4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifdef CONFIG_USER_ONLY
33 #include <sys/socket.h>
34 #include <netinet/in.h>
35 #include <netinet/tcp.h>
46 /* XXX: This is not thread safe. Do we care? */
47 static int gdbserver_fd = -1;
49 typedef struct GDBState {
50 CPUState *env; /* current CPU */
51 enum RSState state; /* parsing state */
56 #ifdef CONFIG_USER_ONLY
61 #ifdef CONFIG_USER_ONLY
62 /* XXX: remove this hack. */
63 static GDBState gdbserver_state;
66 static int get_char(GDBState *s)
72 ret = read(s->fd, &ch, 1);
74 if (errno != EINTR && errno != EAGAIN)
76 } else if (ret == 0) {
85 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
90 ret = write(s->fd, buf, len);
92 if (errno != EINTR && errno != EAGAIN)
101 static inline int fromhex(int v)
103 if (v >= '0' && v <= '9')
105 else if (v >= 'A' && v <= 'F')
107 else if (v >= 'a' && v <= 'f')
113 static inline int tohex(int v)
121 static void memtohex(char *buf, const uint8_t *mem, int len)
126 for(i = 0; i < len; i++) {
128 *q++ = tohex(c >> 4);
129 *q++ = tohex(c & 0xf);
134 static void hextomem(uint8_t *mem, const char *buf, int len)
138 for(i = 0; i < len; i++) {
139 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
144 /* return -1 if error, 0 if OK */
145 static int put_packet(GDBState *s, char *buf)
148 int len, csum, ch, i;
151 printf("reply='%s'\n", buf);
156 put_buffer(s, buf1, 1);
158 put_buffer(s, buf, len);
160 for(i = 0; i < len; i++) {
164 buf1[1] = tohex((csum >> 4) & 0xf);
165 buf1[2] = tohex((csum) & 0xf);
167 put_buffer(s, buf1, 3);
178 #if defined(TARGET_I386)
180 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
182 uint32_t *registers = (uint32_t *)mem_buf;
185 for(i = 0; i < 8; i++) {
186 registers[i] = env->regs[i];
188 registers[8] = env->eip;
189 registers[9] = env->eflags;
190 registers[10] = env->segs[R_CS].selector;
191 registers[11] = env->segs[R_SS].selector;
192 registers[12] = env->segs[R_DS].selector;
193 registers[13] = env->segs[R_ES].selector;
194 registers[14] = env->segs[R_FS].selector;
195 registers[15] = env->segs[R_GS].selector;
196 /* XXX: convert floats */
197 for(i = 0; i < 8; i++) {
198 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
200 registers[36] = env->fpuc;
201 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
202 registers[37] = fpus;
203 registers[38] = 0; /* XXX: convert tags */
204 registers[39] = 0; /* fiseg */
205 registers[40] = 0; /* fioff */
206 registers[41] = 0; /* foseg */
207 registers[42] = 0; /* fooff */
208 registers[43] = 0; /* fop */
210 for(i = 0; i < 16; i++)
211 tswapls(®isters[i]);
212 for(i = 36; i < 44; i++)
213 tswapls(®isters[i]);
217 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
219 uint32_t *registers = (uint32_t *)mem_buf;
222 for(i = 0; i < 8; i++) {
223 env->regs[i] = tswapl(registers[i]);
225 env->eip = tswapl(registers[8]);
226 env->eflags = tswapl(registers[9]);
227 #if defined(CONFIG_USER_ONLY)
228 #define LOAD_SEG(index, sreg)\
229 if (tswapl(registers[index]) != env->segs[sreg].selector)\
230 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
240 #elif defined (TARGET_PPC)
241 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
243 uint32_t *registers = (uint32_t *)mem_buf, tmp;
247 for(i = 0; i < 32; i++) {
248 registers[i] = tswapl(env->gpr[i]);
251 for (i = 0; i < 32; i++) {
252 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
253 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
255 /* nip, msr, ccr, lnk, ctr, xer, mq */
256 registers[96] = tswapl(env->nip);
257 registers[97] = tswapl(do_load_msr(env));
259 for (i = 0; i < 8; i++)
260 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
261 registers[98] = tswapl(tmp);
262 registers[99] = tswapl(env->lr);
263 registers[100] = tswapl(env->ctr);
264 registers[101] = tswapl(do_load_xer(env));
270 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
272 uint32_t *registers = (uint32_t *)mem_buf;
276 for (i = 0; i < 32; i++) {
277 env->gpr[i] = tswapl(registers[i]);
280 for (i = 0; i < 32; i++) {
281 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
282 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
284 /* nip, msr, ccr, lnk, ctr, xer, mq */
285 env->nip = tswapl(registers[96]);
286 do_store_msr(env, tswapl(registers[97]));
287 registers[98] = tswapl(registers[98]);
288 for (i = 0; i < 8; i++)
289 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
290 env->lr = tswapl(registers[99]);
291 env->ctr = tswapl(registers[100]);
292 do_store_xer(env, tswapl(registers[101]));
294 #elif defined (TARGET_SPARC)
295 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
297 target_ulong *registers = (target_ulong *)mem_buf;
301 for(i = 0; i < 8; i++) {
302 registers[i] = tswapl(env->gregs[i]);
304 /* fill in register window */
305 for(i = 0; i < 24; i++) {
306 registers[i + 8] = tswapl(env->regwptr[i]);
309 for (i = 0; i < 32; i++) {
310 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
312 #ifndef TARGET_SPARC64
313 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
314 registers[64] = tswapl(env->y);
319 registers[65] = tswapl(tmp);
321 registers[66] = tswapl(env->wim);
322 registers[67] = tswapl(env->tbr);
323 registers[68] = tswapl(env->pc);
324 registers[69] = tswapl(env->npc);
325 registers[70] = tswapl(env->fsr);
326 registers[71] = 0; /* csr */
328 return 73 * sizeof(target_ulong);
330 for (i = 0; i < 32; i += 2) {
331 registers[i/2 + 64] = tswapl(*((uint64_t *)&env->fpr[i]));
333 registers[81] = tswapl(env->pc);
334 registers[82] = tswapl(env->npc);
335 registers[83] = tswapl(env->tstate[env->tl]);
336 registers[84] = tswapl(env->fsr);
337 registers[85] = tswapl(env->fprs);
338 registers[86] = tswapl(env->y);
339 return 87 * sizeof(target_ulong);
343 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
345 target_ulong *registers = (target_ulong *)mem_buf;
349 for(i = 0; i < 7; i++) {
350 env->gregs[i] = tswapl(registers[i]);
352 /* fill in register window */
353 for(i = 0; i < 24; i++) {
354 env->regwptr[i] = tswapl(registers[i + 8]);
357 for (i = 0; i < 32; i++) {
358 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
360 #ifndef TARGET_SPARC64
361 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
362 env->y = tswapl(registers[64]);
363 PUT_PSR(env, tswapl(registers[65]));
364 env->wim = tswapl(registers[66]);
365 env->tbr = tswapl(registers[67]);
366 env->pc = tswapl(registers[68]);
367 env->npc = tswapl(registers[69]);
368 env->fsr = tswapl(registers[70]);
370 for (i = 0; i < 32; i += 2) {
372 tmp = tswapl(registers[i/2 + 64]) << 32;
373 tmp |= tswapl(registers[i/2 + 64 + 1]);
374 *((uint64_t *)&env->fpr[i]) = tmp;
376 env->pc = tswapl(registers[81]);
377 env->npc = tswapl(registers[82]);
378 env->tstate[env->tl] = tswapl(registers[83]);
379 env->fsr = tswapl(registers[84]);
380 env->fprs = tswapl(registers[85]);
381 env->y = tswapl(registers[86]);
384 #elif defined (TARGET_ARM)
385 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
391 /* 16 core integer registers (4 bytes each). */
392 for (i = 0; i < 16; i++)
394 *(uint32_t *)ptr = tswapl(env->regs[i]);
397 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
398 Not yet implemented. */
399 memset (ptr, 0, 8 * 12 + 4);
401 /* CPSR (4 bytes). */
402 *(uint32_t *)ptr = tswapl (cpsr_read(env));
405 return ptr - mem_buf;
408 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
414 /* Core integer registers. */
415 for (i = 0; i < 16; i++)
417 env->regs[i] = tswapl(*(uint32_t *)ptr);
420 /* Ignore FPA regs and scr. */
422 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
425 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
430 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
436 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
439 int ch, reg_size, type;
441 uint8_t mem_buf[2000];
446 printf("command='%s'\n", line_buf);
452 /* TODO: Make this return the correct value for user-mode. */
453 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
458 addr = strtoul(p, (char **)&p, 16);
459 #if defined(TARGET_I386)
461 #elif defined (TARGET_PPC)
463 #elif defined (TARGET_SPARC)
466 #elif defined (TARGET_ARM)
467 env->regs[15] = addr;
470 #ifdef CONFIG_USER_ONLY
471 s->running_state = 1;
478 addr = strtoul(p, (char **)&p, 16);
479 #if defined(TARGET_I386)
481 #elif defined (TARGET_PPC)
483 #elif defined (TARGET_SPARC)
486 #elif defined (TARGET_ARM)
487 env->regs[15] = addr;
490 cpu_single_step(env, 1);
491 #ifdef CONFIG_USER_ONLY
492 s->running_state = 1;
498 reg_size = cpu_gdb_read_registers(env, mem_buf);
499 memtohex(buf, mem_buf, reg_size);
503 registers = (void *)mem_buf;
505 hextomem((uint8_t *)registers, p, len);
506 cpu_gdb_write_registers(env, mem_buf, len);
510 addr = strtoul(p, (char **)&p, 16);
513 len = strtoul(p, NULL, 16);
514 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
515 memset(mem_buf, 0, len);
516 memtohex(buf, mem_buf, len);
520 addr = strtoul(p, (char **)&p, 16);
523 len = strtoul(p, (char **)&p, 16);
526 hextomem(mem_buf, p, len);
527 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
528 put_packet(s, "E14");
533 type = strtoul(p, (char **)&p, 16);
536 addr = strtoul(p, (char **)&p, 16);
539 len = strtoul(p, (char **)&p, 16);
540 if (type == 0 || type == 1) {
541 if (cpu_breakpoint_insert(env, addr) < 0)
542 goto breakpoint_error;
546 put_packet(s, "E22");
550 type = strtoul(p, (char **)&p, 16);
553 addr = strtoul(p, (char **)&p, 16);
556 len = strtoul(p, (char **)&p, 16);
557 if (type == 0 || type == 1) {
558 cpu_breakpoint_remove(env, addr);
561 goto breakpoint_error;
566 /* put empty packet */
574 extern void tb_flush(CPUState *env);
576 #ifndef CONFIG_USER_ONLY
577 static void gdb_vm_stopped(void *opaque, int reason)
579 GDBState *s = opaque;
583 /* disable single step if it was enable */
584 cpu_single_step(s->env, 0);
586 if (reason == EXCP_DEBUG) {
592 snprintf(buf, sizeof(buf), "S%02x", ret);
597 static void gdb_read_byte(GDBState *s, int ch)
599 CPUState *env = s->env;
603 #ifndef CONFIG_USER_ONLY
605 /* when the CPU is running, we cannot do anything except stop
606 it when receiving a char */
607 vm_stop(EXCP_INTERRUPT);
614 s->line_buf_index = 0;
615 s->state = RS_GETLINE;
620 s->state = RS_CHKSUM1;
621 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
624 s->line_buf[s->line_buf_index++] = ch;
628 s->line_buf[s->line_buf_index] = '\0';
629 s->line_csum = fromhex(ch) << 4;
630 s->state = RS_CHKSUM2;
633 s->line_csum |= fromhex(ch);
635 for(i = 0; i < s->line_buf_index; i++) {
636 csum += s->line_buf[i];
638 if (s->line_csum != (csum & 0xff)) {
640 put_buffer(s, reply, 1);
644 put_buffer(s, reply, 1);
645 s->state = gdb_handle_packet(s, env, s->line_buf);
652 #ifdef CONFIG_USER_ONLY
654 gdb_handlesig (CPUState *env, int sig)
660 if (gdbserver_fd < 0)
663 s = &gdbserver_state;
665 /* disable single step if it was enabled */
666 cpu_single_step(env, 0);
671 snprintf(buf, sizeof(buf), "S%02x", sig);
677 s->running_state = 0;
678 while (s->running_state == 0) {
679 n = read (s->fd, buf, 256);
684 for (i = 0; i < n; i++)
685 gdb_read_byte (s, buf[i]);
687 else if (n == 0 || errno != EAGAIN)
689 /* XXX: Connection closed. Should probably wait for annother
690 connection before continuing. */
697 /* Tell the remote gdb that the process has exited. */
698 void gdb_exit(CPUState *env, int code)
703 if (gdbserver_fd < 0)
706 s = &gdbserver_state;
708 snprintf(buf, sizeof(buf), "W%02x", code);
713 static void gdb_read(void *opaque)
715 GDBState *s = opaque;
719 size = read(s->fd, buf, sizeof(buf));
723 /* end of connection */
724 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
725 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
729 for(i = 0; i < size; i++)
730 gdb_read_byte(s, buf[i]);
736 static void gdb_accept(void *opaque)
739 struct sockaddr_in sockaddr;
744 len = sizeof(sockaddr);
745 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
746 if (fd < 0 && errno != EINTR) {
749 } else if (fd >= 0) {
754 /* set short latency */
756 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
758 #ifdef CONFIG_USER_ONLY
759 s = &gdbserver_state;
760 memset (s, 0, sizeof (GDBState));
762 s = qemu_mallocz(sizeof(GDBState));
768 s->env = first_cpu; /* XXX: allow to change CPU */
771 fcntl(fd, F_SETFL, O_NONBLOCK);
773 #ifndef CONFIG_USER_ONLY
775 vm_stop(EXCP_INTERRUPT);
777 /* start handling I/O */
778 qemu_set_fd_handler(s->fd, gdb_read, NULL, s);
779 /* when the VM is stopped, the following callback is called */
780 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
784 static int gdbserver_open(int port)
786 struct sockaddr_in sockaddr;
789 fd = socket(PF_INET, SOCK_STREAM, 0);
795 /* allow fast reuse */
797 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
799 sockaddr.sin_family = AF_INET;
800 sockaddr.sin_port = htons(port);
801 sockaddr.sin_addr.s_addr = 0;
802 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
812 #ifndef CONFIG_USER_ONLY
813 fcntl(fd, F_SETFL, O_NONBLOCK);
818 int gdbserver_start(int port)
820 gdbserver_fd = gdbserver_open(port);
821 if (gdbserver_fd < 0)
823 /* accept connections */
824 #ifdef CONFIG_USER_ONLY
827 qemu_set_fd_handler(gdbserver_fd, gdb_accept, NULL, NULL);