address
6829 * Find the physical address corresponding to the given virtual address,
6830 * by doing a translation table walk on MMU based systems or using the
6831 * MPU state on MPU based systems.
6833 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6834 * prot and page_size may not be filled in, and the populated fsr value provides
6835 * information on why the translation aborted, in the format of a
6836 * DFSR/IFSR fault register, with the following caveats:
6837 * * we honour the short vs long DFSR format differences.
6838 * * the WnR bit is never set (the caller must do this).
6839 * * for PSMAv5 based systems we don't bother to return a full FSR format
6843 * @address: virtual address to get physical address for
6844 * @access_type: 0 for read, 1 for write, 2 for execute
6845 * @mmu_idx: MMU index indicating required translation regime
6846 * @phys_ptr: set to the physical address corresponding to the virtual address
6847 * @attrs: set to the memory transaction attributes to use
6848 * @prot: set to the permissions for the page containing phys_ptr
6849 * @page_size: set to the size of the page containing phys_ptr
6850 * @fsr: set to the DFSR/IFSR value on failure
6852 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6853 int access_type, ARMMMUIdx mmu_idx,
6854 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6855 target_ulong *page_size, uint32_t *fsr)
6857 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6858 /* TODO: when we support EL2 we should here call ourselves recursively
6859 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6860 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6861 * rather than direct physical memory loads when appropriate.
6862 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6864 assert(!arm_feature(env, ARM_FEATURE_EL2));
6865 mmu_idx += ARMMMUIdx_S1NSE0;
6868 /* The page table entries may downgrade secure to non-secure, but
6869 * cannot upgrade an non-secure translation regime's attributes
6872 attrs->secure = regime_is_secure(env, mmu_idx);
6873 attrs->user = regime_is_user(env, mmu_idx);
6875 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6876 * In v7 and earlier it affects all stage 1 translations.
6878 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6879 && !arm_feature(env, ARM_FEATURE_V8)) {
6880 if (regime_el(env, mmu_idx) == 3) {
6881 address += env->cp15.fcseidr_s;
6883 address += env->cp15.fcseidr_ns;
6887 /* pmsav7 has special handling for when MPU is disabled so call it before
6888 * the common MMU/MPU disabled check below.
6890 if (arm_feature(env, ARM_FEATURE_MPU) &&
6891 arm_feature(env, ARM_FEATURE_V7)) {
6892 *page_size = TARGET_PAGE_SIZE;
6893 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6894 phys_ptr, prot, fsr);
6897 if (regime_translation_disabled(env, mmu_idx)) {
6898 /* MMU/MPU disabled. */
6899 *phys_ptr = address;
6900 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6901 *page_size = TARGET_PAGE_SIZE;
6905 if (arm_feature(env, ARM_FEATURE_MPU)) {
6907 *page_size = TARGET_PAGE_SIZE;
6908 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6909 phys_ptr, prot, fsr);
6912 if (regime_using_lpae_format(env, mmu_idx)) {
6913 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6914 attrs, prot, page_size, fsr);
6915 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6916 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6917 attrs, prot, page_size, fsr);
6919 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6920 prot, page_size, fsr);
6924 /* Walk the page table and (if the mapping exists) add the page
6925 * to the TLB. Return false on success, or true on failure. Populate
6926 * fsr with ARM DFSR/IFSR fault register format value on failure.
6928 bool arm_tlb_fill(CPUState *cs, vaddr address,
6929 int access_type, int mmu_idx, uint32_t *fsr)
6931 ARMCPU *cpu = ARM_CPU(cs);
6932 CPUARMState *env = &cpu->env;
6934 target_ulong page_size;
6937 MemTxAttrs attrs = {};
6939 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6940 &attrs, &prot, &page_size, fsr);
6942 /* Map a single [sub]page. */
6943 phys_addr &= TARGET_PAGE_MASK;
6944 address &= TARGET_PAGE_MASK;
6945 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6946 prot, mmu_idx, page_size);
6953 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
6955 ARMCPU *cpu = ARM_CPU(cs);
6956 CPUARMState *env = &cpu->env;
6958 target_ulong page_size;
6962 MemTxAttrs attrs = {};
6964 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
6965 &attrs, &prot, &page_size, &fsr);
6974 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
6976 if ((env->uncached_cpsr & CPSR_M) == mode) {
6977 env->regs[13] = val;
6979 env->banked_r13[bank_number(mode)] = val;
6983 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
6985 if ((env->uncached_cpsr & CPSR_M) == mode) {
6986 return env->regs[13];
6988 return env->banked_r13[bank_number(mode)];
6992 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6994 ARMCPU *cpu = arm_env_get_cpu(env);
6998 return xpsr_read(env) & 0xf8000000;
7000 return xpsr_read(env) & 0xf80001ff;
7002 return xpsr_read(env) & 0xff00fc00;
7004 return xpsr_read(env) & 0xff00fdff;
7006 return xpsr_read(env) & 0x000001ff;
7008 return xpsr_read(env) & 0x0700fc00;
7010 return xpsr_read(env) & 0x0700edff;
7012 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7014 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7015 case 16: /* PRIMASK */
7016 return (env->daif & PSTATE_I) != 0;
7017 case 17: /* BASEPRI */
7018 case 18: /* BASEPRI_MAX */
7019 return env->v7m.basepri;
7020 case 19: /* FAULTMASK */
7021 return (env->daif & PSTATE_F) != 0;
7022 case 20: /* CONTROL */
7023 return env->v7m.control;
7025 /* ??? For debugging only. */
7026 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7031 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7033 ARMCPU *cpu = arm_env_get_cpu(env);
7037 xpsr_write(env, val, 0xf8000000);
7040 xpsr_write(env, val, 0xf8000000);
7043 xpsr_write(env, val, 0xfe00fc00);
7046 xpsr_write(env, val, 0xfe00fc00);
7049 /* IPSR bits are readonly. */
7052 xpsr_write(env, val, 0x0600fc00);
7055 xpsr_write(env, val, 0x0600fc00);
7058 if (env->v7m.current_sp)
7059 env->v7m.other_sp = val;
7061 env->regs[13] = val;
7064 if (env->v7m.current_sp)
7065 env->regs[13] = val;
7067 env->v7m.other_sp = val;
7069 case 16: /* PRIMASK */
7071 env->daif |= PSTATE_I;
7073 env->daif &= ~PSTATE_I;
7076 case 17: /* BASEPRI */
7077 env->v7m.basepri = val & 0xff;
7079 case 18: /* BASEPRI_MAX */
7081 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7082 env->v7m.basepri = val;
7084 case 19: /* FAULTMASK */
7086 env->daif |= PSTATE_F;
7088 env->daif &= ~PSTATE_F;
7091 case 20: /* CONTROL */
7092 env->v7m.control = val & 3;
7093 switch_v7m_sp(env, (val & 2) != 0);
7096 /* ??? For debugging only. */
7097 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
7104 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7106 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7107 * Note that we do not implement the (architecturally mandated)
7108 * alignment fault for attempts to use this on Device memory
7109 * (which matches the usual QEMU behaviour of not implementing either
7110 * alignment faults or any memory attribute handling).
7113 ARMCPU *cpu = arm_env_get_cpu(env);
7114 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7115 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7117 #ifndef CONFIG_USER_ONLY
7119 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7120 * the block size so we might have to do more than one TLB lookup.
7121 * We know that in fact for any v8 CPU the page size is at least 4K
7122 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7123 * 1K as an artefact of legacy v5 subpage support being present in the
7124 * same QEMU executable.
7126 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7127 void *hostaddr[maxidx];
7129 unsigned mmu_idx = cpu_mmu_index(env, false);
7130 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7132 for (try = 0; try < 2; try++) {
7134 for (i = 0; i < maxidx; i++) {
7135 hostaddr[i] = tlb_vaddr_to_host(env,
7136 vaddr + TARGET_PAGE_SIZE * i,
7143 /* If it's all in the TLB it's fair game for just writing to;
7144 * we know we don't need to update dirty status, etc.
7146 for (i = 0; i < maxidx - 1; i++) {
7147 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7149 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7152 /* OK, try a store and see if we can populate the tlb. This
7153 * might cause an exception if the memory isn't writable,
7154 * in which case we will longjmp out of here. We must for
7155 * this purpose use the actual register value passed to us
7156 * so that we get the fault address right.
7158 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7159 /* Now we can populate the other TLB entries, if any */
7160 for (i = 0; i < maxidx; i++) {
7161 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7162 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7163 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7168 /* Slow path (probably attempt to do this to an I/O device or
7169 * similar, or clearing of a block of code we have translations
7170 * cached for). Just do a series of byte writes as the architecture
7171 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7172 * memset(), unmap() sequence here because:
7173 * + we'd need to account for the blocksize being larger than a page
7174 * + the direct-RAM access case is almost always going to be dealt
7175 * with in the fastpath code above, so there's no speed benefit
7176 * + we would have to deal with the map returning NULL because the
7177 * bounce buffer was in use
7179 for (i = 0; i < blocklen; i++) {
7180 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7184 memset(g2h(vaddr), 0, blocklen);
7188 /* Note that signed overflow is undefined in C. The following routines are
7189 careful to use unsigned types where modulo arithmetic is required.
7190 Failure to do so _will_ break on newer gcc. */
7192 /* Signed saturating arithmetic. */
7194 /* Perform 16-bit signed saturating addition. */
7195 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7200 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7209 /* Perform 8-bit signed saturating addition. */
7210 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7215 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7224 /* Perform 16-bit signed saturating subtraction. */
7225 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7230 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7239 /* Perform 8-bit signed saturating subtraction. */
7240 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7245 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7254 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7255 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7256 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7257 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7260 #include "op_addsub.h"
7262 /* Unsigned saturating arithmetic. */
7263 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7272 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7280 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7289 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7297 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7298 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7299 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7300 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7303 #include "op_addsub.h"
7305 /* Signed modulo arithmetic. */
7306 #define SARITH16(a, b, n, op) do { \
7308 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7309 RESULT(sum, n, 16); \
7311 ge |= 3 << (n * 2); \
7314 #define SARITH8(a, b, n, op) do { \
7316 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7317 RESULT(sum, n, 8); \
7323 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7324 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7325 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7326 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7330 #include "op_addsub.h"
7332 /* Unsigned modulo arithmetic. */
7333 #define ADD16(a, b, n) do { \
7335 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7336 RESULT(sum, n, 16); \
7337 if ((sum >> 16) == 1) \
7338 ge |= 3 << (n * 2); \
7341 #define ADD8(a, b, n) do { \
7343 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7344 RESULT(sum, n, 8); \
7345 if ((sum >> 8) == 1) \
7349 #define SUB16(a, b, n) do { \
7351 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7352 RESULT(sum, n, 16); \
7353 if ((sum >> 16) == 0) \
7354 ge |= 3 << (n * 2); \
7357 #define SUB8(a, b, n) do { \
7359 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7360 RESULT(sum, n, 8); \
7361 if ((sum >> 8) == 0) \
7368 #include "op_addsub.h"
7370 /* Halved signed arithmetic. */
7371 #define ADD16(a, b, n) \
7372 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7373 #define SUB16(a, b, n) \
7374 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7375 #define ADD8(a, b, n) \
7376 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7377 #define SUB8(a, b, n) \
7378 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7381 #include "op_addsub.h"
7383 /* Halved unsigned arithmetic. */
7384 #define ADD16(a, b, n) \
7385 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7386 #define SUB16(a, b, n) \
7387 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7388 #define ADD8(a, b, n) \
7389 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7390 #define SUB8(a, b, n) \
7391 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7394 #include "op_addsub.h"
7396 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7404 /* Unsigned sum of absolute byte differences. */
7405 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7408 sum = do_usad(a, b);
7409 sum += do_usad(a >> 8, b >> 8);
7410 sum += do_usad(a >> 16, b >>16);
7411 sum += do_usad(a >> 24, b >> 24);
7415 /* For ARMv6 SEL instruction. */
7416 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7429 return (a & mask) | (b & ~mask);
7432 /* VFP support. We follow the convention used for VFP instructions:
7433 Single precision routines have a "s" suffix, double precision a
7436 /* Convert host exception flags to vfp form. */
7437 static inline int vfp_exceptbits_from_host(int host_bits)
7439 int target_bits = 0;
7441 if (host_bits & float_flag_invalid)
7443 if (host_bits & float_flag_divbyzero)
7445 if (host_bits & float_flag_overflow)
7447 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
7449 if (host_bits & float_flag_inexact)
7450 target_bits |= 0x10;
7451 if (host_bits & float_flag_input_denormal)
7452 target_bits |= 0x80;
7456 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
7461 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7462 | (env->vfp.vec_len << 16)
7463 | (env->vfp.vec_stride << 20);
7464 i = get_float_exception_flags(&env->vfp.fp_status);
7465 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
7466 fpscr |= vfp_exceptbits_from_host(i);
7470 uint32_t vfp_get_fpscr(CPUARMState *env)
7472 return HELPER(vfp_get_fpscr)(env);
7475 /* Convert vfp exception flags to target form. */
7476 static inline int vfp_exceptbits_to_host(int target_bits)
7480 if (target_bits & 1)
7481 host_bits |= float_flag_invalid;
7482 if (target_bits & 2)
7483 host_bits |= float_flag_divbyzero;
7484 if (target_bits & 4)
7485 host_bits |= float_flag_overflow;
7486 if (target_bits & 8)
7487 host_bits |= float_flag_underflow;
7488 if (target_bits & 0x10)
7489 host_bits |= float_flag_inexact;
7490 if (target_bits & 0x80)
7491 host_bits |= float_flag_input_denormal;
7495 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
7500 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7501 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7502 env->vfp.vec_len = (val >> 16) & 7;
7503 env->vfp.vec_stride = (val >> 20) & 3;
7506 if (changed & (3 << 22)) {
7507 i = (val >> 22) & 3;
7509 case FPROUNDING_TIEEVEN:
7510 i = float_round_nearest_even;
7512 case FPROUNDING_POSINF:
7515 case FPROUNDING_NEGINF:
7516 i = float_round_down;
7518 case FPROUNDING_ZERO:
7519 i = float_round_to_zero;
7522 set_float_rounding_mode(i, &env->vfp.fp_status);
7524 if (changed & (1 << 24)) {
7525 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7526 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7528 if (changed & (1 << 25))
7529 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
7531 i = vfp_exceptbits_to_host(val);
7532 set_float_exception_flags(i, &env->vfp.fp_status);
7533 set_float_exception_flags(0, &env->vfp.standard_fp_status);
7536 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7538 HELPER(vfp_set_fpscr)(env, val);
7541 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7543 #define VFP_BINOP(name) \
7544 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7546 float_status *fpst = fpstp; \
7547 return float32_ ## name(a, b, fpst); \
7549 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7551 float_status *fpst = fpstp; \
7552 return float64_ ## name(a, b, fpst); \
7564 float32 VFP_HELPER(neg, s)(float32 a)
7566 return float32_chs(a);
7569 float64 VFP_HELPER(neg, d)(float64 a)
7571 return float64_chs(a);
7574 float32 VFP_HELPER(abs, s)(float32 a)
7576 return float32_abs(a);
7579 float64 VFP_HELPER(abs, d)(float64 a)
7581 return float64_abs(a);
7584 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
7586 return float32_sqrt(a, &env->vfp.fp_status);
7589 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
7591 return float64_sqrt(a, &env->vfp.fp_status);
7594 /* XXX: check quiet/signaling case */
7595 #define DO_VFP_cmp(p, type) \
7596 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7599 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7600 case 0: flags = 0x6; break; \
7601 case -1: flags = 0x8; break; \
7602 case 1: flags = 0x2; break; \
7603 default: case 2: flags = 0x3; break; \
7605 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7606 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7608 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7611 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7612 case 0: flags = 0x6; break; \
7613 case -1: flags = 0x8; break; \
7614 case 1: flags = 0x2; break; \
7615 default: case 2: flags = 0x3; break; \
7617 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7618 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7620 DO_VFP_cmp(s, float32)
7621 DO_VFP_cmp(d, float64)
7624 /* Integer to float and float to integer conversions */
7626 #define CONV_ITOF(name, fsz, sign) \
7627 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7629 float_status *fpst = fpstp; \
7630 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7633 #define CONV_FTOI(name, fsz, sign, round) \
7634 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7636 float_status *fpst = fpstp; \
7637 if (float##fsz##_is_any_nan(x)) { \
7638 float_raise(float_flag_invalid, fpst); \
7641 return float##fsz##_to_##sign##int32##round(x, fpst); \
7644 #define FLOAT_CONVS(name, p, fsz, sign) \
7645 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7646 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7647 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7649 FLOAT_CONVS(si, s, 32, )
7650 FLOAT_CONVS(si, d, 64, )
7651 FLOAT_CONVS(ui, s, 32, u)
7652 FLOAT_CONVS(ui, d, 64, u)
7658 /* floating point conversion */
7659 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
7661 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7662 /* ARM requires that S<->D conversion of any kind of NaN generates
7663 * a quiet NaN by forcing the most significant frac bit to 1.
7665 return float64_maybe_silence_nan(r);
7668 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
7670 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7671 /* ARM requires that S<->D conversion of any kind of NaN generates
7672 * a quiet NaN by forcing the most significant frac bit to 1.
7674 return float32_maybe_silence_nan(r);
7677 /* VFP3 fixed point conversion. */
7678 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7679 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7682 float_status *fpst = fpstp; \
7684 tmp = itype##_to_##float##fsz(x, fpst); \
7685 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7688 /* Notice that we want only input-denormal exception flags from the
7689 * scalbn operation: the other possible flags (overflow+inexact if
7690 * we overflow to infinity, output-denormal) aren't correct for the
7691 * complete scale-and-convert operation.
7693 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7694 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7698 float_status *fpst = fpstp; \
7699 int old_exc_flags = get_float_exception_flags(fpst); \
7701 if (float##fsz##_is_any_nan(x)) { \
7702 float_raise(float_flag_invalid, fpst); \
7705 tmp = float##fsz##_scalbn(x, shift, fpst); \
7706 old_exc_flags |= get_float_exception_flags(fpst) \
7707 & float_flag_input_denormal; \
7708 set_float_exception_flags(old_exc_flags, fpst); \
7709 return float##fsz##_to_##itype##round(tmp, fpst); \
7712 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7713 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7714 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7715 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7717 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7718 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7719 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7721 VFP_CONV_FIX(sh, d, 64, 64, int16)
7722 VFP_CONV_FIX(sl, d, 64, 64, int32)
7723 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7724 VFP_CONV_FIX(uh, d, 64, 64, uint16)
7725 VFP_CONV_FIX(ul, d, 64, 64, uint32)
7726 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7727 VFP_CONV_FIX(sh, s, 32, 32, int16)
7728 VFP_CONV_FIX(sl, s, 32, 32, int32)
7729 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7730 VFP_CONV_FIX(uh, s, 32, 32, uint16)
7731 VFP_CONV_FIX(ul, s, 32, 32, uint32)
7732 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
7734 #undef VFP_CONV_FIX_FLOAT
7735 #undef VFP_CONV_FLOAT_FIX_ROUND
7737 /* Set the current fp rounding mode and return the old one.
7738 * The argument is a softfloat float_round_ value.
7740 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7742 float_status *fp_status = &env->vfp.fp_status;
7744 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7745 set_float_rounding_mode(rmode, fp_status);
7750 /* Set the current fp rounding mode in the standard fp status and return
7751 * the old one. This is for NEON instructions that need to change the
7752 * rounding mode but wish to use the standard FPSCR values for everything
7753 * else. Always set the rounding mode back to the correct value after
7755 * The argument is a softfloat float_round_ value.
7757 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7759 float_status *fp_status = &env->vfp.standard_fp_status;
7761 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7762 set_float_rounding_mode(rmode, fp_status);
7767 /* Half precision conversions. */
7768 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
7770 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7771 float32 r = float16_to_float32(make_float16(a), ieee, s);
7773 return float32_maybe_silence_nan(r);
7778 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
7780 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7781 float16 r = float32_to_float16(a, ieee, s);
7783 r = float16_maybe_silence_nan(r);
7785 return float16_val(r);
7788 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7790 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7793 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7795 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7798 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7800 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7803 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7805 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7808 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7810 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7811 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7813 return float64_maybe_silence_nan(r);
7818 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7820 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7821 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7823 r = float16_maybe_silence_nan(r);
7825 return float16_val(r);
7828 #define float32_two make_float32(0x40000000)
7829 #define float32_three make_float32(0x40400000)
7830 #define float32_one_point_five make_float32(0x3fc00000)
7832 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
7834 float_status *s = &env->vfp.standard_fp_status;
7835 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7836 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7837 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7838 float_raise(float_flag_input_denormal, s);
7842 return float32_sub(float32_two, float32_mul(a, b, s), s);
7845 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
7847 float_status *s = &env->vfp.standard_fp_status;
7849 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7850 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7851 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7852 float_raise(float_flag_input_denormal, s);
7854 return float32_one_point_five;
7856 product = float32_mul(a, b, s);
7857 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
7862 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7863 * int->float conversions at run-time. */
7864 #define float64_256 make_float64(0x4070000000000000LL)
7865 #define float64_512 make_float64(0x4080000000000000LL)
7866 #define float32_maxnorm make_float32(0x7f7fffff)
7867 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7869 /* Reciprocal functions
7871 * The algorithm that must be used to calculate the estimate
7872 * is specified by the ARM ARM, see FPRecipEstimate()
7875 static float64 recip_estimate(float64 a, float_status *real_fp_status)
7877 /* These calculations mustn't set any fp exception flags,
7878 * so we use a local copy of the fp_status.
7880 float_status dummy_status = *real_fp_status;
7881 float_status *s = &dummy_status;
7882 /* q = (int)(a * 512.0) */
7883 float64 q = float64_mul(float64_512, a, s);
7884 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7886 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7887 q = int64_to_float64(q_int, s);
7888 q = float64_add(q, float64_half, s);
7889 q = float64_div(q, float64_512, s);
7890 q = float64_div(float64_one, q, s);
7892 /* s = (int)(256.0 * r + 0.5) */
7893 q = float64_mul(q, float64_256, s);
7894 q = float64_add(q, float64_half, s);
7895 q_int = float64_to_int64_round_to_zero(q, s);
7897 /* return (double)s / 256.0 */
7898 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7901 /* Common wrapper to call recip_estimate */
7902 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
7904 uint64_t val64 = float64_val(num);
7905 uint64_t frac = extract64(val64, 0, 52);
7906 int64_t exp = extract64(val64, 52, 11);
7908 float64 scaled, estimate;
7910 /* Generate the scaled number for the estimate function */
7912 if (extract64(frac, 51, 1) == 0) {
7914 frac = extract64(frac, 0, 50) << 2;
7916 frac = extract64(frac, 0, 51) << 1;
7920 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7921 scaled = make_float64((0x3feULL << 52)
7922 | extract64(frac, 44, 8) << 44);
7924 estimate = recip_estimate(scaled, fpst);
7926 /* Build new result */
7927 val64 = float64_val(estimate);
7928 sbit = 0x8000000000000000ULL & val64;
7930 frac = extract64(val64, 0, 52);
7933 frac = 1ULL << 51 | extract64(frac, 1, 51);
7934 } else if (exp == -1) {
7935 frac = 1ULL << 50 | extract64(frac, 2, 50);
7939 return make_float64(sbit | (exp << 52) | frac);
7942 static bool round_to_inf(float_status *fpst, bool sign_bit)
7944 switch (fpst->float_rounding_mode) {
7945 case float_round_nearest_even: /* Round to Nearest */
7947 case float_round_up: /* Round to +Inf */
7949 case float_round_down: /* Round to -Inf */
7951 case float_round_to_zero: /* Round to Zero */
7955 g_assert_not_reached();
7958 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
7960 float_status *fpst = fpstp;
7961 float32 f32 = float32_squash_input_denormal(input, fpst);
7962 uint32_t f32_val = float32_val(f32);
7963 uint32_t f32_sbit = 0x80000000ULL & f32_val;
7964 int32_t f32_exp = extract32(f32_val, 23, 8);
7965 uint32_t f32_frac = extract32(f32_val, 0, 23);
7971 if (float32_is_any_nan(f32)) {
7973 if (float32_is_signaling_nan(f32)) {
7974 float_raise(float_flag_invalid, fpst);
7975 nan = float32_maybe_silence_nan(f32);
7977 if (fpst->default_nan_mode) {
7978 nan = float32_default_nan;
7981 } else if (float32_is_infinity(f32)) {
7982 return float32_set_sign(float32_zero, float32_is_neg(f32));
7983 } else if (float32_is_zero(f32)) {
7984 float_raise(float_flag_divbyzero, fpst);
7985 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7986 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
7987 /* Abs(value) < 2.0^-128 */
7988 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7989 if (round_to_inf(fpst, f32_sbit)) {
7990 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7992 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
7994 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
7995 float_raise(float_flag_underflow, fpst);
7996 return float32_set_sign(float32_zero, float32_is_neg(f32));
8000 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8001 r64 = call_recip_estimate(f64, 253, fpst);
8002 r64_val = float64_val(r64);
8003 r64_exp = extract64(r64_val, 52, 11);
8004 r64_frac = extract64(r64_val, 0, 52);
8006 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8007 return make_float32(f32_sbit |
8008 (r64_exp & 0xff) << 23 |
8009 extract64(r64_frac, 29, 24));
8012 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8014 float_status *fpst = fpstp;
8015 float64 f64 = float64_squash_input_denormal(input, fpst);
8016 uint64_t f64_val = float64_val(f64);
8017 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8018 int64_t f64_exp = extract64(f64_val, 52, 11);
8024 /* Deal with any special cases */
8025 if (float64_is_any_nan(f64)) {
8027 if (float64_is_signaling_nan(f64)) {
8028 float_raise(float_flag_invalid, fpst);
8029 nan = float64_maybe_silence_nan(f64);
8031 if (fpst->default_nan_mode) {
8032 nan = float64_default_nan;
8035 } else if (float64_is_infinity(f64)) {
8036 return float64_set_sign(float64_zero, float64_is_neg(f64));
8037 } else if (float64_is_zero(f64)) {
8038 float_raise(float_flag_divbyzero, fpst);
8039 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8040 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8041 /* Abs(value) < 2.0^-1024 */
8042 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8043 if (round_to_inf(fpst, f64_sbit)) {
8044 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8046 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8048 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
8049 float_raise(float_flag_underflow, fpst);
8050 return float64_set_sign(float64_zero, float64_is_neg(f64));
8053 r64 = call_recip_estimate(f64, 2045, fpst);
8054 r64_val = float64_val(r64);
8055 r64_exp = extract64(r64_val, 52, 11);
8056 r64_frac = extract64(r64_val, 0, 52);
8058 /* result = sign : result_exp<10:0> : fraction<51:0> */
8059 return make_float64(f64_sbit |
8060 ((r64_exp & 0x7ff) << 52) |
8064 /* The algorithm that must be used to calculate the estimate
8065 * is specified by the ARM ARM.
8067 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
8069 /* These calculations mustn't set any fp exception flags,
8070 * so we use a local copy of the fp_status.
8072 float_status dummy_status = *real_fp_status;
8073 float_status *s = &dummy_status;
8077 if (float64_lt(a, float64_half, s)) {
8078 /* range 0.25 <= a < 0.5 */
8080 /* a in units of 1/512 rounded down */
8081 /* q0 = (int)(a * 512.0); */
8082 q = float64_mul(float64_512, a, s);
8083 q_int = float64_to_int64_round_to_zero(q, s);
8085 /* reciprocal root r */
8086 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8087 q = int64_to_float64(q_int, s);
8088 q = float64_add(q, float64_half, s);
8089 q = float64_div(q, float64_512, s);
8090 q = float64_sqrt(q, s);
8091 q = float64_div(float64_one, q, s);
8093 /* range 0.5 <= a < 1.0 */
8095 /* a in units of 1/256 rounded down */
8096 /* q1 = (int)(a * 256.0); */
8097 q = float64_mul(float64_256, a, s);
8098 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8100 /* reciprocal root r */
8101 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8102 q = int64_to_float64(q_int, s);
8103 q = float64_add(q, float64_half, s);
8104 q = float64_div(q, float64_256, s);
8105 q = float64_sqrt(q, s);
8106 q = float64_div(float64_one, q, s);
8108 /* r in units of 1/256 rounded to nearest */
8109 /* s = (int)(256.0 * r + 0.5); */
8111 q = float64_mul(q, float64_256,s );
8112 q = float64_add(q, float64_half, s);
8113 q_int = float64_to_int64_round_to_zero(q, s);
8115 /* return (double)s / 256.0;*/
8116 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8119 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
8121 float_status *s = fpstp;
8122 float32 f32 = float32_squash_input_denormal(input, s);
8123 uint32_t val = float32_val(f32);
8124 uint32_t f32_sbit = 0x80000000 & val;
8125 int32_t f32_exp = extract32(val, 23, 8);
8126 uint32_t f32_frac = extract32(val, 0, 23);
8132 if (float32_is_any_nan(f32)) {
8134 if (float32_is_signaling_nan(f32)) {
8135 float_raise(float_flag_invalid, s);
8136 nan = float32_maybe_silence_nan(f32);
8138 if (s->default_nan_mode) {
8139 nan = float32_default_nan;
8142 } else if (float32_is_zero(f32)) {
8143 float_raise(float_flag_divbyzero, s);
8144 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8145 } else if (float32_is_neg(f32)) {
8146 float_raise(float_flag_invalid, s);
8147 return float32_default_nan;
8148 } else if (float32_is_infinity(f32)) {
8149 return float32_zero;
8152 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8153 * preserving the parity of the exponent. */
8155 f64_frac = ((uint64_t) f32_frac) << 29;
8157 while (extract64(f64_frac, 51, 1) == 0) {
8158 f64_frac = f64_frac << 1;
8159 f32_exp = f32_exp-1;
8161 f64_frac = extract64(f64_frac, 0, 51) << 1;
8164 if (extract64(f32_exp, 0, 1) == 0) {
8165 f64 = make_float64(((uint64_t) f32_sbit) << 32
8169 f64 = make_float64(((uint64_t) f32_sbit) << 32
8174 result_exp = (380 - f32_exp) / 2;
8176 f64 = recip_sqrt_estimate(f64, s);
8178 val64 = float64_val(f64);
8180 val = ((result_exp & 0xff) << 23)
8181 | ((val64 >> 29) & 0x7fffff);
8182 return make_float32(val);
8185 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8187 float_status *s = fpstp;
8188 float64 f64 = float64_squash_input_denormal(input, s);
8189 uint64_t val = float64_val(f64);
8190 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8191 int64_t f64_exp = extract64(val, 52, 11);
8192 uint64_t f64_frac = extract64(val, 0, 52);
8194 uint64_t result_frac;
8196 if (float64_is_any_nan(f64)) {
8198 if (float64_is_signaling_nan(f64)) {
8199 float_raise(float_flag_invalid, s);
8200 nan = float64_maybe_silence_nan(f64);
8202 if (s->default_nan_mode) {
8203 nan = float64_default_nan;
8206 } else if (float64_is_zero(f64)) {
8207 float_raise(float_flag_divbyzero, s);
8208 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8209 } else if (float64_is_neg(f64)) {
8210 float_raise(float_flag_invalid, s);
8211 return float64_default_nan;
8212 } else if (float64_is_infinity(f64)) {
8213 return float64_zero;
8216 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8217 * preserving the parity of the exponent. */
8220 while (extract64(f64_frac, 51, 1) == 0) {
8221 f64_frac = f64_frac << 1;
8222 f64_exp = f64_exp - 1;
8224 f64_frac = extract64(f64_frac, 0, 51) << 1;
8227 if (extract64(f64_exp, 0, 1) == 0) {
8228 f64 = make_float64(f64_sbit
8232 f64 = make_float64(f64_sbit
8237 result_exp = (3068 - f64_exp) / 2;
8239 f64 = recip_sqrt_estimate(f64, s);
8241 result_frac = extract64(float64_val(f64), 0, 52);
8243 return make_float64(f64_sbit |
8244 ((result_exp & 0x7ff) << 52) |
8248 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8250 float_status *s = fpstp;
8253 if ((a & 0x80000000) == 0) {
8257 f64 = make_float64((0x3feULL << 52)
8258 | ((int64_t)(a & 0x7fffffff) << 21));
8260 f64 = recip_estimate(f64, s);
8262 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8265 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8267 float_status *fpst = fpstp;
8270 if ((a & 0xc0000000) == 0) {
8274 if (a & 0x80000000) {
8275 f64 = make_float64((0x3feULL << 52)
8276 | ((uint64_t)(a & 0x7fffffff) << 21));
8277 } else { /* bits 31-30 == '01' */
8278 f64 = make_float64((0x3fdULL << 52)
8279 | ((uint64_t)(a & 0x3fffffff) << 22));
8282 f64 = recip_sqrt_estimate(f64, fpst);
8284 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8287 /* VFPv4 fused multiply-accumulate */
8288 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8290 float_status *fpst = fpstp;
8291 return float32_muladd(a, b, c, 0, fpst);
8294 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8296 float_status *fpst = fpstp;
8297 return float64_muladd(a, b, c, 0, fpst);
8300 /* ARMv8 round to integral */
8301 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8303 return float32_round_to_int(x, fp_status);
8306 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8308 return float64_round_to_int(x, fp_status);
8311 float32 HELPER(rints)(float32 x, void *fp_status)
8313 int old_flags = get_float_exception_flags(fp_status), new_flags;
8316 ret = float32_round_to_int(x, fp_status);
8318 /* Suppress any inexact exceptions the conversion produced */
8319 if (!(old_flags & float_flag_inexact)) {
8320 new_flags = get_float_exception_flags(fp_status);
8321 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8327 float64 HELPER(rintd)(float64 x, void *fp_status)
8329 int old_flags = get_float_exception_flags(fp_status), new_flags;
8332 ret = float64_round_to_int(x, fp_status);
8334 new_flags = get_float_exception_flags(fp_status);
8336 /* Suppress any inexact exceptions the conversion produced */
8337 if (!(old_flags & float_flag_inexact)) {
8338 new_flags = get_float_exception_flags(fp_status);
8339 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8345 /* Convert ARM rounding mode to softfloat */
8346 int arm_rmode_to_sf(int rmode)
8349 case FPROUNDING_TIEAWAY:
8350 rmode = float_round_ties_away;
8352 case FPROUNDING_ODD:
8353 /* FIXME: add support for TIEAWAY and ODD */
8354 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8356 case FPROUNDING_TIEEVEN:
8358 rmode = float_round_nearest_even;
8360 case FPROUNDING_POSINF:
8361 rmode = float_round_up;
8363 case FPROUNDING_NEGINF:
8364 rmode = float_round_down;
8366 case FPROUNDING_ZERO:
8367 rmode = float_round_to_zero;
8374 * The upper bytes of val (above the number specified by 'bytes') must have
8375 * been zeroed out by the caller.
8377 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8383 /* zlib crc32 converts the accumulator and output to one's complement. */
8384 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8387 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8393 /* Linux crc32c converts the output to one's complement. */
8394 return crc32c(acc, buf, bytes) ^ 0xffffffff;