]> Git Repo - qemu.git/blob - arch_init.c
b5d90a41fa2495b6648b1fbac83003973150ae2e
[qemu.git] / arch_init.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <zlib.h>
28 #ifndef _WIN32
29 #include <sys/types.h>
30 #include <sys/mman.h>
31 #endif
32 #include "config.h"
33 #include "monitor/monitor.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/bitops.h"
36 #include "qemu/bitmap.h"
37 #include "sysemu/arch_init.h"
38 #include "audio/audio.h"
39 #include "hw/i386/pc.h"
40 #include "hw/pci/pci.h"
41 #include "hw/audio/audio.h"
42 #include "sysemu/kvm.h"
43 #include "migration/migration.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qemu/error-report.h"
50 #include "qmp-commands.h"
51 #include "trace.h"
52 #include "exec/cpu-all.h"
53 #include "exec/ram_addr.h"
54 #include "hw/acpi/acpi.h"
55 #include "qemu/host-utils.h"
56 #include "qemu/rcu_queue.h"
57
58 #ifdef DEBUG_ARCH_INIT
59 #define DPRINTF(fmt, ...) \
60     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63     do { } while (0)
64 #endif
65
66 #ifdef TARGET_SPARC
67 int graphic_width = 1024;
68 int graphic_height = 768;
69 int graphic_depth = 8;
70 #else
71 int graphic_width = 800;
72 int graphic_height = 600;
73 int graphic_depth = 32;
74 #endif
75
76
77 #if defined(TARGET_ALPHA)
78 #define QEMU_ARCH QEMU_ARCH_ALPHA
79 #elif defined(TARGET_ARM)
80 #define QEMU_ARCH QEMU_ARCH_ARM
81 #elif defined(TARGET_CRIS)
82 #define QEMU_ARCH QEMU_ARCH_CRIS
83 #elif defined(TARGET_I386)
84 #define QEMU_ARCH QEMU_ARCH_I386
85 #elif defined(TARGET_M68K)
86 #define QEMU_ARCH QEMU_ARCH_M68K
87 #elif defined(TARGET_LM32)
88 #define QEMU_ARCH QEMU_ARCH_LM32
89 #elif defined(TARGET_MICROBLAZE)
90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
91 #elif defined(TARGET_MIPS)
92 #define QEMU_ARCH QEMU_ARCH_MIPS
93 #elif defined(TARGET_MOXIE)
94 #define QEMU_ARCH QEMU_ARCH_MOXIE
95 #elif defined(TARGET_OPENRISC)
96 #define QEMU_ARCH QEMU_ARCH_OPENRISC
97 #elif defined(TARGET_PPC)
98 #define QEMU_ARCH QEMU_ARCH_PPC
99 #elif defined(TARGET_S390X)
100 #define QEMU_ARCH QEMU_ARCH_S390X
101 #elif defined(TARGET_SH4)
102 #define QEMU_ARCH QEMU_ARCH_SH4
103 #elif defined(TARGET_SPARC)
104 #define QEMU_ARCH QEMU_ARCH_SPARC
105 #elif defined(TARGET_XTENSA)
106 #define QEMU_ARCH QEMU_ARCH_XTENSA
107 #elif defined(TARGET_UNICORE32)
108 #define QEMU_ARCH QEMU_ARCH_UNICORE32
109 #elif defined(TARGET_TRICORE)
110 #define QEMU_ARCH QEMU_ARCH_TRICORE
111 #endif
112
113 const uint32_t arch_type = QEMU_ARCH;
114 static bool mig_throttle_on;
115 static int dirty_rate_high_cnt;
116 static void check_guest_throttling(void);
117
118 static uint64_t bitmap_sync_count;
119
120 /***********************************************************/
121 /* ram save/restore */
122
123 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
124 #define RAM_SAVE_FLAG_COMPRESS 0x02
125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
126 #define RAM_SAVE_FLAG_PAGE     0x08
127 #define RAM_SAVE_FLAG_EOS      0x10
128 #define RAM_SAVE_FLAG_CONTINUE 0x20
129 #define RAM_SAVE_FLAG_XBZRLE   0x40
130 /* 0x80 is reserved in migration.h start with 0x100 next */
131 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
132
133 static struct defconfig_file {
134     const char *filename;
135     /* Indicates it is an user config file (disabled by -no-user-config) */
136     bool userconfig;
137 } default_config_files[] = {
138     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
139     { NULL }, /* end of list */
140 };
141
142 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
143
144 int qemu_read_default_config_files(bool userconfig)
145 {
146     int ret;
147     struct defconfig_file *f;
148
149     for (f = default_config_files; f->filename; f++) {
150         if (!userconfig && f->userconfig) {
151             continue;
152         }
153         ret = qemu_read_config_file(f->filename);
154         if (ret < 0 && ret != -ENOENT) {
155             return ret;
156         }
157     }
158
159     return 0;
160 }
161
162 static inline bool is_zero_range(uint8_t *p, uint64_t size)
163 {
164     return buffer_find_nonzero_offset(p, size) == size;
165 }
166
167 /* struct contains XBZRLE cache and a static page
168    used by the compression */
169 static struct {
170     /* buffer used for XBZRLE encoding */
171     uint8_t *encoded_buf;
172     /* buffer for storing page content */
173     uint8_t *current_buf;
174     /* Cache for XBZRLE, Protected by lock. */
175     PageCache *cache;
176     QemuMutex lock;
177 } XBZRLE;
178
179 /* buffer used for XBZRLE decoding */
180 static uint8_t *xbzrle_decoded_buf;
181
182 static void XBZRLE_cache_lock(void)
183 {
184     if (migrate_use_xbzrle())
185         qemu_mutex_lock(&XBZRLE.lock);
186 }
187
188 static void XBZRLE_cache_unlock(void)
189 {
190     if (migrate_use_xbzrle())
191         qemu_mutex_unlock(&XBZRLE.lock);
192 }
193
194 /*
195  * called from qmp_migrate_set_cache_size in main thread, possibly while
196  * a migration is in progress.
197  * A running migration maybe using the cache and might finish during this
198  * call, hence changes to the cache are protected by XBZRLE.lock().
199  */
200 int64_t xbzrle_cache_resize(int64_t new_size)
201 {
202     PageCache *new_cache;
203     int64_t ret;
204
205     if (new_size < TARGET_PAGE_SIZE) {
206         return -1;
207     }
208
209     XBZRLE_cache_lock();
210
211     if (XBZRLE.cache != NULL) {
212         if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
213             goto out_new_size;
214         }
215         new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
216                                         TARGET_PAGE_SIZE);
217         if (!new_cache) {
218             error_report("Error creating cache");
219             ret = -1;
220             goto out;
221         }
222
223         cache_fini(XBZRLE.cache);
224         XBZRLE.cache = new_cache;
225     }
226
227 out_new_size:
228     ret = pow2floor(new_size);
229 out:
230     XBZRLE_cache_unlock();
231     return ret;
232 }
233
234 /* accounting for migration statistics */
235 typedef struct AccountingInfo {
236     uint64_t dup_pages;
237     uint64_t skipped_pages;
238     uint64_t norm_pages;
239     uint64_t iterations;
240     uint64_t xbzrle_bytes;
241     uint64_t xbzrle_pages;
242     uint64_t xbzrle_cache_miss;
243     double xbzrle_cache_miss_rate;
244     uint64_t xbzrle_overflows;
245 } AccountingInfo;
246
247 static AccountingInfo acct_info;
248
249 static void acct_clear(void)
250 {
251     memset(&acct_info, 0, sizeof(acct_info));
252 }
253
254 uint64_t dup_mig_bytes_transferred(void)
255 {
256     return acct_info.dup_pages * TARGET_PAGE_SIZE;
257 }
258
259 uint64_t dup_mig_pages_transferred(void)
260 {
261     return acct_info.dup_pages;
262 }
263
264 uint64_t skipped_mig_bytes_transferred(void)
265 {
266     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
267 }
268
269 uint64_t skipped_mig_pages_transferred(void)
270 {
271     return acct_info.skipped_pages;
272 }
273
274 uint64_t norm_mig_bytes_transferred(void)
275 {
276     return acct_info.norm_pages * TARGET_PAGE_SIZE;
277 }
278
279 uint64_t norm_mig_pages_transferred(void)
280 {
281     return acct_info.norm_pages;
282 }
283
284 uint64_t xbzrle_mig_bytes_transferred(void)
285 {
286     return acct_info.xbzrle_bytes;
287 }
288
289 uint64_t xbzrle_mig_pages_transferred(void)
290 {
291     return acct_info.xbzrle_pages;
292 }
293
294 uint64_t xbzrle_mig_pages_cache_miss(void)
295 {
296     return acct_info.xbzrle_cache_miss;
297 }
298
299 double xbzrle_mig_cache_miss_rate(void)
300 {
301     return acct_info.xbzrle_cache_miss_rate;
302 }
303
304 uint64_t xbzrle_mig_pages_overflow(void)
305 {
306     return acct_info.xbzrle_overflows;
307 }
308
309 /* This is the last block that we have visited serching for dirty pages
310  */
311 static RAMBlock *last_seen_block;
312 /* This is the last block from where we have sent data */
313 static RAMBlock *last_sent_block;
314 static ram_addr_t last_offset;
315 static unsigned long *migration_bitmap;
316 static uint64_t migration_dirty_pages;
317 static uint32_t last_version;
318 static bool ram_bulk_stage;
319
320 struct CompressParam {
321     bool start;
322     bool done;
323     QEMUFile *file;
324     QemuMutex mutex;
325     QemuCond cond;
326     RAMBlock *block;
327     ram_addr_t offset;
328 };
329 typedef struct CompressParam CompressParam;
330
331 struct DecompressParam {
332     bool start;
333     QemuMutex mutex;
334     QemuCond cond;
335     void *des;
336     uint8 *compbuf;
337     int len;
338 };
339 typedef struct DecompressParam DecompressParam;
340
341 static CompressParam *comp_param;
342 static QemuThread *compress_threads;
343 /* comp_done_cond is used to wake up the migration thread when
344  * one of the compression threads has finished the compression.
345  * comp_done_lock is used to co-work with comp_done_cond.
346  */
347 static QemuMutex *comp_done_lock;
348 static QemuCond *comp_done_cond;
349 /* The empty QEMUFileOps will be used by file in CompressParam */
350 static const QEMUFileOps empty_ops = { };
351
352 static bool compression_switch;
353 static bool quit_comp_thread;
354 static bool quit_decomp_thread;
355 static DecompressParam *decomp_param;
356 static QemuThread *decompress_threads;
357 static uint8_t *compressed_data_buf;
358
359 static int do_compress_ram_page(CompressParam *param);
360
361 static void *do_data_compress(void *opaque)
362 {
363     CompressParam *param = opaque;
364
365     while (!quit_comp_thread) {
366         qemu_mutex_lock(&param->mutex);
367         /* Re-check the quit_comp_thread in case of
368          * terminate_compression_threads is called just before
369          * qemu_mutex_lock(&param->mutex) and after
370          * while(!quit_comp_thread), re-check it here can make
371          * sure the compression thread terminate as expected.
372          */
373         while (!param->start && !quit_comp_thread) {
374             qemu_cond_wait(&param->cond, &param->mutex);
375         }
376         if (!quit_comp_thread) {
377             do_compress_ram_page(param);
378         }
379         param->start = false;
380         qemu_mutex_unlock(&param->mutex);
381
382         qemu_mutex_lock(comp_done_lock);
383         param->done = true;
384         qemu_cond_signal(comp_done_cond);
385         qemu_mutex_unlock(comp_done_lock);
386     }
387
388     return NULL;
389 }
390
391 static inline void terminate_compression_threads(void)
392 {
393     int idx, thread_count;
394
395     thread_count = migrate_compress_threads();
396     quit_comp_thread = true;
397     for (idx = 0; idx < thread_count; idx++) {
398         qemu_mutex_lock(&comp_param[idx].mutex);
399         qemu_cond_signal(&comp_param[idx].cond);
400         qemu_mutex_unlock(&comp_param[idx].mutex);
401     }
402 }
403
404 void migrate_compress_threads_join(void)
405 {
406     int i, thread_count;
407
408     if (!migrate_use_compression()) {
409         return;
410     }
411     terminate_compression_threads();
412     thread_count = migrate_compress_threads();
413     for (i = 0; i < thread_count; i++) {
414         qemu_thread_join(compress_threads + i);
415         qemu_fclose(comp_param[i].file);
416         qemu_mutex_destroy(&comp_param[i].mutex);
417         qemu_cond_destroy(&comp_param[i].cond);
418     }
419     qemu_mutex_destroy(comp_done_lock);
420     qemu_cond_destroy(comp_done_cond);
421     g_free(compress_threads);
422     g_free(comp_param);
423     g_free(comp_done_cond);
424     g_free(comp_done_lock);
425     compress_threads = NULL;
426     comp_param = NULL;
427     comp_done_cond = NULL;
428     comp_done_lock = NULL;
429 }
430
431 void migrate_compress_threads_create(void)
432 {
433     int i, thread_count;
434
435     if (!migrate_use_compression()) {
436         return;
437     }
438     quit_comp_thread = false;
439     compression_switch = true;
440     thread_count = migrate_compress_threads();
441     compress_threads = g_new0(QemuThread, thread_count);
442     comp_param = g_new0(CompressParam, thread_count);
443     comp_done_cond = g_new0(QemuCond, 1);
444     comp_done_lock = g_new0(QemuMutex, 1);
445     qemu_cond_init(comp_done_cond);
446     qemu_mutex_init(comp_done_lock);
447     for (i = 0; i < thread_count; i++) {
448         /* com_param[i].file is just used as a dummy buffer to save data, set
449          * it's ops to empty.
450          */
451         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
452         comp_param[i].done = true;
453         qemu_mutex_init(&comp_param[i].mutex);
454         qemu_cond_init(&comp_param[i].cond);
455         qemu_thread_create(compress_threads + i, "compress",
456                            do_data_compress, comp_param + i,
457                            QEMU_THREAD_JOINABLE);
458     }
459 }
460
461 /**
462  * save_page_header: Write page header to wire
463  *
464  * If this is the 1st block, it also writes the block identification
465  *
466  * Returns: Number of bytes written
467  *
468  * @f: QEMUFile where to send the data
469  * @block: block that contains the page we want to send
470  * @offset: offset inside the block for the page
471  *          in the lower bits, it contains flags
472  */
473 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
474 {
475     size_t size;
476
477     qemu_put_be64(f, offset);
478     size = 8;
479
480     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
481         qemu_put_byte(f, strlen(block->idstr));
482         qemu_put_buffer(f, (uint8_t *)block->idstr,
483                         strlen(block->idstr));
484         size += 1 + strlen(block->idstr);
485     }
486     return size;
487 }
488
489 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
490  * The important thing is that a stale (not-yet-0'd) page be replaced
491  * by the new data.
492  * As a bonus, if the page wasn't in the cache it gets added so that
493  * when a small write is made into the 0'd page it gets XBZRLE sent
494  */
495 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
496 {
497     if (ram_bulk_stage || !migrate_use_xbzrle()) {
498         return;
499     }
500
501     /* We don't care if this fails to allocate a new cache page
502      * as long as it updated an old one */
503     cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
504                  bitmap_sync_count);
505 }
506
507 #define ENCODING_FLAG_XBZRLE 0x1
508
509 /**
510  * save_xbzrle_page: compress and send current page
511  *
512  * Returns: 1 means that we wrote the page
513  *          0 means that page is identical to the one already sent
514  *          -1 means that xbzrle would be longer than normal
515  *
516  * @f: QEMUFile where to send the data
517  * @current_data:
518  * @current_addr:
519  * @block: block that contains the page we want to send
520  * @offset: offset inside the block for the page
521  * @last_stage: if we are at the completion stage
522  * @bytes_transferred: increase it with the number of transferred bytes
523  */
524 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
525                             ram_addr_t current_addr, RAMBlock *block,
526                             ram_addr_t offset, bool last_stage,
527                             uint64_t *bytes_transferred)
528 {
529     int encoded_len = 0, bytes_xbzrle;
530     uint8_t *prev_cached_page;
531
532     if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
533         acct_info.xbzrle_cache_miss++;
534         if (!last_stage) {
535             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
536                              bitmap_sync_count) == -1) {
537                 return -1;
538             } else {
539                 /* update *current_data when the page has been
540                    inserted into cache */
541                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
542             }
543         }
544         return -1;
545     }
546
547     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
548
549     /* save current buffer into memory */
550     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
551
552     /* XBZRLE encoding (if there is no overflow) */
553     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
554                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
555                                        TARGET_PAGE_SIZE);
556     if (encoded_len == 0) {
557         DPRINTF("Skipping unmodified page\n");
558         return 0;
559     } else if (encoded_len == -1) {
560         DPRINTF("Overflow\n");
561         acct_info.xbzrle_overflows++;
562         /* update data in the cache */
563         if (!last_stage) {
564             memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
565             *current_data = prev_cached_page;
566         }
567         return -1;
568     }
569
570     /* we need to update the data in the cache, in order to get the same data */
571     if (!last_stage) {
572         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
573     }
574
575     /* Send XBZRLE based compressed page */
576     bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
577     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
578     qemu_put_be16(f, encoded_len);
579     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
580     bytes_xbzrle += encoded_len + 1 + 2;
581     acct_info.xbzrle_pages++;
582     acct_info.xbzrle_bytes += bytes_xbzrle;
583     *bytes_transferred += bytes_xbzrle;
584
585     return 1;
586 }
587
588 static inline
589 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
590                                                  ram_addr_t start)
591 {
592     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
593     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
594     uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
595     unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
596
597     unsigned long next;
598
599     if (ram_bulk_stage && nr > base) {
600         next = nr + 1;
601     } else {
602         next = find_next_bit(migration_bitmap, size, nr);
603     }
604
605     if (next < size) {
606         clear_bit(next, migration_bitmap);
607         migration_dirty_pages--;
608     }
609     return (next - base) << TARGET_PAGE_BITS;
610 }
611
612 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
613 {
614     bool ret;
615     int nr = addr >> TARGET_PAGE_BITS;
616
617     ret = test_and_set_bit(nr, migration_bitmap);
618
619     if (!ret) {
620         migration_dirty_pages++;
621     }
622     return ret;
623 }
624
625 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
626 {
627     ram_addr_t addr;
628     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
629
630     /* start address is aligned at the start of a word? */
631     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
632         int k;
633         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
634         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
635
636         for (k = page; k < page + nr; k++) {
637             if (src[k]) {
638                 unsigned long new_dirty;
639                 new_dirty = ~migration_bitmap[k];
640                 migration_bitmap[k] |= src[k];
641                 new_dirty &= src[k];
642                 migration_dirty_pages += ctpopl(new_dirty);
643                 src[k] = 0;
644             }
645         }
646     } else {
647         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
648             if (cpu_physical_memory_get_dirty(start + addr,
649                                               TARGET_PAGE_SIZE,
650                                               DIRTY_MEMORY_MIGRATION)) {
651                 cpu_physical_memory_reset_dirty(start + addr,
652                                                 TARGET_PAGE_SIZE,
653                                                 DIRTY_MEMORY_MIGRATION);
654                 migration_bitmap_set_dirty(start + addr);
655             }
656         }
657     }
658 }
659
660
661 /* Fix me: there are too many global variables used in migration process. */
662 static int64_t start_time;
663 static int64_t bytes_xfer_prev;
664 static int64_t num_dirty_pages_period;
665 static uint64_t xbzrle_cache_miss_prev;
666 static uint64_t iterations_prev;
667
668 static void migration_bitmap_sync_init(void)
669 {
670     start_time = 0;
671     bytes_xfer_prev = 0;
672     num_dirty_pages_period = 0;
673     xbzrle_cache_miss_prev = 0;
674     iterations_prev = 0;
675 }
676
677 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
678 static void migration_bitmap_sync(void)
679 {
680     RAMBlock *block;
681     uint64_t num_dirty_pages_init = migration_dirty_pages;
682     MigrationState *s = migrate_get_current();
683     int64_t end_time;
684     int64_t bytes_xfer_now;
685
686     bitmap_sync_count++;
687
688     if (!bytes_xfer_prev) {
689         bytes_xfer_prev = ram_bytes_transferred();
690     }
691
692     if (!start_time) {
693         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
694     }
695
696     trace_migration_bitmap_sync_start();
697     address_space_sync_dirty_bitmap(&address_space_memory);
698
699     rcu_read_lock();
700     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
701         migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
702     }
703     rcu_read_unlock();
704
705     trace_migration_bitmap_sync_end(migration_dirty_pages
706                                     - num_dirty_pages_init);
707     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
708     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
709
710     /* more than 1 second = 1000 millisecons */
711     if (end_time > start_time + 1000) {
712         if (migrate_auto_converge()) {
713             /* The following detection logic can be refined later. For now:
714                Check to see if the dirtied bytes is 50% more than the approx.
715                amount of bytes that just got transferred since the last time we
716                were in this routine. If that happens >N times (for now N==4)
717                we turn on the throttle down logic */
718             bytes_xfer_now = ram_bytes_transferred();
719             if (s->dirty_pages_rate &&
720                (num_dirty_pages_period * TARGET_PAGE_SIZE >
721                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
722                (dirty_rate_high_cnt++ > 4)) {
723                     trace_migration_throttle();
724                     mig_throttle_on = true;
725                     dirty_rate_high_cnt = 0;
726              }
727              bytes_xfer_prev = bytes_xfer_now;
728         } else {
729              mig_throttle_on = false;
730         }
731         if (migrate_use_xbzrle()) {
732             if (iterations_prev != acct_info.iterations) {
733                 acct_info.xbzrle_cache_miss_rate =
734                    (double)(acct_info.xbzrle_cache_miss -
735                             xbzrle_cache_miss_prev) /
736                    (acct_info.iterations - iterations_prev);
737             }
738             iterations_prev = acct_info.iterations;
739             xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
740         }
741         s->dirty_pages_rate = num_dirty_pages_period * 1000
742             / (end_time - start_time);
743         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
744         start_time = end_time;
745         num_dirty_pages_period = 0;
746     }
747     s->dirty_sync_count = bitmap_sync_count;
748 }
749
750 /**
751  * save_zero_page: Send the zero page to the stream
752  *
753  * Returns: Number of pages written.
754  *
755  * @f: QEMUFile where to send the data
756  * @block: block that contains the page we want to send
757  * @offset: offset inside the block for the page
758  * @p: pointer to the page
759  * @bytes_transferred: increase it with the number of transferred bytes
760  */
761 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
762                           uint8_t *p, uint64_t *bytes_transferred)
763 {
764     int pages = -1;
765
766     if (is_zero_range(p, TARGET_PAGE_SIZE)) {
767         acct_info.dup_pages++;
768         *bytes_transferred += save_page_header(f, block,
769                                                offset | RAM_SAVE_FLAG_COMPRESS);
770         qemu_put_byte(f, 0);
771         *bytes_transferred += 1;
772         pages = 1;
773     }
774
775     return pages;
776 }
777
778 /**
779  * ram_save_page: Send the given page to the stream
780  *
781  * Returns: Number of pages written.
782  *
783  * @f: QEMUFile where to send the data
784  * @block: block that contains the page we want to send
785  * @offset: offset inside the block for the page
786  * @last_stage: if we are at the completion stage
787  * @bytes_transferred: increase it with the number of transferred bytes
788  */
789 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
790                          bool last_stage, uint64_t *bytes_transferred)
791 {
792     int pages = -1;
793     uint64_t bytes_xmit;
794     ram_addr_t current_addr;
795     MemoryRegion *mr = block->mr;
796     uint8_t *p;
797     int ret;
798     bool send_async = true;
799
800     p = memory_region_get_ram_ptr(mr) + offset;
801
802     /* In doubt sent page as normal */
803     bytes_xmit = 0;
804     ret = ram_control_save_page(f, block->offset,
805                            offset, TARGET_PAGE_SIZE, &bytes_xmit);
806     if (bytes_xmit) {
807         *bytes_transferred += bytes_xmit;
808         pages = 1;
809     }
810
811     XBZRLE_cache_lock();
812
813     current_addr = block->offset + offset;
814
815     if (block == last_sent_block) {
816         offset |= RAM_SAVE_FLAG_CONTINUE;
817     }
818     if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
819         if (ret != RAM_SAVE_CONTROL_DELAYED) {
820             if (bytes_xmit > 0) {
821                 acct_info.norm_pages++;
822             } else if (bytes_xmit == 0) {
823                 acct_info.dup_pages++;
824             }
825         }
826     } else {
827         pages = save_zero_page(f, block, offset, p, bytes_transferred);
828         if (pages > 0) {
829             /* Must let xbzrle know, otherwise a previous (now 0'd) cached
830              * page would be stale
831              */
832             xbzrle_cache_zero_page(current_addr);
833         } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
834             pages = save_xbzrle_page(f, &p, current_addr, block,
835                                      offset, last_stage, bytes_transferred);
836             if (!last_stage) {
837                 /* Can't send this cached data async, since the cache page
838                  * might get updated before it gets to the wire
839                  */
840                 send_async = false;
841             }
842         }
843     }
844
845     /* XBZRLE overflow or normal page */
846     if (pages == -1) {
847         *bytes_transferred += save_page_header(f, block,
848                                                offset | RAM_SAVE_FLAG_PAGE);
849         if (send_async) {
850             qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
851         } else {
852             qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
853         }
854         *bytes_transferred += TARGET_PAGE_SIZE;
855         pages = 1;
856         acct_info.norm_pages++;
857     }
858
859     XBZRLE_cache_unlock();
860
861     return pages;
862 }
863
864 static int do_compress_ram_page(CompressParam *param)
865 {
866     int bytes_sent, blen;
867     uint8_t *p;
868     RAMBlock *block = param->block;
869     ram_addr_t offset = param->offset;
870
871     p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK);
872
873     bytes_sent = save_page_header(param->file, block, offset |
874                                   RAM_SAVE_FLAG_COMPRESS_PAGE);
875     blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
876                                      migrate_compress_level());
877     bytes_sent += blen;
878
879     return bytes_sent;
880 }
881
882 static inline void start_compression(CompressParam *param)
883 {
884     param->done = false;
885     qemu_mutex_lock(&param->mutex);
886     param->start = true;
887     qemu_cond_signal(&param->cond);
888     qemu_mutex_unlock(&param->mutex);
889 }
890
891 static inline void start_decompression(DecompressParam *param)
892 {
893     qemu_mutex_lock(&param->mutex);
894     param->start = true;
895     qemu_cond_signal(&param->cond);
896     qemu_mutex_unlock(&param->mutex);
897 }
898
899 static uint64_t bytes_transferred;
900
901 static void flush_compressed_data(QEMUFile *f)
902 {
903     int idx, len, thread_count;
904
905     if (!migrate_use_compression()) {
906         return;
907     }
908     thread_count = migrate_compress_threads();
909     for (idx = 0; idx < thread_count; idx++) {
910         if (!comp_param[idx].done) {
911             qemu_mutex_lock(comp_done_lock);
912             while (!comp_param[idx].done && !quit_comp_thread) {
913                 qemu_cond_wait(comp_done_cond, comp_done_lock);
914             }
915             qemu_mutex_unlock(comp_done_lock);
916         }
917         if (!quit_comp_thread) {
918             len = qemu_put_qemu_file(f, comp_param[idx].file);
919             bytes_transferred += len;
920         }
921     }
922 }
923
924 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
925                                        ram_addr_t offset)
926 {
927     param->block = block;
928     param->offset = offset;
929 }
930
931 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
932                                            ram_addr_t offset,
933                                            uint64_t *bytes_transferred)
934 {
935     int idx, thread_count, bytes_xmit = -1, pages = -1;
936
937     thread_count = migrate_compress_threads();
938     qemu_mutex_lock(comp_done_lock);
939     while (true) {
940         for (idx = 0; idx < thread_count; idx++) {
941             if (comp_param[idx].done) {
942                 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
943                 set_compress_params(&comp_param[idx], block, offset);
944                 start_compression(&comp_param[idx]);
945                 pages = 1;
946                 acct_info.norm_pages++;
947                 *bytes_transferred += bytes_xmit;
948                 break;
949             }
950         }
951         if (pages > 0) {
952             break;
953         } else {
954             qemu_cond_wait(comp_done_cond, comp_done_lock);
955         }
956     }
957     qemu_mutex_unlock(comp_done_lock);
958
959     return pages;
960 }
961
962 /**
963  * ram_save_compressed_page: compress the given page and send it to the stream
964  *
965  * Returns: Number of pages written.
966  *
967  * @f: QEMUFile where to send the data
968  * @block: block that contains the page we want to send
969  * @offset: offset inside the block for the page
970  * @last_stage: if we are at the completion stage
971  * @bytes_transferred: increase it with the number of transferred bytes
972  */
973 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
974                                     ram_addr_t offset, bool last_stage,
975                                     uint64_t *bytes_transferred)
976 {
977     int pages = -1;
978     uint64_t bytes_xmit;
979     MemoryRegion *mr = block->mr;
980     uint8_t *p;
981     int ret;
982
983     p = memory_region_get_ram_ptr(mr) + offset;
984
985     bytes_xmit = 0;
986     ret = ram_control_save_page(f, block->offset,
987                                 offset, TARGET_PAGE_SIZE, &bytes_xmit);
988     if (bytes_xmit) {
989         *bytes_transferred += bytes_xmit;
990         pages = 1;
991     }
992     if (block == last_sent_block) {
993         offset |= RAM_SAVE_FLAG_CONTINUE;
994     }
995     if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
996         if (ret != RAM_SAVE_CONTROL_DELAYED) {
997             if (bytes_xmit > 0) {
998                 acct_info.norm_pages++;
999             } else if (bytes_xmit == 0) {
1000                 acct_info.dup_pages++;
1001             }
1002         }
1003     } else {
1004         /* When starting the process of a new block, the first page of
1005          * the block should be sent out before other pages in the same
1006          * block, and all the pages in last block should have been sent
1007          * out, keeping this order is important, because the 'cont' flag
1008          * is used to avoid resending the block name.
1009          */
1010         if (block != last_sent_block) {
1011             flush_compressed_data(f);
1012             pages = save_zero_page(f, block, offset, p, bytes_transferred);
1013             if (pages == -1) {
1014                 set_compress_params(&comp_param[0], block, offset);
1015                 /* Use the qemu thread to compress the data to make sure the
1016                  * first page is sent out before other pages
1017                  */
1018                 bytes_xmit = do_compress_ram_page(&comp_param[0]);
1019                 acct_info.norm_pages++;
1020                 qemu_put_qemu_file(f, comp_param[0].file);
1021                 *bytes_transferred += bytes_xmit;
1022                 pages = 1;
1023             }
1024         } else {
1025             pages = save_zero_page(f, block, offset, p, bytes_transferred);
1026             if (pages == -1) {
1027                 pages = compress_page_with_multi_thread(f, block, offset,
1028                                                         bytes_transferred);
1029             }
1030         }
1031     }
1032
1033     return pages;
1034 }
1035
1036 /**
1037  * ram_find_and_save_block: Finds a dirty page and sends it to f
1038  *
1039  * Called within an RCU critical section.
1040  *
1041  * Returns:  The number of pages written
1042  *           0 means no dirty pages
1043  *
1044  * @f: QEMUFile where to send the data
1045  * @last_stage: if we are at the completion stage
1046  * @bytes_transferred: increase it with the number of transferred bytes
1047  */
1048
1049 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1050                                    uint64_t *bytes_transferred)
1051 {
1052     RAMBlock *block = last_seen_block;
1053     ram_addr_t offset = last_offset;
1054     bool complete_round = false;
1055     int pages = 0;
1056     MemoryRegion *mr;
1057
1058     if (!block)
1059         block = QLIST_FIRST_RCU(&ram_list.blocks);
1060
1061     while (true) {
1062         mr = block->mr;
1063         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
1064         if (complete_round && block == last_seen_block &&
1065             offset >= last_offset) {
1066             break;
1067         }
1068         if (offset >= block->used_length) {
1069             offset = 0;
1070             block = QLIST_NEXT_RCU(block, next);
1071             if (!block) {
1072                 block = QLIST_FIRST_RCU(&ram_list.blocks);
1073                 complete_round = true;
1074                 ram_bulk_stage = false;
1075                 if (migrate_use_xbzrle()) {
1076                     /* If xbzrle is on, stop using the data compression at this
1077                      * point. In theory, xbzrle can do better than compression.
1078                      */
1079                     flush_compressed_data(f);
1080                     compression_switch = false;
1081                 }
1082             }
1083         } else {
1084             if (compression_switch && migrate_use_compression()) {
1085                 pages = ram_save_compressed_page(f, block, offset, last_stage,
1086                                                  bytes_transferred);
1087             } else {
1088                 pages = ram_save_page(f, block, offset, last_stage,
1089                                       bytes_transferred);
1090             }
1091
1092             /* if page is unmodified, continue to the next */
1093             if (pages > 0) {
1094                 last_sent_block = block;
1095                 break;
1096             }
1097         }
1098     }
1099
1100     last_seen_block = block;
1101     last_offset = offset;
1102
1103     return pages;
1104 }
1105
1106 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1107 {
1108     uint64_t pages = size / TARGET_PAGE_SIZE;
1109     if (zero) {
1110         acct_info.dup_pages += pages;
1111     } else {
1112         acct_info.norm_pages += pages;
1113         bytes_transferred += size;
1114         qemu_update_position(f, size);
1115     }
1116 }
1117
1118 static ram_addr_t ram_save_remaining(void)
1119 {
1120     return migration_dirty_pages;
1121 }
1122
1123 uint64_t ram_bytes_remaining(void)
1124 {
1125     return ram_save_remaining() * TARGET_PAGE_SIZE;
1126 }
1127
1128 uint64_t ram_bytes_transferred(void)
1129 {
1130     return bytes_transferred;
1131 }
1132
1133 uint64_t ram_bytes_total(void)
1134 {
1135     RAMBlock *block;
1136     uint64_t total = 0;
1137
1138     rcu_read_lock();
1139     QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1140         total += block->used_length;
1141     rcu_read_unlock();
1142     return total;
1143 }
1144
1145 void free_xbzrle_decoded_buf(void)
1146 {
1147     g_free(xbzrle_decoded_buf);
1148     xbzrle_decoded_buf = NULL;
1149 }
1150
1151 static void migration_end(void)
1152 {
1153     if (migration_bitmap) {
1154         memory_global_dirty_log_stop();
1155         g_free(migration_bitmap);
1156         migration_bitmap = NULL;
1157     }
1158
1159     XBZRLE_cache_lock();
1160     if (XBZRLE.cache) {
1161         cache_fini(XBZRLE.cache);
1162         g_free(XBZRLE.encoded_buf);
1163         g_free(XBZRLE.current_buf);
1164         XBZRLE.cache = NULL;
1165         XBZRLE.encoded_buf = NULL;
1166         XBZRLE.current_buf = NULL;
1167     }
1168     XBZRLE_cache_unlock();
1169 }
1170
1171 static void ram_migration_cancel(void *opaque)
1172 {
1173     migration_end();
1174 }
1175
1176 static void reset_ram_globals(void)
1177 {
1178     last_seen_block = NULL;
1179     last_sent_block = NULL;
1180     last_offset = 0;
1181     last_version = ram_list.version;
1182     ram_bulk_stage = true;
1183 }
1184
1185 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1186
1187
1188 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1189  * long-running RCU critical section.  When rcu-reclaims in the code
1190  * start to become numerous it will be necessary to reduce the
1191  * granularity of these critical sections.
1192  */
1193
1194 static int ram_save_setup(QEMUFile *f, void *opaque)
1195 {
1196     RAMBlock *block;
1197     int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1198
1199     mig_throttle_on = false;
1200     dirty_rate_high_cnt = 0;
1201     bitmap_sync_count = 0;
1202     migration_bitmap_sync_init();
1203
1204     if (migrate_use_xbzrle()) {
1205         XBZRLE_cache_lock();
1206         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1207                                   TARGET_PAGE_SIZE,
1208                                   TARGET_PAGE_SIZE);
1209         if (!XBZRLE.cache) {
1210             XBZRLE_cache_unlock();
1211             error_report("Error creating cache");
1212             return -1;
1213         }
1214         XBZRLE_cache_unlock();
1215
1216         /* We prefer not to abort if there is no memory */
1217         XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1218         if (!XBZRLE.encoded_buf) {
1219             error_report("Error allocating encoded_buf");
1220             return -1;
1221         }
1222
1223         XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1224         if (!XBZRLE.current_buf) {
1225             error_report("Error allocating current_buf");
1226             g_free(XBZRLE.encoded_buf);
1227             XBZRLE.encoded_buf = NULL;
1228             return -1;
1229         }
1230
1231         acct_clear();
1232     }
1233
1234     /* iothread lock needed for ram_list.dirty_memory[] */
1235     qemu_mutex_lock_iothread();
1236     qemu_mutex_lock_ramlist();
1237     rcu_read_lock();
1238     bytes_transferred = 0;
1239     reset_ram_globals();
1240
1241     ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1242     migration_bitmap = bitmap_new(ram_bitmap_pages);
1243     bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1244
1245     /*
1246      * Count the total number of pages used by ram blocks not including any
1247      * gaps due to alignment or unplugs.
1248      */
1249     migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1250
1251     memory_global_dirty_log_start();
1252     migration_bitmap_sync();
1253     qemu_mutex_unlock_ramlist();
1254     qemu_mutex_unlock_iothread();
1255
1256     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1257
1258     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1259         qemu_put_byte(f, strlen(block->idstr));
1260         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1261         qemu_put_be64(f, block->used_length);
1262     }
1263
1264     rcu_read_unlock();
1265
1266     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1267     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1268
1269     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1270
1271     return 0;
1272 }
1273
1274 static int ram_save_iterate(QEMUFile *f, void *opaque)
1275 {
1276     int ret;
1277     int i;
1278     int64_t t0;
1279     int pages_sent = 0;
1280
1281     rcu_read_lock();
1282     if (ram_list.version != last_version) {
1283         reset_ram_globals();
1284     }
1285
1286     /* Read version before ram_list.blocks */
1287     smp_rmb();
1288
1289     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1290
1291     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1292     i = 0;
1293     while ((ret = qemu_file_rate_limit(f)) == 0) {
1294         int pages;
1295
1296         pages = ram_find_and_save_block(f, false, &bytes_transferred);
1297         /* no more pages to sent */
1298         if (pages == 0) {
1299             break;
1300         }
1301         pages_sent += pages;
1302         acct_info.iterations++;
1303         check_guest_throttling();
1304         /* we want to check in the 1st loop, just in case it was the 1st time
1305            and we had to sync the dirty bitmap.
1306            qemu_get_clock_ns() is a bit expensive, so we only check each some
1307            iterations
1308         */
1309         if ((i & 63) == 0) {
1310             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1311             if (t1 > MAX_WAIT) {
1312                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1313                         t1, i);
1314                 break;
1315             }
1316         }
1317         i++;
1318     }
1319     flush_compressed_data(f);
1320     rcu_read_unlock();
1321
1322     /*
1323      * Must occur before EOS (or any QEMUFile operation)
1324      * because of RDMA protocol.
1325      */
1326     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1327
1328     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1329     bytes_transferred += 8;
1330
1331     ret = qemu_file_get_error(f);
1332     if (ret < 0) {
1333         return ret;
1334     }
1335
1336     return pages_sent;
1337 }
1338
1339 /* Called with iothread lock */
1340 static int ram_save_complete(QEMUFile *f, void *opaque)
1341 {
1342     rcu_read_lock();
1343
1344     migration_bitmap_sync();
1345
1346     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1347
1348     /* try transferring iterative blocks of memory */
1349
1350     /* flush all remaining blocks regardless of rate limiting */
1351     while (true) {
1352         int pages;
1353
1354         pages = ram_find_and_save_block(f, true, &bytes_transferred);
1355         /* no more blocks to sent */
1356         if (pages == 0) {
1357             break;
1358         }
1359     }
1360
1361     flush_compressed_data(f);
1362     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1363     migration_end();
1364
1365     rcu_read_unlock();
1366     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1367
1368     return 0;
1369 }
1370
1371 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1372 {
1373     uint64_t remaining_size;
1374
1375     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1376
1377     if (remaining_size < max_size) {
1378         qemu_mutex_lock_iothread();
1379         rcu_read_lock();
1380         migration_bitmap_sync();
1381         rcu_read_unlock();
1382         qemu_mutex_unlock_iothread();
1383         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1384     }
1385     return remaining_size;
1386 }
1387
1388 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1389 {
1390     unsigned int xh_len;
1391     int xh_flags;
1392
1393     if (!xbzrle_decoded_buf) {
1394         xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1395     }
1396
1397     /* extract RLE header */
1398     xh_flags = qemu_get_byte(f);
1399     xh_len = qemu_get_be16(f);
1400
1401     if (xh_flags != ENCODING_FLAG_XBZRLE) {
1402         error_report("Failed to load XBZRLE page - wrong compression!");
1403         return -1;
1404     }
1405
1406     if (xh_len > TARGET_PAGE_SIZE) {
1407         error_report("Failed to load XBZRLE page - len overflow!");
1408         return -1;
1409     }
1410     /* load data and decode */
1411     qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1412
1413     /* decode RLE */
1414     if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1415                              TARGET_PAGE_SIZE) == -1) {
1416         error_report("Failed to load XBZRLE page - decode error!");
1417         return -1;
1418     }
1419
1420     return 0;
1421 }
1422
1423 /* Must be called from within a rcu critical section.
1424  * Returns a pointer from within the RCU-protected ram_list.
1425  */
1426 static inline void *host_from_stream_offset(QEMUFile *f,
1427                                             ram_addr_t offset,
1428                                             int flags)
1429 {
1430     static RAMBlock *block = NULL;
1431     char id[256];
1432     uint8_t len;
1433
1434     if (flags & RAM_SAVE_FLAG_CONTINUE) {
1435         if (!block || block->max_length <= offset) {
1436             error_report("Ack, bad migration stream!");
1437             return NULL;
1438         }
1439
1440         return memory_region_get_ram_ptr(block->mr) + offset;
1441     }
1442
1443     len = qemu_get_byte(f);
1444     qemu_get_buffer(f, (uint8_t *)id, len);
1445     id[len] = 0;
1446
1447     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1448         if (!strncmp(id, block->idstr, sizeof(id)) &&
1449             block->max_length > offset) {
1450             return memory_region_get_ram_ptr(block->mr) + offset;
1451         }
1452     }
1453
1454     error_report("Can't find block %s!", id);
1455     return NULL;
1456 }
1457
1458 /*
1459  * If a page (or a whole RDMA chunk) has been
1460  * determined to be zero, then zap it.
1461  */
1462 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1463 {
1464     if (ch != 0 || !is_zero_range(host, size)) {
1465         memset(host, ch, size);
1466     }
1467 }
1468
1469 static void *do_data_decompress(void *opaque)
1470 {
1471     DecompressParam *param = opaque;
1472     unsigned long pagesize;
1473
1474     while (!quit_decomp_thread) {
1475         qemu_mutex_lock(&param->mutex);
1476         while (!param->start && !quit_decomp_thread) {
1477             qemu_cond_wait(&param->cond, &param->mutex);
1478             pagesize = TARGET_PAGE_SIZE;
1479             if (!quit_decomp_thread) {
1480                 /* uncompress() will return failed in some case, especially
1481                  * when the page is dirted when doing the compression, it's
1482                  * not a problem because the dirty page will be retransferred
1483                  * and uncompress() won't break the data in other pages.
1484                  */
1485                 uncompress((Bytef *)param->des, &pagesize,
1486                            (const Bytef *)param->compbuf, param->len);
1487             }
1488             param->start = false;
1489         }
1490         qemu_mutex_unlock(&param->mutex);
1491     }
1492
1493     return NULL;
1494 }
1495
1496 void migrate_decompress_threads_create(void)
1497 {
1498     int i, thread_count;
1499
1500     thread_count = migrate_decompress_threads();
1501     decompress_threads = g_new0(QemuThread, thread_count);
1502     decomp_param = g_new0(DecompressParam, thread_count);
1503     compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1504     quit_decomp_thread = false;
1505     for (i = 0; i < thread_count; i++) {
1506         qemu_mutex_init(&decomp_param[i].mutex);
1507         qemu_cond_init(&decomp_param[i].cond);
1508         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1509         qemu_thread_create(decompress_threads + i, "decompress",
1510                            do_data_decompress, decomp_param + i,
1511                            QEMU_THREAD_JOINABLE);
1512     }
1513 }
1514
1515 void migrate_decompress_threads_join(void)
1516 {
1517     int i, thread_count;
1518
1519     quit_decomp_thread = true;
1520     thread_count = migrate_decompress_threads();
1521     for (i = 0; i < thread_count; i++) {
1522         qemu_mutex_lock(&decomp_param[i].mutex);
1523         qemu_cond_signal(&decomp_param[i].cond);
1524         qemu_mutex_unlock(&decomp_param[i].mutex);
1525     }
1526     for (i = 0; i < thread_count; i++) {
1527         qemu_thread_join(decompress_threads + i);
1528         qemu_mutex_destroy(&decomp_param[i].mutex);
1529         qemu_cond_destroy(&decomp_param[i].cond);
1530         g_free(decomp_param[i].compbuf);
1531     }
1532     g_free(decompress_threads);
1533     g_free(decomp_param);
1534     g_free(compressed_data_buf);
1535     decompress_threads = NULL;
1536     decomp_param = NULL;
1537     compressed_data_buf = NULL;
1538 }
1539
1540 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1541                                                void *host, int len)
1542 {
1543     int idx, thread_count;
1544
1545     thread_count = migrate_decompress_threads();
1546     while (true) {
1547         for (idx = 0; idx < thread_count; idx++) {
1548             if (!decomp_param[idx].start) {
1549                 memcpy(decomp_param[idx].compbuf, compbuf, len);
1550                 decomp_param[idx].des = host;
1551                 decomp_param[idx].len = len;
1552                 start_decompression(&decomp_param[idx]);
1553                 break;
1554             }
1555         }
1556         if (idx < thread_count) {
1557             break;
1558         }
1559     }
1560 }
1561
1562 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1563 {
1564     int flags = 0, ret = 0;
1565     static uint64_t seq_iter;
1566     int len = 0;
1567
1568     seq_iter++;
1569
1570     if (version_id != 4) {
1571         ret = -EINVAL;
1572     }
1573
1574     /* This RCU critical section can be very long running.
1575      * When RCU reclaims in the code start to become numerous,
1576      * it will be necessary to reduce the granularity of this
1577      * critical section.
1578      */
1579     rcu_read_lock();
1580     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1581         ram_addr_t addr, total_ram_bytes;
1582         void *host;
1583         uint8_t ch;
1584
1585         addr = qemu_get_be64(f);
1586         flags = addr & ~TARGET_PAGE_MASK;
1587         addr &= TARGET_PAGE_MASK;
1588
1589         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1590         case RAM_SAVE_FLAG_MEM_SIZE:
1591             /* Synchronize RAM block list */
1592             total_ram_bytes = addr;
1593             while (!ret && total_ram_bytes) {
1594                 RAMBlock *block;
1595                 uint8_t len;
1596                 char id[256];
1597                 ram_addr_t length;
1598
1599                 len = qemu_get_byte(f);
1600                 qemu_get_buffer(f, (uint8_t *)id, len);
1601                 id[len] = 0;
1602                 length = qemu_get_be64(f);
1603
1604                 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1605                     if (!strncmp(id, block->idstr, sizeof(id))) {
1606                         if (length != block->used_length) {
1607                             Error *local_err = NULL;
1608
1609                             ret = qemu_ram_resize(block->offset, length, &local_err);
1610                             if (local_err) {
1611                                 error_report_err(local_err);
1612                             }
1613                         }
1614                         break;
1615                     }
1616                 }
1617
1618                 if (!block) {
1619                     error_report("Unknown ramblock \"%s\", cannot "
1620                                  "accept migration", id);
1621                     ret = -EINVAL;
1622                 }
1623
1624                 total_ram_bytes -= length;
1625             }
1626             break;
1627         case RAM_SAVE_FLAG_COMPRESS:
1628             host = host_from_stream_offset(f, addr, flags);
1629             if (!host) {
1630                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1631                 ret = -EINVAL;
1632                 break;
1633             }
1634             ch = qemu_get_byte(f);
1635             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1636             break;
1637         case RAM_SAVE_FLAG_PAGE:
1638             host = host_from_stream_offset(f, addr, flags);
1639             if (!host) {
1640                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1641                 ret = -EINVAL;
1642                 break;
1643             }
1644             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1645             break;
1646         case RAM_SAVE_FLAG_COMPRESS_PAGE:
1647             host = host_from_stream_offset(f, addr, flags);
1648             if (!host) {
1649                 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1650                 ret = -EINVAL;
1651                 break;
1652             }
1653
1654             len = qemu_get_be32(f);
1655             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1656                 error_report("Invalid compressed data length: %d", len);
1657                 ret = -EINVAL;
1658                 break;
1659             }
1660             qemu_get_buffer(f, compressed_data_buf, len);
1661             decompress_data_with_multi_threads(compressed_data_buf, host, len);
1662             break;
1663         case RAM_SAVE_FLAG_XBZRLE:
1664             host = host_from_stream_offset(f, addr, flags);
1665             if (!host) {
1666                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1667                 ret = -EINVAL;
1668                 break;
1669             }
1670             if (load_xbzrle(f, addr, host) < 0) {
1671                 error_report("Failed to decompress XBZRLE page at "
1672                              RAM_ADDR_FMT, addr);
1673                 ret = -EINVAL;
1674                 break;
1675             }
1676             break;
1677         case RAM_SAVE_FLAG_EOS:
1678             /* normal exit */
1679             break;
1680         default:
1681             if (flags & RAM_SAVE_FLAG_HOOK) {
1682                 ram_control_load_hook(f, flags);
1683             } else {
1684                 error_report("Unknown combination of migration flags: %#x",
1685                              flags);
1686                 ret = -EINVAL;
1687             }
1688         }
1689         if (!ret) {
1690             ret = qemu_file_get_error(f);
1691         }
1692     }
1693
1694     rcu_read_unlock();
1695     DPRINTF("Completed load of VM with exit code %d seq iteration "
1696             "%" PRIu64 "\n", ret, seq_iter);
1697     return ret;
1698 }
1699
1700 static SaveVMHandlers savevm_ram_handlers = {
1701     .save_live_setup = ram_save_setup,
1702     .save_live_iterate = ram_save_iterate,
1703     .save_live_complete = ram_save_complete,
1704     .save_live_pending = ram_save_pending,
1705     .load_state = ram_load,
1706     .cancel = ram_migration_cancel,
1707 };
1708
1709 void ram_mig_init(void)
1710 {
1711     qemu_mutex_init(&XBZRLE.lock);
1712     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1713 }
1714
1715 struct soundhw {
1716     const char *name;
1717     const char *descr;
1718     int enabled;
1719     int isa;
1720     union {
1721         int (*init_isa) (ISABus *bus);
1722         int (*init_pci) (PCIBus *bus);
1723     } init;
1724 };
1725
1726 static struct soundhw soundhw[9];
1727 static int soundhw_count;
1728
1729 void isa_register_soundhw(const char *name, const char *descr,
1730                           int (*init_isa)(ISABus *bus))
1731 {
1732     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1733     soundhw[soundhw_count].name = name;
1734     soundhw[soundhw_count].descr = descr;
1735     soundhw[soundhw_count].isa = 1;
1736     soundhw[soundhw_count].init.init_isa = init_isa;
1737     soundhw_count++;
1738 }
1739
1740 void pci_register_soundhw(const char *name, const char *descr,
1741                           int (*init_pci)(PCIBus *bus))
1742 {
1743     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1744     soundhw[soundhw_count].name = name;
1745     soundhw[soundhw_count].descr = descr;
1746     soundhw[soundhw_count].isa = 0;
1747     soundhw[soundhw_count].init.init_pci = init_pci;
1748     soundhw_count++;
1749 }
1750
1751 void select_soundhw(const char *optarg)
1752 {
1753     struct soundhw *c;
1754
1755     if (is_help_option(optarg)) {
1756     show_valid_cards:
1757
1758         if (soundhw_count) {
1759              printf("Valid sound card names (comma separated):\n");
1760              for (c = soundhw; c->name; ++c) {
1761                  printf ("%-11s %s\n", c->name, c->descr);
1762              }
1763              printf("\n-soundhw all will enable all of the above\n");
1764         } else {
1765              printf("Machine has no user-selectable audio hardware "
1766                     "(it may or may not have always-present audio hardware).\n");
1767         }
1768         exit(!is_help_option(optarg));
1769     }
1770     else {
1771         size_t l;
1772         const char *p;
1773         char *e;
1774         int bad_card = 0;
1775
1776         if (!strcmp(optarg, "all")) {
1777             for (c = soundhw; c->name; ++c) {
1778                 c->enabled = 1;
1779             }
1780             return;
1781         }
1782
1783         p = optarg;
1784         while (*p) {
1785             e = strchr(p, ',');
1786             l = !e ? strlen(p) : (size_t) (e - p);
1787
1788             for (c = soundhw; c->name; ++c) {
1789                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1790                     c->enabled = 1;
1791                     break;
1792                 }
1793             }
1794
1795             if (!c->name) {
1796                 if (l > 80) {
1797                     error_report("Unknown sound card name (too big to show)");
1798                 }
1799                 else {
1800                     error_report("Unknown sound card name `%.*s'",
1801                                  (int) l, p);
1802                 }
1803                 bad_card = 1;
1804             }
1805             p += l + (e != NULL);
1806         }
1807
1808         if (bad_card) {
1809             goto show_valid_cards;
1810         }
1811     }
1812 }
1813
1814 void audio_init(void)
1815 {
1816     struct soundhw *c;
1817     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1818     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1819
1820     for (c = soundhw; c->name; ++c) {
1821         if (c->enabled) {
1822             if (c->isa) {
1823                 if (!isa_bus) {
1824                     error_report("ISA bus not available for %s", c->name);
1825                     exit(1);
1826                 }
1827                 c->init.init_isa(isa_bus);
1828             } else {
1829                 if (!pci_bus) {
1830                     error_report("PCI bus not available for %s", c->name);
1831                     exit(1);
1832                 }
1833                 c->init.init_pci(pci_bus);
1834             }
1835         }
1836     }
1837 }
1838
1839 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1840 {
1841     int ret;
1842
1843     if (strlen(str) != 36) {
1844         return -1;
1845     }
1846
1847     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1848                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1849                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1850                  &uuid[15]);
1851
1852     if (ret != 16) {
1853         return -1;
1854     }
1855     return 0;
1856 }
1857
1858 void do_acpitable_option(const QemuOpts *opts)
1859 {
1860 #ifdef TARGET_I386
1861     Error *err = NULL;
1862
1863     acpi_table_add(opts, &err);
1864     if (err) {
1865         error_report("Wrong acpi table provided: %s",
1866                      error_get_pretty(err));
1867         error_free(err);
1868         exit(1);
1869     }
1870 #endif
1871 }
1872
1873 void do_smbios_option(QemuOpts *opts)
1874 {
1875 #ifdef TARGET_I386
1876     smbios_entry_add(opts);
1877 #endif
1878 }
1879
1880 void cpudef_init(void)
1881 {
1882 #if defined(cpudef_setup)
1883     cpudef_setup(); /* parse cpu definitions in target config file */
1884 #endif
1885 }
1886
1887 int kvm_available(void)
1888 {
1889 #ifdef CONFIG_KVM
1890     return 1;
1891 #else
1892     return 0;
1893 #endif
1894 }
1895
1896 int xen_available(void)
1897 {
1898 #ifdef CONFIG_XEN
1899     return 1;
1900 #else
1901     return 0;
1902 #endif
1903 }
1904
1905
1906 TargetInfo *qmp_query_target(Error **errp)
1907 {
1908     TargetInfo *info = g_malloc0(sizeof(*info));
1909
1910     info->arch = g_strdup(TARGET_NAME);
1911
1912     return info;
1913 }
1914
1915 /* Stub function that's gets run on the vcpu when its brought out of the
1916    VM to run inside qemu via async_run_on_cpu()*/
1917 static void mig_sleep_cpu(void *opq)
1918 {
1919     qemu_mutex_unlock_iothread();
1920     g_usleep(30*1000);
1921     qemu_mutex_lock_iothread();
1922 }
1923
1924 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1925    much time in the VM. The migration thread will try to catchup.
1926    Workload will experience a performance drop.
1927 */
1928 static void mig_throttle_guest_down(void)
1929 {
1930     CPUState *cpu;
1931
1932     qemu_mutex_lock_iothread();
1933     CPU_FOREACH(cpu) {
1934         async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1935     }
1936     qemu_mutex_unlock_iothread();
1937 }
1938
1939 static void check_guest_throttling(void)
1940 {
1941     static int64_t t0;
1942     int64_t        t1;
1943
1944     if (!mig_throttle_on) {
1945         return;
1946     }
1947
1948     if (!t0)  {
1949         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1950         return;
1951     }
1952
1953     t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1954
1955     /* If it has been more than 40 ms since the last time the guest
1956      * was throttled then do it again.
1957      */
1958     if (40 < (t1-t0)/1000000) {
1959         mig_throttle_guest_down();
1960         t0 = t1;
1961     }
1962 }
This page took 0.118805 seconds and 2 git commands to generate.