1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
22 #include "qapi/qapi-commands-target.h"
24 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
26 #ifndef CONFIG_USER_ONLY
27 /* Cacheability and shareability attributes for a memory access */
28 typedef struct ARMCacheAttrs {
29 unsigned int attrs:8; /* as in the MAIR register encoding */
30 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
33 static bool get_phys_addr(CPUARMState *env, target_ulong address,
34 MMUAccessType access_type, ARMMMUIdx mmu_idx,
35 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
36 target_ulong *page_size,
37 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40 MMUAccessType access_type, ARMMMUIdx mmu_idx,
41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42 target_ulong *page_size_ptr,
43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
45 /* Security attributes for an address, as returned by v8m_security_lookup. */
46 typedef struct V8M_SAttributes {
47 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
56 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
57 MMUAccessType access_type, ARMMMUIdx mmu_idx,
58 V8M_SAttributes *sattrs);
61 static void switch_mode(CPUARMState *env, int mode);
63 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
67 /* VFP data registers are always little-endian. */
68 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
73 if (arm_feature(env, ARM_FEATURE_NEON)) {
74 /* Aliases for Q regs. */
77 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
79 stq_le_p(buf + 8, q[1]);
83 switch (reg - nregs) {
84 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
85 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
86 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
91 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
95 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
97 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
100 if (arm_feature(env, ARM_FEATURE_NEON)) {
103 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
104 q[0] = ldq_le_p(buf);
105 q[1] = ldq_le_p(buf + 8);
109 switch (reg - nregs) {
110 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
111 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
112 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
117 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
121 /* 128 bit FP register */
123 uint64_t *q = aa64_vfp_qreg(env, reg);
125 stq_le_p(buf + 8, q[1]);
130 stl_p(buf, vfp_get_fpsr(env));
134 stl_p(buf, vfp_get_fpcr(env));
141 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
145 /* 128 bit FP register */
147 uint64_t *q = aa64_vfp_qreg(env, reg);
148 q[0] = ldq_le_p(buf);
149 q[1] = ldq_le_p(buf + 8);
154 vfp_set_fpsr(env, ldl_p(buf));
158 vfp_set_fpcr(env, ldl_p(buf));
165 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 return CPREG_FIELD64(env, ri);
171 return CPREG_FIELD32(env, ri);
175 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
178 assert(ri->fieldoffset);
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(env, ri) = value;
182 CPREG_FIELD32(env, ri) = value;
186 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
188 return (char *)env + ri->fieldoffset;
191 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
193 /* Raw read of a coprocessor register (as needed for migration, etc). */
194 if (ri->type & ARM_CP_CONST) {
195 return ri->resetvalue;
196 } else if (ri->raw_readfn) {
197 return ri->raw_readfn(env, ri);
198 } else if (ri->readfn) {
199 return ri->readfn(env, ri);
201 return raw_read(env, ri);
205 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
208 /* Raw write of a coprocessor register (as needed for migration, etc).
209 * Note that constant registers are treated as write-ignored; the
210 * caller should check for success by whether a readback gives the
213 if (ri->type & ARM_CP_CONST) {
215 } else if (ri->raw_writefn) {
216 ri->raw_writefn(env, ri, v);
217 } else if (ri->writefn) {
218 ri->writefn(env, ri, v);
220 raw_write(env, ri, v);
224 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 ARMCPU *cpu = arm_env_get_cpu(env);
227 const ARMCPRegInfo *ri;
230 key = cpu->dyn_xml.cpregs_keys[reg];
231 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
233 if (cpreg_field_is_64bit(ri)) {
234 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
236 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
242 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
247 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
249 /* Return true if the regdef would cause an assertion if you called
250 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
251 * program bug for it not to have the NO_RAW flag).
252 * NB that returning false here doesn't necessarily mean that calling
253 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
254 * read/write access functions which are safe for raw use" from "has
255 * read/write access functions which have side effects but has forgotten
256 * to provide raw access functions".
257 * The tests here line up with the conditions in read/write_raw_cp_reg()
258 * and assertions in raw_read()/raw_write().
260 if ((ri->type & ARM_CP_CONST) ||
262 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
268 bool write_cpustate_to_list(ARMCPU *cpu)
270 /* Write the coprocessor state from cpu->env to the (index,value) list. */
274 for (i = 0; i < cpu->cpreg_array_len; i++) {
275 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
276 const ARMCPRegInfo *ri;
278 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
283 if (ri->type & ARM_CP_NO_RAW) {
286 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
291 bool write_list_to_cpustate(ARMCPU *cpu)
296 for (i = 0; i < cpu->cpreg_array_len; i++) {
297 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
298 uint64_t v = cpu->cpreg_values[i];
299 const ARMCPRegInfo *ri;
301 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
306 if (ri->type & ARM_CP_NO_RAW) {
309 /* Write value and confirm it reads back as written
310 * (to catch read-only registers and partially read-only
311 * registers where the incoming migration value doesn't match)
313 write_raw_cp_reg(&cpu->env, ri, v);
314 if (read_raw_cp_reg(&cpu->env, ri) != v) {
321 static void add_cpreg_to_list(gpointer key, gpointer opaque)
323 ARMCPU *cpu = opaque;
325 const ARMCPRegInfo *ri;
327 regidx = *(uint32_t *)key;
328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
330 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
331 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
332 /* The value array need not be initialized at this point */
333 cpu->cpreg_array_len++;
337 static void count_cpreg(gpointer key, gpointer opaque)
339 ARMCPU *cpu = opaque;
341 const ARMCPRegInfo *ri;
343 regidx = *(uint32_t *)key;
344 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
346 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
347 cpu->cpreg_array_len++;
351 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
353 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
354 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365 void init_cpreg_list(ARMCPU *cpu)
367 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
368 * Note that we require cpreg_tuples[] to be sorted by key ID.
373 keys = g_hash_table_get_keys(cpu->cp_regs);
374 keys = g_list_sort(keys, cpreg_key_compare);
376 cpu->cpreg_array_len = 0;
378 g_list_foreach(keys, count_cpreg, cpu);
380 arraylen = cpu->cpreg_array_len;
381 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
382 cpu->cpreg_values = g_new(uint64_t, arraylen);
383 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
384 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
385 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
386 cpu->cpreg_array_len = 0;
388 g_list_foreach(keys, add_cpreg_to_list, cpu);
390 assert(cpu->cpreg_array_len == arraylen);
396 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
397 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
399 * access_el3_aa32ns: Used to check AArch32 register views.
400 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
402 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
403 const ARMCPRegInfo *ri,
406 bool secure = arm_is_secure_below_el3(env);
408 assert(!arm_el_is_aa64(env, 3));
410 return CP_ACCESS_TRAP_UNCATEGORIZED;
415 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
416 const ARMCPRegInfo *ri,
419 if (!arm_el_is_aa64(env, 3)) {
420 return access_el3_aa32ns(env, ri, isread);
425 /* Some secure-only AArch32 registers trap to EL3 if used from
426 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
427 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
428 * We assume that the .access field is set to PL1_RW.
430 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
431 const ARMCPRegInfo *ri,
434 if (arm_current_el(env) == 3) {
437 if (arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL3;
440 /* This will be EL1 NS and EL2 NS, which just UNDEF */
441 return CP_ACCESS_TRAP_UNCATEGORIZED;
444 /* Check for traps to "powerdown debug" registers, which are controlled
447 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
450 int el = arm_current_el(env);
451 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
452 (env->cp15.mdcr_el2 & MDCR_TDE) ||
453 (arm_hcr_el2_eff(env) & HCR_TGE);
455 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
459 return CP_ACCESS_TRAP_EL3;
464 /* Check for traps to "debug ROM" registers, which are controlled
465 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
467 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
470 int el = arm_current_el(env);
471 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
472 (env->cp15.mdcr_el2 & MDCR_TDE) ||
473 (arm_hcr_el2_eff(env) & HCR_TGE);
475 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
476 return CP_ACCESS_TRAP_EL2;
478 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
479 return CP_ACCESS_TRAP_EL3;
484 /* Check for traps to general debug registers, which are controlled
485 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
487 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
490 int el = arm_current_el(env);
491 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
492 (env->cp15.mdcr_el2 & MDCR_TDE) ||
493 (arm_hcr_el2_eff(env) & HCR_TGE);
495 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
496 return CP_ACCESS_TRAP_EL2;
498 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
499 return CP_ACCESS_TRAP_EL3;
504 /* Check for traps to performance monitor registers, which are controlled
505 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
507 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
510 int el = arm_current_el(env);
512 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
513 && !arm_is_secure_below_el3(env)) {
514 return CP_ACCESS_TRAP_EL2;
516 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
517 return CP_ACCESS_TRAP_EL3;
522 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
524 ARMCPU *cpu = arm_env_get_cpu(env);
526 raw_write(env, ri, value);
527 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
530 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
532 ARMCPU *cpu = arm_env_get_cpu(env);
534 if (raw_read(env, ri) != value) {
535 /* Unlike real hardware the qemu TLB uses virtual addresses,
536 * not modified virtual addresses, so this causes a TLB flush.
539 raw_write(env, ri, value);
543 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
546 ARMCPU *cpu = arm_env_get_cpu(env);
548 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
549 && !extended_addresses_enabled(env)) {
550 /* For VMSA (when not using the LPAE long descriptor page table
551 * format) this register includes the ASID, so do a TLB flush.
552 * For PMSA it is purely a process ID and no action is needed.
556 raw_write(env, ri, value);
559 /* IS variants of TLB operations must affect all cores */
560 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_all_cpus_synced(cs);
568 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_all_cpus_synced(cs);
576 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 CPUState *cs = ENV_GET_CPU(env);
581 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
584 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 CPUState *cs = ENV_GET_CPU(env);
589 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
593 * Non-IS variants of TLB operations are upgraded to
594 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
595 * force broadcast of these operations.
597 static bool tlb_force_broadcast(CPUARMState *env)
599 return (env->cp15.hcr_el2 & HCR_FB) &&
600 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
603 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 /* Invalidate all (TLBIALL) */
607 ARMCPU *cpu = arm_env_get_cpu(env);
609 if (tlb_force_broadcast(env)) {
610 tlbiall_is_write(env, NULL, value);
617 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
620 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
621 ARMCPU *cpu = arm_env_get_cpu(env);
623 if (tlb_force_broadcast(env)) {
624 tlbimva_is_write(env, NULL, value);
628 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
631 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
634 /* Invalidate by ASID (TLBIASID) */
635 ARMCPU *cpu = arm_env_get_cpu(env);
637 if (tlb_force_broadcast(env)) {
638 tlbiasid_is_write(env, NULL, value);
645 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
649 ARMCPU *cpu = arm_env_get_cpu(env);
651 if (tlb_force_broadcast(env)) {
652 tlbimvaa_is_write(env, NULL, value);
656 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
659 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
662 CPUState *cs = ENV_GET_CPU(env);
664 tlb_flush_by_mmuidx(cs,
665 ARMMMUIdxBit_S12NSE1 |
666 ARMMMUIdxBit_S12NSE0 |
670 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 CPUState *cs = ENV_GET_CPU(env);
675 tlb_flush_by_mmuidx_all_cpus_synced(cs,
676 ARMMMUIdxBit_S12NSE1 |
677 ARMMMUIdxBit_S12NSE0 |
681 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 /* Invalidate by IPA. This has to invalidate any structures that
685 * contain only stage 2 translation information, but does not need
686 * to apply to structures that contain combined stage 1 and stage 2
687 * translation information.
688 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
690 CPUState *cs = ENV_GET_CPU(env);
693 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
697 pageaddr = sextract64(value << 12, 0, 40);
699 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
702 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
705 CPUState *cs = ENV_GET_CPU(env);
708 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
712 pageaddr = sextract64(value << 12, 0, 40);
714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
718 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
721 CPUState *cs = ENV_GET_CPU(env);
723 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
726 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 CPUState *cs = ENV_GET_CPU(env);
731 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
734 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 CPUState *cs = ENV_GET_CPU(env);
738 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
740 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
743 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 CPUState *cs = ENV_GET_CPU(env);
747 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
753 static const ARMCPRegInfo cp_reginfo[] = {
754 /* Define the secure and non-secure FCSE identifier CP registers
755 * separately because there is no secure bank in V8 (no _EL3). This allows
756 * the secure register to be properly reset and migrated. There is also no
757 * v8 EL1 version of the register so the non-secure instance stands alone.
760 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
761 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
762 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
763 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
764 { .name = "FCSEIDR_S",
765 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
766 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
767 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
768 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
769 /* Define the secure and non-secure context identifier CP registers
770 * separately because there is no secure bank in V8 (no _EL3). This allows
771 * the secure register to be properly reset and migrated. In the
772 * non-secure case, the 32-bit register will have reset and migration
773 * disabled during registration as it is handled by the 64-bit instance.
775 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
776 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
777 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
778 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
779 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
780 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
781 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
782 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
783 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
784 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
788 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
789 /* NB: Some of these registers exist in v8 but with more precise
790 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
792 /* MMU Domain access control / MPU write buffer control */
794 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
795 .access = PL1_RW, .resetvalue = 0,
796 .writefn = dacr_write, .raw_writefn = raw_write,
797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
798 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
799 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
800 * For v6 and v5, these mappings are overly broad.
802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
808 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
809 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
810 /* Cache maintenance ops; some of this space may be overridden later. */
811 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
812 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
813 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
817 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
818 /* Not all pre-v6 cores implemented this WFI, so this is slightly
821 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
822 .access = PL1_W, .type = ARM_CP_WFI },
826 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
827 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
828 * is UNPREDICTABLE; we choose to NOP as most implementations do).
830 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
831 .access = PL1_W, .type = ARM_CP_WFI },
832 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
833 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
834 * OMAPCP will override this space.
836 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
837 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
839 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
840 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
842 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
843 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
844 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
846 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
847 * implementing it as RAZ means the "debug architecture version" bits
848 * will read as a reserved value, which should cause Linux to not try
849 * to use the debug hardware.
851 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
852 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
853 /* MMU TLB control. Note that the wildcarding means we cover not just
854 * the unified TLB ops but also the dside/iside/inner-shareable variants.
856 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
857 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
858 .type = ARM_CP_NO_RAW },
859 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
860 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
861 .type = ARM_CP_NO_RAW },
862 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
863 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
864 .type = ARM_CP_NO_RAW },
865 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
866 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
867 .type = ARM_CP_NO_RAW },
868 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
869 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
870 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
871 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
875 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
880 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
881 if (!arm_feature(env, ARM_FEATURE_V8)) {
882 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
883 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
884 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
886 if (arm_feature(env, ARM_FEATURE_VFP)) {
887 /* VFP coprocessor: cp10 & cp11 [23:20] */
888 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
890 if (!arm_feature(env, ARM_FEATURE_NEON)) {
891 /* ASEDIS [31] bit is RAO/WI */
895 /* VFPv3 and upwards with NEON implement 32 double precision
896 * registers (D0-D31).
898 if (!arm_feature(env, ARM_FEATURE_NEON) ||
899 !arm_feature(env, ARM_FEATURE_VFP3)) {
900 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
906 env->cp15.cpacr_el1 = value;
909 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
911 /* Call cpacr_write() so that we reset with the correct RAO bits set
912 * for our CPU features.
914 cpacr_write(env, ri, 0);
917 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
920 if (arm_feature(env, ARM_FEATURE_V8)) {
921 /* Check if CPACR accesses are to be trapped to EL2 */
922 if (arm_current_el(env) == 1 &&
923 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
924 return CP_ACCESS_TRAP_EL2;
925 /* Check if CPACR accesses are to be trapped to EL3 */
926 } else if (arm_current_el(env) < 3 &&
927 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
928 return CP_ACCESS_TRAP_EL3;
935 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
938 /* Check if CPTR accesses are set to trap to EL3 */
939 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
940 return CP_ACCESS_TRAP_EL3;
946 static const ARMCPRegInfo v6_cp_reginfo[] = {
947 /* prefetch by MVA in v6, NOP in v7 */
948 { .name = "MVA_prefetch",
949 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
950 .access = PL1_W, .type = ARM_CP_NOP },
951 /* We need to break the TB after ISB to execute self-modifying code
952 * correctly and also to take any pending interrupts immediately.
953 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
955 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
956 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
957 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
958 .access = PL0_W, .type = ARM_CP_NOP },
959 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
960 .access = PL0_W, .type = ARM_CP_NOP },
961 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
963 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
964 offsetof(CPUARMState, cp15.ifar_ns) },
966 /* Watchpoint Fault Address Register : should actually only be present
967 * for 1136, 1176, 11MPCore.
969 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
970 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
971 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
972 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
973 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
974 .resetfn = cpacr_reset, .writefn = cpacr_write },
978 /* Definitions for the PMU registers */
979 #define PMCRN_MASK 0xf800
980 #define PMCRN_SHIFT 11
988 #define PMXEVTYPER_P 0x80000000
989 #define PMXEVTYPER_U 0x40000000
990 #define PMXEVTYPER_NSK 0x20000000
991 #define PMXEVTYPER_NSU 0x10000000
992 #define PMXEVTYPER_NSH 0x08000000
993 #define PMXEVTYPER_M 0x04000000
994 #define PMXEVTYPER_MT 0x02000000
995 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
996 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
997 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
998 PMXEVTYPER_M | PMXEVTYPER_MT | \
1001 #define PMCCFILTR 0xf8000000
1002 #define PMCCFILTR_M PMXEVTYPER_M
1003 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1005 static inline uint32_t pmu_num_counters(CPUARMState *env)
1007 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1010 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1011 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1013 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1016 typedef struct pm_event {
1017 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1018 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1019 bool (*supported)(CPUARMState *);
1021 * Retrieve the current count of the underlying event. The programmed
1022 * counters hold a difference from the return value from this function
1024 uint64_t (*get_count)(CPUARMState *);
1026 * Return how many nanoseconds it will take (at a minimum) for count events
1027 * to occur. A negative value indicates the counter will never overflow, or
1028 * that the counter has otherwise arranged for the overflow bit to be set
1029 * and the PMU interrupt to be raised on overflow.
1031 int64_t (*ns_per_count)(uint64_t);
1034 static bool event_always_supported(CPUARMState *env)
1039 static uint64_t swinc_get_count(CPUARMState *env)
1042 * SW_INCR events are written directly to the pmevcntr's by writes to
1043 * PMSWINC, so there is no underlying count maintained by the PMU itself
1048 static int64_t swinc_ns_per(uint64_t ignored)
1054 * Return the underlying cycle count for the PMU cycle counters. If we're in
1055 * usermode, simply return 0.
1057 static uint64_t cycles_get_count(CPUARMState *env)
1059 #ifndef CONFIG_USER_ONLY
1060 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 return cpu_get_host_ticks();
1067 #ifndef CONFIG_USER_ONLY
1068 static int64_t cycles_ns_per(uint64_t cycles)
1070 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1073 static bool instructions_supported(CPUARMState *env)
1075 return use_icount == 1 /* Precise instruction counting */;
1078 static uint64_t instructions_get_count(CPUARMState *env)
1080 return (uint64_t)cpu_get_icount_raw();
1083 static int64_t instructions_ns_per(uint64_t icount)
1085 return cpu_icount_to_ns((int64_t)icount);
1089 static const pm_event pm_events[] = {
1090 { .number = 0x000, /* SW_INCR */
1091 .supported = event_always_supported,
1092 .get_count = swinc_get_count,
1093 .ns_per_count = swinc_ns_per,
1095 #ifndef CONFIG_USER_ONLY
1096 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1097 .supported = instructions_supported,
1098 .get_count = instructions_get_count,
1099 .ns_per_count = instructions_ns_per,
1101 { .number = 0x011, /* CPU_CYCLES, Cycle */
1102 .supported = event_always_supported,
1103 .get_count = cycles_get_count,
1104 .ns_per_count = cycles_ns_per,
1110 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1111 * events (i.e. the statistical profiling extension), this implementation
1112 * should first be updated to something sparse instead of the current
1113 * supported_event_map[] array.
1115 #define MAX_EVENT_ID 0x11
1116 #define UNSUPPORTED_EVENT UINT16_MAX
1117 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1120 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1121 * of ARM event numbers to indices in our pm_events array.
1123 * Note: Events in the 0x40XX range are not currently supported.
1125 void pmu_init(ARMCPU *cpu)
1130 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1133 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1134 supported_event_map[i] = UNSUPPORTED_EVENT;
1139 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1140 const pm_event *cnt = &pm_events[i];
1141 assert(cnt->number <= MAX_EVENT_ID);
1142 /* We do not currently support events in the 0x40xx range */
1143 assert(cnt->number <= 0x3f);
1145 if (cnt->supported(&cpu->env)) {
1146 supported_event_map[cnt->number] = i;
1147 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1148 if (cnt->number & 0x20) {
1149 cpu->pmceid1 |= event_mask;
1151 cpu->pmceid0 |= event_mask;
1158 * Check at runtime whether a PMU event is supported for the current machine
1160 static bool event_supported(uint16_t number)
1162 if (number > MAX_EVENT_ID) {
1165 return supported_event_map[number] != UNSUPPORTED_EVENT;
1168 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1171 /* Performance monitor registers user accessibility is controlled
1172 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1173 * trapping to EL2 or EL3 for other accesses.
1175 int el = arm_current_el(env);
1177 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1178 return CP_ACCESS_TRAP;
1180 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1181 && !arm_is_secure_below_el3(env)) {
1182 return CP_ACCESS_TRAP_EL2;
1184 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1185 return CP_ACCESS_TRAP_EL3;
1188 return CP_ACCESS_OK;
1191 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1192 const ARMCPRegInfo *ri,
1195 /* ER: event counter read trap control */
1196 if (arm_feature(env, ARM_FEATURE_V8)
1197 && arm_current_el(env) == 0
1198 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1200 return CP_ACCESS_OK;
1203 return pmreg_access(env, ri, isread);
1206 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1207 const ARMCPRegInfo *ri,
1210 /* SW: software increment write trap control */
1211 if (arm_feature(env, ARM_FEATURE_V8)
1212 && arm_current_el(env) == 0
1213 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1215 return CP_ACCESS_OK;
1218 return pmreg_access(env, ri, isread);
1221 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1222 const ARMCPRegInfo *ri,
1225 /* ER: event counter read trap control */
1226 if (arm_feature(env, ARM_FEATURE_V8)
1227 && arm_current_el(env) == 0
1228 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1229 return CP_ACCESS_OK;
1232 return pmreg_access(env, ri, isread);
1235 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1236 const ARMCPRegInfo *ri,
1239 /* CR: cycle counter read trap control */
1240 if (arm_feature(env, ARM_FEATURE_V8)
1241 && arm_current_el(env) == 0
1242 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1244 return CP_ACCESS_OK;
1247 return pmreg_access(env, ri, isread);
1250 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1251 * the current EL, security state, and register configuration.
1253 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1256 bool e, p, u, nsk, nsu, nsh, m;
1257 bool enabled, prohibited, filtered;
1258 bool secure = arm_is_secure(env);
1259 int el = arm_current_el(env);
1260 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1262 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1263 (counter < hpmn || counter == 31)) {
1264 e = env->cp15.c9_pmcr & PMCRE;
1266 e = env->cp15.mdcr_el2 & MDCR_HPME;
1268 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1271 if (el == 2 && (counter < hpmn || counter == 31)) {
1272 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1277 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1278 (env->cp15.mdcr_el3 & MDCR_SPME);
1281 if (prohibited && counter == 31) {
1282 prohibited = env->cp15.c9_pmcr & PMCRDP;
1285 if (counter == 31) {
1286 filter = env->cp15.pmccfiltr_el0;
1288 filter = env->cp15.c14_pmevtyper[counter];
1291 p = filter & PMXEVTYPER_P;
1292 u = filter & PMXEVTYPER_U;
1293 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1294 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1295 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1296 m = arm_el_is_aa64(env, 1) &&
1297 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1300 filtered = secure ? u : u != nsu;
1301 } else if (el == 1) {
1302 filtered = secure ? p : p != nsk;
1303 } else if (el == 2) {
1309 if (counter != 31) {
1311 * If not checking PMCCNTR, ensure the counter is setup to an event we
1314 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1315 if (!event_supported(event)) {
1320 return enabled && !prohibited && !filtered;
1323 static void pmu_update_irq(CPUARMState *env)
1325 ARMCPU *cpu = arm_env_get_cpu(env);
1326 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1327 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1331 * Ensure c15_ccnt is the guest-visible count so that operations such as
1332 * enabling/disabling the counter or filtering, modifying the count itself,
1333 * etc. can be done logically. This is essentially a no-op if the counter is
1334 * not enabled at the time of the call.
1336 void pmccntr_op_start(CPUARMState *env)
1338 uint64_t cycles = cycles_get_count(env);
1340 if (pmu_counter_enabled(env, 31)) {
1341 uint64_t eff_cycles = cycles;
1342 if (env->cp15.c9_pmcr & PMCRD) {
1343 /* Increment once every 64 processor clock cycles */
1347 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1349 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1350 1ull << 63 : 1ull << 31;
1351 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1352 env->cp15.c9_pmovsr |= (1 << 31);
1353 pmu_update_irq(env);
1356 env->cp15.c15_ccnt = new_pmccntr;
1358 env->cp15.c15_ccnt_delta = cycles;
1362 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1363 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1366 void pmccntr_op_finish(CPUARMState *env)
1368 if (pmu_counter_enabled(env, 31)) {
1369 #ifndef CONFIG_USER_ONLY
1370 /* Calculate when the counter will next overflow */
1371 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1372 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1373 remaining_cycles = (uint32_t)remaining_cycles;
1375 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1377 if (overflow_in > 0) {
1378 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1380 ARMCPU *cpu = arm_env_get_cpu(env);
1381 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1385 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1386 if (env->cp15.c9_pmcr & PMCRD) {
1387 /* Increment once every 64 processor clock cycles */
1390 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1394 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1397 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1399 if (event_supported(event)) {
1400 uint16_t event_idx = supported_event_map[event];
1401 count = pm_events[event_idx].get_count(env);
1404 if (pmu_counter_enabled(env, counter)) {
1405 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1407 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1408 env->cp15.c9_pmovsr |= (1 << counter);
1409 pmu_update_irq(env);
1411 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1413 env->cp15.c14_pmevcntr_delta[counter] = count;
1416 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1418 if (pmu_counter_enabled(env, counter)) {
1419 #ifndef CONFIG_USER_ONLY
1420 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1421 uint16_t event_idx = supported_event_map[event];
1422 uint64_t delta = UINT32_MAX -
1423 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1424 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1426 if (overflow_in > 0) {
1427 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1429 ARMCPU *cpu = arm_env_get_cpu(env);
1430 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 /* only the DP, X, D and E bits are writable */
1499 env->cp15.c9_pmcr &= ~0x39;
1500 env->cp15.c9_pmcr |= (value & 0x39);
1505 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509 for (i = 0; i < pmu_num_counters(env); i++) {
1510 /* Increment a counter's count iff: */
1511 if ((value & (1 << i)) && /* counter's bit is set */
1512 /* counter is enabled and not filtered */
1513 pmu_counter_enabled(env, i) &&
1514 /* counter is SW_INCR */
1515 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1516 pmevcntr_op_start(env, i);
1519 * Detect if this write causes an overflow since we can't predict
1520 * PMSWINC overflows like we can for other events
1522 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1524 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1525 env->cp15.c9_pmovsr |= (1 << i);
1526 pmu_update_irq(env);
1529 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1531 pmevcntr_op_finish(env, i);
1536 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1539 pmccntr_op_start(env);
1540 ret = env->cp15.c15_ccnt;
1541 pmccntr_op_finish(env);
1545 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1548 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1549 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1550 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1553 env->cp15.c9_pmselr = value & 0x1f;
1556 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1559 pmccntr_op_start(env);
1560 env->cp15.c15_ccnt = value;
1561 pmccntr_op_finish(env);
1564 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1567 uint64_t cur_val = pmccntr_read(env, NULL);
1569 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1572 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575 pmccntr_op_start(env);
1576 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1577 pmccntr_op_finish(env);
1580 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1583 pmccntr_op_start(env);
1584 /* M is not accessible from AArch32 */
1585 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1586 (value & PMCCFILTR);
1587 pmccntr_op_finish(env);
1590 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1592 /* M is not visible in AArch32 */
1593 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1596 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1599 value &= pmu_counter_mask(env);
1600 env->cp15.c9_pmcnten |= value;
1603 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1606 value &= pmu_counter_mask(env);
1607 env->cp15.c9_pmcnten &= ~value;
1610 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1613 value &= pmu_counter_mask(env);
1614 env->cp15.c9_pmovsr &= ~value;
1615 pmu_update_irq(env);
1618 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmovsr |= value;
1623 pmu_update_irq(env);
1626 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value, const uint8_t counter)
1629 if (counter == 31) {
1630 pmccfiltr_write(env, ri, value);
1631 } else if (counter < pmu_num_counters(env)) {
1632 pmevcntr_op_start(env, counter);
1635 * If this counter's event type is changing, store the current
1636 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1637 * pmevcntr_op_finish has the correct baseline when it converts back to
1640 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1641 PMXEVTYPER_EVTCOUNT;
1642 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1643 if (old_event != new_event) {
1645 if (event_supported(new_event)) {
1646 uint16_t event_idx = supported_event_map[new_event];
1647 count = pm_events[event_idx].get_count(env);
1649 env->cp15.c14_pmevcntr_delta[counter] = count;
1652 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1653 pmevcntr_op_finish(env, counter);
1655 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1656 * PMSELR value is equal to or greater than the number of implemented
1657 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1661 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1662 const uint8_t counter)
1664 if (counter == 31) {
1665 return env->cp15.pmccfiltr_el0;
1666 } else if (counter < pmu_num_counters(env)) {
1667 return env->cp15.c14_pmevtyper[counter];
1670 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1671 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1677 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1681 pmevtyper_write(env, ri, value, counter);
1684 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1688 env->cp15.c14_pmevtyper[counter] = value;
1691 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1692 * pmu_op_finish calls when loading saved state for a migration. Because
1693 * we're potentially updating the type of event here, the value written to
1694 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1695 * different counter type. Therefore, we need to set this value to the
1696 * current count for the counter type we're writing so that pmu_op_finish
1697 * has the correct count for its calculation.
1699 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1700 if (event_supported(event)) {
1701 uint16_t event_idx = supported_event_map[event];
1702 env->cp15.c14_pmevcntr_delta[counter] =
1703 pm_events[event_idx].get_count(env);
1707 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 return pmevtyper_read(env, ri, counter);
1713 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1716 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1719 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1724 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value, uint8_t counter)
1727 if (counter < pmu_num_counters(env)) {
1728 pmevcntr_op_start(env, counter);
1729 env->cp15.c14_pmevcntr[counter] = value;
1730 pmevcntr_op_finish(env, counter);
1733 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1734 * are CONSTRAINED UNPREDICTABLE.
1738 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1741 if (counter < pmu_num_counters(env)) {
1743 pmevcntr_op_start(env, counter);
1744 ret = env->cp15.c14_pmevcntr[counter];
1745 pmevcntr_op_finish(env, counter);
1748 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1749 * are CONSTRAINED UNPREDICTABLE. */
1754 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 pmevcntr_write(env, ri, value, counter);
1761 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 return pmevcntr_read(env, ri, counter);
1767 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1771 assert(counter < pmu_num_counters(env));
1772 env->cp15.c14_pmevcntr[counter] = value;
1773 pmevcntr_write(env, ri, value, counter);
1776 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1778 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1779 assert(counter < pmu_num_counters(env));
1780 return env->cp15.c14_pmevcntr[counter];
1783 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1789 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1791 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1794 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1797 if (arm_feature(env, ARM_FEATURE_V8)) {
1798 env->cp15.c9_pmuserenr = value & 0xf;
1800 env->cp15.c9_pmuserenr = value & 1;
1804 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 /* We have no event counters so only the C bit can be changed */
1808 value &= pmu_counter_mask(env);
1809 env->cp15.c9_pminten |= value;
1810 pmu_update_irq(env);
1813 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 value &= pmu_counter_mask(env);
1817 env->cp15.c9_pminten &= ~value;
1818 pmu_update_irq(env);
1821 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1824 /* Note that even though the AArch64 view of this register has bits
1825 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1826 * architectural requirements for bits which are RES0 only in some
1827 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1828 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1830 raw_write(env, ri, value & ~0x1FULL);
1833 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1835 /* Begin with base v8.0 state. */
1836 uint32_t valid_mask = 0x3fff;
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1841 valid_mask &= ~SCR_NET;
1843 valid_mask &= ~(SCR_RW | SCR_ST);
1846 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1847 valid_mask &= ~SCR_HCE;
1849 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1850 * supported if EL2 exists. The bit is UNK/SBZP when
1851 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1852 * when EL2 is unavailable.
1853 * On ARMv8, this bit is always available.
1855 if (arm_feature(env, ARM_FEATURE_V7) &&
1856 !arm_feature(env, ARM_FEATURE_V8)) {
1857 valid_mask &= ~SCR_SMD;
1860 if (cpu_isar_feature(aa64_lor, cpu)) {
1861 valid_mask |= SCR_TLOR;
1863 if (cpu_isar_feature(aa64_pauth, cpu)) {
1864 valid_mask |= SCR_API | SCR_APK;
1867 /* Clear all-context RES0 bits. */
1868 value &= valid_mask;
1869 raw_write(env, ri, value);
1872 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1874 ARMCPU *cpu = arm_env_get_cpu(env);
1876 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1879 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1880 ri->secure & ARM_CP_SECSTATE_S);
1882 return cpu->ccsidr[index];
1885 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888 raw_write(env, ri, value & 0xf);
1891 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1893 CPUState *cs = ENV_GET_CPU(env);
1894 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1897 if (hcr_el2 & HCR_IMO) {
1898 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1902 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1907 if (hcr_el2 & HCR_FMO) {
1908 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1912 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1917 /* External aborts are not possible in QEMU so A bit is always clear */
1921 static const ARMCPRegInfo v7_cp_reginfo[] = {
1922 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1923 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1924 .access = PL1_W, .type = ARM_CP_NOP },
1925 /* Performance monitors are implementation defined in v7,
1926 * but with an ARM recommended set of registers, which we
1929 * Performance registers fall into three categories:
1930 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1931 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1932 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1933 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1934 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1936 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1937 .access = PL0_RW, .type = ARM_CP_ALIAS,
1938 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1939 .writefn = pmcntenset_write,
1940 .accessfn = pmreg_access,
1941 .raw_writefn = raw_write },
1942 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1944 .access = PL0_RW, .accessfn = pmreg_access,
1945 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1946 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1947 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1949 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1950 .accessfn = pmreg_access,
1951 .writefn = pmcntenclr_write,
1952 .type = ARM_CP_ALIAS },
1953 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1955 .access = PL0_RW, .accessfn = pmreg_access,
1956 .type = ARM_CP_ALIAS,
1957 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1958 .writefn = pmcntenclr_write },
1959 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1960 .access = PL0_RW, .type = ARM_CP_IO,
1961 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1962 .accessfn = pmreg_access,
1963 .writefn = pmovsr_write,
1964 .raw_writefn = raw_write },
1965 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1967 .access = PL0_RW, .accessfn = pmreg_access,
1968 .type = ARM_CP_ALIAS | ARM_CP_IO,
1969 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1970 .writefn = pmovsr_write,
1971 .raw_writefn = raw_write },
1972 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1973 .access = PL0_W, .accessfn = pmreg_access_swinc,
1974 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1975 .writefn = pmswinc_write },
1976 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1977 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1978 .access = PL0_W, .accessfn = pmreg_access_swinc,
1979 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1980 .writefn = pmswinc_write },
1981 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1982 .access = PL0_RW, .type = ARM_CP_ALIAS,
1983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1984 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1985 .raw_writefn = raw_write},
1986 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1988 .access = PL0_RW, .accessfn = pmreg_access_selr,
1989 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1990 .writefn = pmselr_write, .raw_writefn = raw_write, },
1991 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1992 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1993 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1994 .accessfn = pmreg_access_ccntr },
1995 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1997 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1999 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2000 .readfn = pmccntr_read, .writefn = pmccntr_write,
2001 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2002 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2003 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2004 .access = PL0_RW, .accessfn = pmreg_access,
2005 .type = ARM_CP_ALIAS | ARM_CP_IO,
2007 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2009 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2010 .access = PL0_RW, .accessfn = pmreg_access,
2012 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2014 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2015 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = pmreg_access,
2017 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2018 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2019 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2020 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .accessfn = pmreg_access,
2022 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2023 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2024 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2025 .accessfn = pmreg_access_xevcntr,
2026 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2027 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2029 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2030 .accessfn = pmreg_access_xevcntr,
2031 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2032 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2033 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2034 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2036 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2037 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2038 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2039 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2040 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2042 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2043 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2044 .access = PL1_RW, .accessfn = access_tpm,
2045 .type = ARM_CP_ALIAS | ARM_CP_IO,
2046 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2048 .writefn = pmintenset_write, .raw_writefn = raw_write },
2049 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2050 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2051 .access = PL1_RW, .accessfn = access_tpm,
2053 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2054 .writefn = pmintenset_write, .raw_writefn = raw_write,
2055 .resetvalue = 0x0 },
2056 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2057 .access = PL1_RW, .accessfn = access_tpm,
2058 .type = ARM_CP_ALIAS | ARM_CP_IO,
2059 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2060 .writefn = pmintenclr_write, },
2061 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2063 .access = PL1_RW, .accessfn = access_tpm,
2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2066 .writefn = pmintenclr_write },
2067 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2068 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2069 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2070 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2071 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2072 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2074 offsetof(CPUARMState, cp15.csselr_ns) } },
2075 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2076 * just RAZ for all cores:
2078 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2079 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2080 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2081 /* Auxiliary fault status registers: these also are IMPDEF, and we
2082 * choose to RAZ/WI for all cores.
2084 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2086 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2087 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2088 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2089 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2090 /* MAIR can just read-as-written because we don't implement caches
2091 * and so don't need to care about memory attributes.
2093 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2095 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2097 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2098 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2099 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2101 /* For non-long-descriptor page tables these are PRRR and NMRR;
2102 * regardless they still act as reads-as-written for QEMU.
2104 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2105 * allows them to assign the correct fieldoffset based on the endianness
2106 * handled in the field definitions.
2108 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2109 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2111 offsetof(CPUARMState, cp15.mair0_ns) },
2112 .resetfn = arm_cp_reset_ignore },
2113 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2114 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2115 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2116 offsetof(CPUARMState, cp15.mair1_ns) },
2117 .resetfn = arm_cp_reset_ignore },
2118 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2120 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2121 /* 32 bit ITLB invalidates */
2122 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2124 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2125 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2126 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2128 /* 32 bit DTLB invalidates */
2129 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2131 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2133 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2135 /* 32 bit TLB invalidates */
2136 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2138 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2139 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2140 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2141 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2142 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2147 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2148 /* 32 bit TLB invalidates, Inner Shareable */
2149 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2151 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2153 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2154 .type = ARM_CP_NO_RAW, .access = PL1_W,
2155 .writefn = tlbiasid_is_write },
2156 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2157 .type = ARM_CP_NO_RAW, .access = PL1_W,
2158 .writefn = tlbimvaa_is_write },
2162 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2163 /* PMOVSSET is not implemented in v7 before v7ve */
2164 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2165 .access = PL0_RW, .accessfn = pmreg_access,
2166 .type = ARM_CP_ALIAS | ARM_CP_IO,
2167 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2168 .writefn = pmovsset_write,
2169 .raw_writefn = raw_write },
2170 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2171 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2172 .access = PL0_RW, .accessfn = pmreg_access,
2173 .type = ARM_CP_ALIAS | ARM_CP_IO,
2174 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2175 .writefn = pmovsset_write,
2176 .raw_writefn = raw_write },
2180 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2187 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2190 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2191 return CP_ACCESS_TRAP;
2193 return CP_ACCESS_OK;
2196 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2197 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2198 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2200 .writefn = teecr_write },
2201 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2202 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2203 .accessfn = teehbr_access, .resetvalue = 0 },
2207 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2208 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2209 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2211 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2212 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2215 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2216 .resetfn = arm_cp_reset_ignore },
2217 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2219 .access = PL0_R|PL1_W,
2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2222 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2223 .access = PL0_R|PL1_W,
2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2225 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2226 .resetfn = arm_cp_reset_ignore },
2227 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2228 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2231 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2234 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2239 #ifndef CONFIG_USER_ONLY
2241 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2244 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2245 * Writable only at the highest implemented exception level.
2247 int el = arm_current_el(env);
2251 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2252 return CP_ACCESS_TRAP;
2256 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2257 arm_is_secure_below_el3(env)) {
2258 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2259 return CP_ACCESS_TRAP_UNCATEGORIZED;
2267 if (!isread && el < arm_highest_el(env)) {
2268 return CP_ACCESS_TRAP_UNCATEGORIZED;
2271 return CP_ACCESS_OK;
2274 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2277 unsigned int cur_el = arm_current_el(env);
2278 bool secure = arm_is_secure(env);
2280 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2282 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2283 return CP_ACCESS_TRAP;
2286 if (arm_feature(env, ARM_FEATURE_EL2) &&
2287 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2288 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2289 return CP_ACCESS_TRAP_EL2;
2291 return CP_ACCESS_OK;
2294 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2297 unsigned int cur_el = arm_current_el(env);
2298 bool secure = arm_is_secure(env);
2300 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2301 * EL0[PV]TEN is zero.
2304 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2305 return CP_ACCESS_TRAP;
2308 if (arm_feature(env, ARM_FEATURE_EL2) &&
2309 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2310 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2311 return CP_ACCESS_TRAP_EL2;
2313 return CP_ACCESS_OK;
2316 static CPAccessResult gt_pct_access(CPUARMState *env,
2317 const ARMCPRegInfo *ri,
2320 return gt_counter_access(env, GTIMER_PHYS, isread);
2323 static CPAccessResult gt_vct_access(CPUARMState *env,
2324 const ARMCPRegInfo *ri,
2327 return gt_counter_access(env, GTIMER_VIRT, isread);
2330 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2333 return gt_timer_access(env, GTIMER_PHYS, isread);
2336 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2339 return gt_timer_access(env, GTIMER_VIRT, isread);
2342 static CPAccessResult gt_stimer_access(CPUARMState *env,
2343 const ARMCPRegInfo *ri,
2346 /* The AArch64 register view of the secure physical timer is
2347 * always accessible from EL3, and configurably accessible from
2350 switch (arm_current_el(env)) {
2352 if (!arm_is_secure(env)) {
2353 return CP_ACCESS_TRAP;
2355 if (!(env->cp15.scr_el3 & SCR_ST)) {
2356 return CP_ACCESS_TRAP_EL3;
2358 return CP_ACCESS_OK;
2361 return CP_ACCESS_TRAP;
2363 return CP_ACCESS_OK;
2365 g_assert_not_reached();
2369 static uint64_t gt_get_countervalue(CPUARMState *env)
2371 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2374 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2376 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2379 /* Timer enabled: calculate and set current ISTATUS, irq, and
2380 * reset timer to when ISTATUS next has to change
2382 uint64_t offset = timeridx == GTIMER_VIRT ?
2383 cpu->env.cp15.cntvoff_el2 : 0;
2384 uint64_t count = gt_get_countervalue(&cpu->env);
2385 /* Note that this must be unsigned 64 bit arithmetic: */
2386 int istatus = count - offset >= gt->cval;
2390 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2392 irqstate = (istatus && !(gt->ctl & 2));
2393 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2396 /* Next transition is when count rolls back over to zero */
2397 nexttick = UINT64_MAX;
2399 /* Next transition is when we hit cval */
2400 nexttick = gt->cval + offset;
2402 /* Note that the desired next expiry time might be beyond the
2403 * signed-64-bit range of a QEMUTimer -- in this case we just
2404 * set the timer for as far in the future as possible. When the
2405 * timer expires we will reset the timer for any remaining period.
2407 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2408 nexttick = INT64_MAX / GTIMER_SCALE;
2410 timer_mod(cpu->gt_timer[timeridx], nexttick);
2411 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2413 /* Timer disabled: ISTATUS and timer output always clear */
2415 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2416 timer_del(cpu->gt_timer[timeridx]);
2417 trace_arm_gt_recalc_disabled(timeridx);
2421 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2424 ARMCPU *cpu = arm_env_get_cpu(env);
2426 timer_del(cpu->gt_timer[timeridx]);
2429 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2431 return gt_get_countervalue(env);
2434 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2439 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 trace_arm_gt_cval_write(timeridx, value);
2444 env->cp15.c14_timer[timeridx].cval = value;
2445 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2448 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2451 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2453 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2454 (gt_get_countervalue(env) - offset));
2457 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2461 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2463 trace_arm_gt_tval_write(timeridx, value);
2464 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2465 sextract64(value, 0, 32);
2466 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2469 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2473 ARMCPU *cpu = arm_env_get_cpu(env);
2474 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2476 trace_arm_gt_ctl_write(timeridx, value);
2477 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2478 if ((oldval ^ value) & 1) {
2479 /* Enable toggled */
2480 gt_recalc_timer(cpu, timeridx);
2481 } else if ((oldval ^ value) & 2) {
2482 /* IMASK toggled: don't need to recalculate,
2483 * just set the interrupt line based on ISTATUS
2485 int irqstate = (oldval & 4) && !(value & 2);
2487 trace_arm_gt_imask_toggle(timeridx, irqstate);
2488 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2492 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2494 gt_timer_reset(env, ri, GTIMER_PHYS);
2497 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2500 gt_cval_write(env, ri, GTIMER_PHYS, value);
2503 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2505 return gt_tval_read(env, ri, GTIMER_PHYS);
2508 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 gt_tval_write(env, ri, GTIMER_PHYS, value);
2514 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2517 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2520 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2522 gt_timer_reset(env, ri, GTIMER_VIRT);
2525 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2528 gt_cval_write(env, ri, GTIMER_VIRT, value);
2531 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2533 return gt_tval_read(env, ri, GTIMER_VIRT);
2536 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2539 gt_tval_write(env, ri, GTIMER_VIRT, value);
2542 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2545 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2548 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2551 ARMCPU *cpu = arm_env_get_cpu(env);
2553 trace_arm_gt_cntvoff_write(value);
2554 raw_write(env, ri, value);
2555 gt_recalc_timer(cpu, GTIMER_VIRT);
2558 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2560 gt_timer_reset(env, ri, GTIMER_HYP);
2563 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 gt_cval_write(env, ri, GTIMER_HYP, value);
2569 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2571 return gt_tval_read(env, ri, GTIMER_HYP);
2574 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2577 gt_tval_write(env, ri, GTIMER_HYP, value);
2580 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2583 gt_ctl_write(env, ri, GTIMER_HYP, value);
2586 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2588 gt_timer_reset(env, ri, GTIMER_SEC);
2591 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594 gt_cval_write(env, ri, GTIMER_SEC, value);
2597 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2599 return gt_tval_read(env, ri, GTIMER_SEC);
2602 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605 gt_tval_write(env, ri, GTIMER_SEC, value);
2608 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2611 gt_ctl_write(env, ri, GTIMER_SEC, value);
2614 void arm_gt_ptimer_cb(void *opaque)
2616 ARMCPU *cpu = opaque;
2618 gt_recalc_timer(cpu, GTIMER_PHYS);
2621 void arm_gt_vtimer_cb(void *opaque)
2623 ARMCPU *cpu = opaque;
2625 gt_recalc_timer(cpu, GTIMER_VIRT);
2628 void arm_gt_htimer_cb(void *opaque)
2630 ARMCPU *cpu = opaque;
2632 gt_recalc_timer(cpu, GTIMER_HYP);
2635 void arm_gt_stimer_cb(void *opaque)
2637 ARMCPU *cpu = opaque;
2639 gt_recalc_timer(cpu, GTIMER_SEC);
2642 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2643 /* Note that CNTFRQ is purely reads-as-written for the benefit
2644 * of software; writing it doesn't actually change the timer frequency.
2645 * Our reset value matches the fixed frequency we implement the timer at.
2647 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2648 .type = ARM_CP_ALIAS,
2649 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2650 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2652 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2653 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2654 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2655 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2656 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2658 /* overall control: mostly access permissions */
2659 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2660 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2662 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2665 /* per-timer control */
2666 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2667 .secure = ARM_CP_SECSTATE_NS,
2668 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2669 .accessfn = gt_ptimer_access,
2670 .fieldoffset = offsetoflow32(CPUARMState,
2671 cp15.c14_timer[GTIMER_PHYS].ctl),
2672 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2674 { .name = "CNTP_CTL_S",
2675 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2676 .secure = ARM_CP_SECSTATE_S,
2677 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2678 .accessfn = gt_ptimer_access,
2679 .fieldoffset = offsetoflow32(CPUARMState,
2680 cp15.c14_timer[GTIMER_SEC].ctl),
2681 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2683 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2685 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2686 .accessfn = gt_ptimer_access,
2687 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2689 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2691 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2692 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2693 .accessfn = gt_vtimer_access,
2694 .fieldoffset = offsetoflow32(CPUARMState,
2695 cp15.c14_timer[GTIMER_VIRT].ctl),
2696 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2698 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2699 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2700 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2701 .accessfn = gt_vtimer_access,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2704 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2706 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2707 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2708 .secure = ARM_CP_SECSTATE_NS,
2709 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2710 .accessfn = gt_ptimer_access,
2711 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2713 { .name = "CNTP_TVAL_S",
2714 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2715 .secure = ARM_CP_SECSTATE_S,
2716 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2717 .accessfn = gt_ptimer_access,
2718 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2720 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2721 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2722 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2723 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2724 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2726 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2727 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2728 .accessfn = gt_vtimer_access,
2729 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2731 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2732 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2733 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2734 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2735 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2737 /* The counter itself */
2738 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2739 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2740 .accessfn = gt_pct_access,
2741 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2743 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2745 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2746 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2748 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2749 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2750 .accessfn = gt_vct_access,
2751 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2753 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2754 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2755 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2756 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2758 /* Comparison value, indicating when the timer goes off */
2759 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2760 .secure = ARM_CP_SECSTATE_NS,
2761 .access = PL1_RW | PL0_R,
2762 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2763 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2764 .accessfn = gt_ptimer_access,
2765 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2767 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2768 .secure = ARM_CP_SECSTATE_S,
2769 .access = PL1_RW | PL0_R,
2770 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2771 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2772 .accessfn = gt_ptimer_access,
2773 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2775 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2776 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2777 .access = PL1_RW | PL0_R,
2779 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2780 .resetvalue = 0, .accessfn = gt_ptimer_access,
2781 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2783 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2784 .access = PL1_RW | PL0_R,
2785 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2786 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2787 .accessfn = gt_vtimer_access,
2788 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2790 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2791 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2792 .access = PL1_RW | PL0_R,
2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2795 .resetvalue = 0, .accessfn = gt_vtimer_access,
2796 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2798 /* Secure timer -- this is actually restricted to only EL3
2799 * and configurably Secure-EL1 via the accessfn.
2801 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2802 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2803 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2804 .accessfn = gt_stimer_access,
2805 .readfn = gt_sec_tval_read,
2806 .writefn = gt_sec_tval_write,
2807 .resetfn = gt_sec_timer_reset,
2809 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2810 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2811 .type = ARM_CP_IO, .access = PL1_RW,
2812 .accessfn = gt_stimer_access,
2813 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2815 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2817 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2818 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2819 .type = ARM_CP_IO, .access = PL1_RW,
2820 .accessfn = gt_stimer_access,
2821 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2822 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2829 /* In user-mode most of the generic timer registers are inaccessible
2830 * however modern kernels (4.12+) allow access to cntvct_el0
2833 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2835 /* Currently we have no support for QEMUTimer in linux-user so we
2836 * can't call gt_get_countervalue(env), instead we directly
2837 * call the lower level functions.
2839 return cpu_get_clock() / GTIMER_SCALE;
2842 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2843 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2844 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2845 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2846 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2847 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2849 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2850 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2851 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2852 .readfn = gt_virt_cnt_read,
2859 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2861 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2862 raw_write(env, ri, value);
2863 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2864 raw_write(env, ri, value & 0xfffff6ff);
2866 raw_write(env, ri, value & 0xfffff1ff);
2870 #ifndef CONFIG_USER_ONLY
2871 /* get_phys_addr() isn't present for user-mode-only targets */
2873 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2877 /* The ATS12NSO* operations must trap to EL3 if executed in
2878 * Secure EL1 (which can only happen if EL3 is AArch64).
2879 * They are simply UNDEF if executed from NS EL1.
2880 * They function normally from EL2 or EL3.
2882 if (arm_current_el(env) == 1) {
2883 if (arm_is_secure_below_el3(env)) {
2884 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2886 return CP_ACCESS_TRAP_UNCATEGORIZED;
2889 return CP_ACCESS_OK;
2892 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2893 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2896 target_ulong page_size;
2900 bool format64 = false;
2901 MemTxAttrs attrs = {};
2902 ARMMMUFaultInfo fi = {};
2903 ARMCacheAttrs cacheattrs = {};
2905 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2906 &prot, &page_size, &fi, &cacheattrs);
2910 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2913 * * TTBCR.EAE determines whether the result is returned using the
2914 * 32-bit or the 64-bit PAR format
2915 * * Instructions executed in Hyp mode always use the 64bit format
2917 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2918 * * The Non-secure TTBCR.EAE bit is set to 1
2919 * * The implementation includes EL2, and the value of HCR.VM is 1
2921 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2923 * ATS1Hx always uses the 64bit format.
2925 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2927 if (arm_feature(env, ARM_FEATURE_EL2)) {
2928 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2929 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2931 format64 |= arm_current_el(env) == 2;
2937 /* Create a 64-bit PAR */
2938 par64 = (1 << 11); /* LPAE bit always set */
2940 par64 |= phys_addr & ~0xfffULL;
2941 if (!attrs.secure) {
2942 par64 |= (1 << 9); /* NS */
2944 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2945 par64 |= cacheattrs.shareability << 7; /* SH */
2947 uint32_t fsr = arm_fi_to_lfsc(&fi);
2950 par64 |= (fsr & 0x3f) << 1; /* FS */
2952 par64 |= (1 << 9); /* S */
2955 par64 |= (1 << 8); /* PTW */
2959 /* fsr is a DFSR/IFSR value for the short descriptor
2960 * translation table format (with WnR always clear).
2961 * Convert it to a 32-bit PAR.
2964 /* We do not set any attribute bits in the PAR */
2965 if (page_size == (1 << 24)
2966 && arm_feature(env, ARM_FEATURE_V7)) {
2967 par64 = (phys_addr & 0xff000000) | (1 << 1);
2969 par64 = phys_addr & 0xfffff000;
2971 if (!attrs.secure) {
2972 par64 |= (1 << 9); /* NS */
2975 uint32_t fsr = arm_fi_to_sfsc(&fi);
2977 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2978 ((fsr & 0xf) << 1) | 1;
2984 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2986 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2989 int el = arm_current_el(env);
2990 bool secure = arm_is_secure_below_el3(env);
2992 switch (ri->opc2 & 6) {
2994 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2997 mmu_idx = ARMMMUIdx_S1E3;
3000 mmu_idx = ARMMMUIdx_S1NSE1;
3003 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3006 g_assert_not_reached();
3010 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3013 mmu_idx = ARMMMUIdx_S1SE0;
3016 mmu_idx = ARMMMUIdx_S1NSE0;
3019 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3022 g_assert_not_reached();
3026 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3027 mmu_idx = ARMMMUIdx_S12NSE1;
3030 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3031 mmu_idx = ARMMMUIdx_S12NSE0;
3034 g_assert_not_reached();
3037 par64 = do_ats_write(env, value, access_type, mmu_idx);
3039 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3042 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3045 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3048 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3050 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3053 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3056 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3057 return CP_ACCESS_TRAP;
3059 return CP_ACCESS_OK;
3062 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3065 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3067 int secure = arm_is_secure_below_el3(env);
3069 switch (ri->opc2 & 6) {
3072 case 0: /* AT S1E1R, AT S1E1W */
3073 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3075 case 4: /* AT S1E2R, AT S1E2W */
3076 mmu_idx = ARMMMUIdx_S1E2;
3078 case 6: /* AT S1E3R, AT S1E3W */
3079 mmu_idx = ARMMMUIdx_S1E3;
3082 g_assert_not_reached();
3085 case 2: /* AT S1E0R, AT S1E0W */
3086 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3088 case 4: /* AT S12E1R, AT S12E1W */
3089 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3091 case 6: /* AT S12E0R, AT S12E0W */
3092 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3095 g_assert_not_reached();
3098 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3102 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3103 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3104 .access = PL1_RW, .resetvalue = 0,
3105 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3106 offsetoflow32(CPUARMState, cp15.par_ns) },
3107 .writefn = par_write },
3108 #ifndef CONFIG_USER_ONLY
3109 /* This underdecoding is safe because the reginfo is NO_RAW. */
3110 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3111 .access = PL1_W, .accessfn = ats_access,
3112 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3117 /* Return basic MPU access permission bits. */
3118 static uint32_t simple_mpu_ap_bits(uint32_t val)
3125 for (i = 0; i < 16; i += 2) {
3126 ret |= (val >> i) & mask;
3132 /* Pad basic MPU access permission bits to extended format. */
3133 static uint32_t extended_mpu_ap_bits(uint32_t val)
3140 for (i = 0; i < 16; i += 2) {
3141 ret |= (val & mask) << i;
3147 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3150 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3153 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3155 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3158 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3161 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3164 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3166 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3169 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3171 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3177 u32p += env->pmsav7.rnr[M_REG_NS];
3181 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 ARMCPU *cpu = arm_env_get_cpu(env);
3185 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3191 u32p += env->pmsav7.rnr[M_REG_NS];
3192 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3196 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3199 ARMCPU *cpu = arm_env_get_cpu(env);
3200 uint32_t nrgs = cpu->pmsav7_dregion;
3202 if (value >= nrgs) {
3203 qemu_log_mask(LOG_GUEST_ERROR,
3204 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3205 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3209 raw_write(env, ri, value);
3212 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3213 /* Reset for all these registers is handled in arm_cpu_reset(),
3214 * because the PMSAv7 is also used by M-profile CPUs, which do
3215 * not register cpregs but still need the state to be reset.
3217 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3218 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3219 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3220 .readfn = pmsav7_read, .writefn = pmsav7_write,
3221 .resetfn = arm_cp_reset_ignore },
3222 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3223 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3224 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3225 .readfn = pmsav7_read, .writefn = pmsav7_write,
3226 .resetfn = arm_cp_reset_ignore },
3227 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3228 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3229 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3230 .readfn = pmsav7_read, .writefn = pmsav7_write,
3231 .resetfn = arm_cp_reset_ignore },
3232 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3234 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3235 .writefn = pmsav7_rgnr_write,
3236 .resetfn = arm_cp_reset_ignore },
3240 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3241 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3242 .access = PL1_RW, .type = ARM_CP_ALIAS,
3243 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3244 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3245 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3246 .access = PL1_RW, .type = ARM_CP_ALIAS,
3247 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3248 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3249 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3251 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3253 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3255 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3257 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3259 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3260 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3262 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3263 /* Protection region base and size registers */
3264 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3265 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3266 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3267 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3268 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3269 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3270 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3271 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3272 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3273 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3274 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3275 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3276 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3277 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3279 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3280 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3282 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3283 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3284 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3285 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3286 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3291 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3294 TCR *tcr = raw_ptr(env, ri);
3295 int maskshift = extract32(value, 0, 3);
3297 if (!arm_feature(env, ARM_FEATURE_V8)) {
3298 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3299 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3300 * using Long-desciptor translation table format */
3301 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3302 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3303 /* In an implementation that includes the Security Extensions
3304 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3305 * Short-descriptor translation table format.
3307 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3313 /* Update the masks corresponding to the TCR bank being written
3314 * Note that we always calculate mask and base_mask, but
3315 * they are only used for short-descriptor tables (ie if EAE is 0);
3316 * for long-descriptor tables the TCR fields are used differently
3317 * and the mask and base_mask values are meaningless.
3319 tcr->raw_tcr = value;
3320 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3321 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3324 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3327 ARMCPU *cpu = arm_env_get_cpu(env);
3328 TCR *tcr = raw_ptr(env, ri);
3330 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3331 /* With LPAE the TTBCR could result in a change of ASID
3332 * via the TTBCR.A1 bit, so do a TLB flush.
3334 tlb_flush(CPU(cpu));
3336 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3337 value = deposit64(tcr->raw_tcr, 0, 32, value);
3338 vmsa_ttbcr_raw_write(env, ri, value);
3341 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3343 TCR *tcr = raw_ptr(env, ri);
3345 /* Reset both the TCR as well as the masks corresponding to the bank of
3346 * the TCR being reset.
3350 tcr->base_mask = 0xffffc000u;
3353 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3356 ARMCPU *cpu = arm_env_get_cpu(env);
3357 TCR *tcr = raw_ptr(env, ri);
3359 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3360 tlb_flush(CPU(cpu));
3361 tcr->raw_tcr = value;
3364 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3367 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3368 if (cpreg_field_is_64bit(ri) &&
3369 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3370 ARMCPU *cpu = arm_env_get_cpu(env);
3371 tlb_flush(CPU(cpu));
3373 raw_write(env, ri, value);
3376 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3379 ARMCPU *cpu = arm_env_get_cpu(env);
3380 CPUState *cs = CPU(cpu);
3382 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3383 if (raw_read(env, ri) != value) {
3384 tlb_flush_by_mmuidx(cs,
3385 ARMMMUIdxBit_S12NSE1 |
3386 ARMMMUIdxBit_S12NSE0 |
3388 raw_write(env, ri, value);
3392 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3393 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3394 .access = PL1_RW, .type = ARM_CP_ALIAS,
3395 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3396 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3397 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3398 .access = PL1_RW, .resetvalue = 0,
3399 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3400 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3401 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3402 .access = PL1_RW, .resetvalue = 0,
3403 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3404 offsetof(CPUARMState, cp15.dfar_ns) } },
3405 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3406 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3412 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3413 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3414 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3416 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3417 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3418 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3419 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3420 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3421 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3422 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3423 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3424 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3425 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3426 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3427 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3429 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3430 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3431 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3432 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3433 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3434 .raw_writefn = vmsa_ttbcr_raw_write,
3435 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3436 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3440 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3441 * qemu tlbs nor adjusting cached masks.
3443 static const ARMCPRegInfo ttbcr2_reginfo = {
3444 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3445 .access = PL1_RW, .type = ARM_CP_ALIAS,
3446 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3447 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3450 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3453 env->cp15.c15_ticonfig = value & 0xe7;
3454 /* The OS_TYPE bit in this register changes the reported CPUID! */
3455 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3456 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3459 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3462 env->cp15.c15_threadid = value & 0xffff;
3465 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3468 /* Wait-for-interrupt (deprecated) */
3469 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3472 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3475 /* On OMAP there are registers indicating the max/min index of dcache lines
3476 * containing a dirty line; cache flush operations have to reset these.
3478 env->cp15.c15_i_max = 0x000;
3479 env->cp15.c15_i_min = 0xff0;
3482 static const ARMCPRegInfo omap_cp_reginfo[] = {
3483 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3484 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3485 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3487 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3488 .access = PL1_RW, .type = ARM_CP_NOP },
3489 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3491 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3492 .writefn = omap_ticonfig_write },
3493 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3495 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3496 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3497 .access = PL1_RW, .resetvalue = 0xff0,
3498 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3499 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3501 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3502 .writefn = omap_threadid_write },
3503 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3504 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3505 .type = ARM_CP_NO_RAW,
3506 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3507 /* TODO: Peripheral port remap register:
3508 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3509 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3512 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3513 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3514 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3515 .writefn = omap_cachemaint_write },
3516 { .name = "C9", .cp = 15, .crn = 9,
3517 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3518 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3522 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3525 env->cp15.c15_cpar = value & 0x3fff;
3528 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3529 { .name = "XSCALE_CPAR",
3530 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3531 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3532 .writefn = xscale_cpar_write, },
3533 { .name = "XSCALE_AUXCR",
3534 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3535 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3537 /* XScale specific cache-lockdown: since we have no cache we NOP these
3538 * and hope the guest does not really rely on cache behaviour.
3540 { .name = "XSCALE_LOCK_ICACHE_LINE",
3541 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3542 .access = PL1_W, .type = ARM_CP_NOP },
3543 { .name = "XSCALE_UNLOCK_ICACHE",
3544 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3545 .access = PL1_W, .type = ARM_CP_NOP },
3546 { .name = "XSCALE_DCACHE_LOCK",
3547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3548 .access = PL1_RW, .type = ARM_CP_NOP },
3549 { .name = "XSCALE_UNLOCK_DCACHE",
3550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3551 .access = PL1_W, .type = ARM_CP_NOP },
3555 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3556 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3557 * implementation of this implementation-defined space.
3558 * Ideally this should eventually disappear in favour of actually
3559 * implementing the correct behaviour for all cores.
3561 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3562 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3564 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3569 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3570 /* Cache status: RAZ because we have no cache so it's always clean */
3571 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3572 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3577 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3578 /* We never have a a block transfer operation in progress */
3579 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3580 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3582 /* The cache ops themselves: these all NOP for QEMU */
3583 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3584 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3585 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3586 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3587 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3588 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3589 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3590 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3591 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3592 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3593 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3594 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3598 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3599 /* The cache test-and-clean instructions always return (1 << 30)
3600 * to indicate that there are no dirty cache lines.
3602 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3603 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3604 .resetvalue = (1 << 30) },
3605 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3606 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3607 .resetvalue = (1 << 30) },
3611 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3612 /* Ignore ReadBuffer accesses */
3613 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3614 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3615 .access = PL1_RW, .resetvalue = 0,
3616 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3620 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3622 ARMCPU *cpu = arm_env_get_cpu(env);
3623 unsigned int cur_el = arm_current_el(env);
3624 bool secure = arm_is_secure(env);
3626 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3627 return env->cp15.vpidr_el2;
3629 return raw_read(env, ri);
3632 static uint64_t mpidr_read_val(CPUARMState *env)
3634 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3635 uint64_t mpidr = cpu->mp_affinity;
3637 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3638 mpidr |= (1U << 31);
3639 /* Cores which are uniprocessor (non-coherent)
3640 * but still implement the MP extensions set
3641 * bit 30. (For instance, Cortex-R5).
3643 if (cpu->mp_is_up) {
3644 mpidr |= (1u << 30);
3650 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3652 unsigned int cur_el = arm_current_el(env);
3653 bool secure = arm_is_secure(env);
3655 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3656 return env->cp15.vmpidr_el2;
3658 return mpidr_read_val(env);
3661 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3663 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3664 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3665 .access = PL1_RW, .type = ARM_CP_CONST,
3667 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3668 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3669 .access = PL1_RW, .type = ARM_CP_CONST,
3671 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3672 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3673 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3674 offsetof(CPUARMState, cp15.par_ns)} },
3675 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3676 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3677 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3678 offsetof(CPUARMState, cp15.ttbr0_ns) },
3679 .writefn = vmsa_ttbr_write, },
3680 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3681 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3682 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3683 offsetof(CPUARMState, cp15.ttbr1_ns) },
3684 .writefn = vmsa_ttbr_write, },
3688 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3690 return vfp_get_fpcr(env);
3693 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3696 vfp_set_fpcr(env, value);
3699 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3701 return vfp_get_fpsr(env);
3704 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3707 vfp_set_fpsr(env, value);
3710 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3713 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3714 return CP_ACCESS_TRAP;
3716 return CP_ACCESS_OK;
3719 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3722 env->daif = value & PSTATE_DAIF;
3725 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3726 const ARMCPRegInfo *ri,
3729 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3730 * SCTLR_EL1.UCI is set.
3732 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3733 return CP_ACCESS_TRAP;
3735 return CP_ACCESS_OK;
3738 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3739 * Page D4-1736 (DDI0487A.b)
3742 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3745 CPUState *cs = ENV_GET_CPU(env);
3746 bool sec = arm_is_secure_below_el3(env);
3749 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3750 ARMMMUIdxBit_S1SE1 |
3751 ARMMMUIdxBit_S1SE0);
3753 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3754 ARMMMUIdxBit_S12NSE1 |
3755 ARMMMUIdxBit_S12NSE0);
3759 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762 CPUState *cs = ENV_GET_CPU(env);
3764 if (tlb_force_broadcast(env)) {
3765 tlbi_aa64_vmalle1is_write(env, NULL, value);
3769 if (arm_is_secure_below_el3(env)) {
3770 tlb_flush_by_mmuidx(cs,
3771 ARMMMUIdxBit_S1SE1 |
3772 ARMMMUIdxBit_S1SE0);
3774 tlb_flush_by_mmuidx(cs,
3775 ARMMMUIdxBit_S12NSE1 |
3776 ARMMMUIdxBit_S12NSE0);
3780 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783 /* Note that the 'ALL' scope must invalidate both stage 1 and
3784 * stage 2 translations, whereas most other scopes only invalidate
3785 * stage 1 translations.
3787 ARMCPU *cpu = arm_env_get_cpu(env);
3788 CPUState *cs = CPU(cpu);
3790 if (arm_is_secure_below_el3(env)) {
3791 tlb_flush_by_mmuidx(cs,
3792 ARMMMUIdxBit_S1SE1 |
3793 ARMMMUIdxBit_S1SE0);
3795 if (arm_feature(env, ARM_FEATURE_EL2)) {
3796 tlb_flush_by_mmuidx(cs,
3797 ARMMMUIdxBit_S12NSE1 |
3798 ARMMMUIdxBit_S12NSE0 |
3801 tlb_flush_by_mmuidx(cs,
3802 ARMMMUIdxBit_S12NSE1 |
3803 ARMMMUIdxBit_S12NSE0);
3808 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3811 ARMCPU *cpu = arm_env_get_cpu(env);
3812 CPUState *cs = CPU(cpu);
3814 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3817 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3820 ARMCPU *cpu = arm_env_get_cpu(env);
3821 CPUState *cs = CPU(cpu);
3823 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3826 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829 /* Note that the 'ALL' scope must invalidate both stage 1 and
3830 * stage 2 translations, whereas most other scopes only invalidate
3831 * stage 1 translations.
3833 CPUState *cs = ENV_GET_CPU(env);
3834 bool sec = arm_is_secure_below_el3(env);
3835 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3838 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3839 ARMMMUIdxBit_S1SE1 |
3840 ARMMMUIdxBit_S1SE0);
3841 } else if (has_el2) {
3842 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3843 ARMMMUIdxBit_S12NSE1 |
3844 ARMMMUIdxBit_S12NSE0 |
3847 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3848 ARMMMUIdxBit_S12NSE1 |
3849 ARMMMUIdxBit_S12NSE0);
3853 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3856 CPUState *cs = ENV_GET_CPU(env);
3858 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3861 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3864 CPUState *cs = ENV_GET_CPU(env);
3866 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3869 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3872 /* Invalidate by VA, EL2
3873 * Currently handles both VAE2 and VALE2, since we don't support
3874 * flush-last-level-only.
3876 ARMCPU *cpu = arm_env_get_cpu(env);
3877 CPUState *cs = CPU(cpu);
3878 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3880 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3883 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3886 /* Invalidate by VA, EL3
3887 * Currently handles both VAE3 and VALE3, since we don't support
3888 * flush-last-level-only.
3890 ARMCPU *cpu = arm_env_get_cpu(env);
3891 CPUState *cs = CPU(cpu);
3892 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3894 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3897 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3900 ARMCPU *cpu = arm_env_get_cpu(env);
3901 CPUState *cs = CPU(cpu);
3902 bool sec = arm_is_secure_below_el3(env);
3903 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3906 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3907 ARMMMUIdxBit_S1SE1 |
3908 ARMMMUIdxBit_S1SE0);
3910 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3911 ARMMMUIdxBit_S12NSE1 |
3912 ARMMMUIdxBit_S12NSE0);
3916 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3919 /* Invalidate by VA, EL1&0 (AArch64 version).
3920 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3921 * since we don't support flush-for-specific-ASID-only or
3922 * flush-last-level-only.
3924 ARMCPU *cpu = arm_env_get_cpu(env);
3925 CPUState *cs = CPU(cpu);
3926 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3928 if (tlb_force_broadcast(env)) {
3929 tlbi_aa64_vae1is_write(env, NULL, value);
3933 if (arm_is_secure_below_el3(env)) {
3934 tlb_flush_page_by_mmuidx(cs, pageaddr,
3935 ARMMMUIdxBit_S1SE1 |
3936 ARMMMUIdxBit_S1SE0);
3938 tlb_flush_page_by_mmuidx(cs, pageaddr,
3939 ARMMMUIdxBit_S12NSE1 |
3940 ARMMMUIdxBit_S12NSE0);
3944 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947 CPUState *cs = ENV_GET_CPU(env);
3948 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3950 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3954 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957 CPUState *cs = ENV_GET_CPU(env);
3958 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3960 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3964 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3967 /* Invalidate by IPA. This has to invalidate any structures that
3968 * contain only stage 2 translation information, but does not need
3969 * to apply to structures that contain combined stage 1 and stage 2
3970 * translation information.
3971 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3973 ARMCPU *cpu = arm_env_get_cpu(env);
3974 CPUState *cs = CPU(cpu);
3977 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3981 pageaddr = sextract64(value << 12, 0, 48);
3983 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3986 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3989 CPUState *cs = ENV_GET_CPU(env);
3992 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3996 pageaddr = sextract64(value << 12, 0, 48);
3998 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4002 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4005 /* We don't implement EL2, so the only control on DC ZVA is the
4006 * bit in the SCTLR which can prohibit access for EL0.
4008 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4009 return CP_ACCESS_TRAP;
4011 return CP_ACCESS_OK;
4014 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4016 ARMCPU *cpu = arm_env_get_cpu(env);
4017 int dzp_bit = 1 << 4;
4019 /* DZP indicates whether DC ZVA access is allowed */
4020 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4023 return cpu->dcz_blocksize | dzp_bit;
4026 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4029 if (!(env->pstate & PSTATE_SP)) {
4030 /* Access to SP_EL0 is undefined if it's being used as
4031 * the stack pointer.
4033 return CP_ACCESS_TRAP_UNCATEGORIZED;
4035 return CP_ACCESS_OK;
4038 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4040 return env->pstate & PSTATE_SP;
4043 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4045 update_spsel(env, val);
4048 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4051 ARMCPU *cpu = arm_env_get_cpu(env);
4053 if (raw_read(env, ri) == value) {
4054 /* Skip the TLB flush if nothing actually changed; Linux likes
4055 * to do a lot of pointless SCTLR writes.
4060 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4061 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4065 raw_write(env, ri, value);
4066 /* ??? Lots of these bits are not implemented. */
4067 /* This may enable/disable the MMU, so do a TLB flush. */
4068 tlb_flush(CPU(cpu));
4071 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4074 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4075 return CP_ACCESS_TRAP_FP_EL2;
4077 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4078 return CP_ACCESS_TRAP_FP_EL3;
4080 return CP_ACCESS_OK;
4083 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4086 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4089 static const ARMCPRegInfo v8_cp_reginfo[] = {
4090 /* Minimal set of EL0-visible registers. This will need to be expanded
4091 * significantly for system emulation of AArch64 CPUs.
4093 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4094 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4095 .access = PL0_RW, .type = ARM_CP_NZCV },
4096 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4097 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4098 .type = ARM_CP_NO_RAW,
4099 .access = PL0_RW, .accessfn = aa64_daif_access,
4100 .fieldoffset = offsetof(CPUARMState, daif),
4101 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4102 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4103 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4104 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4105 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4106 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4107 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4108 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4109 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4110 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4111 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4112 .access = PL0_R, .type = ARM_CP_NO_RAW,
4113 .readfn = aa64_dczid_read },
4114 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4116 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4117 #ifndef CONFIG_USER_ONLY
4118 /* Avoid overhead of an access check that always passes in user-mode */
4119 .accessfn = aa64_zva_access,
4122 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4123 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4124 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4125 /* Cache ops: all NOPs since we don't emulate caches */
4126 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4127 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4128 .access = PL1_W, .type = ARM_CP_NOP },
4129 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4131 .access = PL1_W, .type = ARM_CP_NOP },
4132 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4134 .access = PL0_W, .type = ARM_CP_NOP,
4135 .accessfn = aa64_cacheop_access },
4136 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4137 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4138 .access = PL1_W, .type = ARM_CP_NOP },
4139 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4140 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4141 .access = PL1_W, .type = ARM_CP_NOP },
4142 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4143 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4144 .access = PL0_W, .type = ARM_CP_NOP,
4145 .accessfn = aa64_cacheop_access },
4146 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4147 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4148 .access = PL1_W, .type = ARM_CP_NOP },
4149 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4151 .access = PL0_W, .type = ARM_CP_NOP,
4152 .accessfn = aa64_cacheop_access },
4153 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4155 .access = PL0_W, .type = ARM_CP_NOP,
4156 .accessfn = aa64_cacheop_access },
4157 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4159 .access = PL1_W, .type = ARM_CP_NOP },
4160 /* TLBI operations */
4161 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4163 .access = PL1_W, .type = ARM_CP_NO_RAW,
4164 .writefn = tlbi_aa64_vmalle1is_write },
4165 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4167 .access = PL1_W, .type = ARM_CP_NO_RAW,
4168 .writefn = tlbi_aa64_vae1is_write },
4169 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4171 .access = PL1_W, .type = ARM_CP_NO_RAW,
4172 .writefn = tlbi_aa64_vmalle1is_write },
4173 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4175 .access = PL1_W, .type = ARM_CP_NO_RAW,
4176 .writefn = tlbi_aa64_vae1is_write },
4177 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4179 .access = PL1_W, .type = ARM_CP_NO_RAW,
4180 .writefn = tlbi_aa64_vae1is_write },
4181 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4183 .access = PL1_W, .type = ARM_CP_NO_RAW,
4184 .writefn = tlbi_aa64_vae1is_write },
4185 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4187 .access = PL1_W, .type = ARM_CP_NO_RAW,
4188 .writefn = tlbi_aa64_vmalle1_write },
4189 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4191 .access = PL1_W, .type = ARM_CP_NO_RAW,
4192 .writefn = tlbi_aa64_vae1_write },
4193 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4194 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4195 .access = PL1_W, .type = ARM_CP_NO_RAW,
4196 .writefn = tlbi_aa64_vmalle1_write },
4197 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4198 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4199 .access = PL1_W, .type = ARM_CP_NO_RAW,
4200 .writefn = tlbi_aa64_vae1_write },
4201 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4202 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4203 .access = PL1_W, .type = ARM_CP_NO_RAW,
4204 .writefn = tlbi_aa64_vae1_write },
4205 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4206 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4207 .access = PL1_W, .type = ARM_CP_NO_RAW,
4208 .writefn = tlbi_aa64_vae1_write },
4209 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4211 .access = PL2_W, .type = ARM_CP_NO_RAW,
4212 .writefn = tlbi_aa64_ipas2e1is_write },
4213 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4215 .access = PL2_W, .type = ARM_CP_NO_RAW,
4216 .writefn = tlbi_aa64_ipas2e1is_write },
4217 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4219 .access = PL2_W, .type = ARM_CP_NO_RAW,
4220 .writefn = tlbi_aa64_alle1is_write },
4221 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4223 .access = PL2_W, .type = ARM_CP_NO_RAW,
4224 .writefn = tlbi_aa64_alle1is_write },
4225 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4227 .access = PL2_W, .type = ARM_CP_NO_RAW,
4228 .writefn = tlbi_aa64_ipas2e1_write },
4229 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4231 .access = PL2_W, .type = ARM_CP_NO_RAW,
4232 .writefn = tlbi_aa64_ipas2e1_write },
4233 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4235 .access = PL2_W, .type = ARM_CP_NO_RAW,
4236 .writefn = tlbi_aa64_alle1_write },
4237 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4239 .access = PL2_W, .type = ARM_CP_NO_RAW,
4240 .writefn = tlbi_aa64_alle1is_write },
4241 #ifndef CONFIG_USER_ONLY
4242 /* 64 bit address translation operations */
4243 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4245 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4246 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4248 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4249 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4250 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4251 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4252 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4254 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4255 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4256 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4257 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4258 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4259 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4260 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4261 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4262 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4263 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4264 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4267 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4268 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4270 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4271 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4272 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4273 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4274 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4275 .type = ARM_CP_ALIAS,
4276 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4277 .access = PL1_RW, .resetvalue = 0,
4278 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4279 .writefn = par_write },
4281 /* TLB invalidate last level of translation table walk */
4282 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4283 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4284 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4285 .type = ARM_CP_NO_RAW, .access = PL1_W,
4286 .writefn = tlbimvaa_is_write },
4287 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4288 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4289 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4290 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4291 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4292 .type = ARM_CP_NO_RAW, .access = PL2_W,
4293 .writefn = tlbimva_hyp_write },
4294 { .name = "TLBIMVALHIS",
4295 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4296 .type = ARM_CP_NO_RAW, .access = PL2_W,
4297 .writefn = tlbimva_hyp_is_write },
4298 { .name = "TLBIIPAS2",
4299 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4300 .type = ARM_CP_NO_RAW, .access = PL2_W,
4301 .writefn = tlbiipas2_write },
4302 { .name = "TLBIIPAS2IS",
4303 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4304 .type = ARM_CP_NO_RAW, .access = PL2_W,
4305 .writefn = tlbiipas2_is_write },
4306 { .name = "TLBIIPAS2L",
4307 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4308 .type = ARM_CP_NO_RAW, .access = PL2_W,
4309 .writefn = tlbiipas2_write },
4310 { .name = "TLBIIPAS2LIS",
4311 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4312 .type = ARM_CP_NO_RAW, .access = PL2_W,
4313 .writefn = tlbiipas2_is_write },
4314 /* 32 bit cache operations */
4315 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4316 .type = ARM_CP_NOP, .access = PL1_W },
4317 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4318 .type = ARM_CP_NOP, .access = PL1_W },
4319 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4320 .type = ARM_CP_NOP, .access = PL1_W },
4321 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4322 .type = ARM_CP_NOP, .access = PL1_W },
4323 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4324 .type = ARM_CP_NOP, .access = PL1_W },
4325 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4326 .type = ARM_CP_NOP, .access = PL1_W },
4327 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4328 .type = ARM_CP_NOP, .access = PL1_W },
4329 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4330 .type = ARM_CP_NOP, .access = PL1_W },
4331 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4332 .type = ARM_CP_NOP, .access = PL1_W },
4333 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4334 .type = ARM_CP_NOP, .access = PL1_W },
4335 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4336 .type = ARM_CP_NOP, .access = PL1_W },
4337 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4338 .type = ARM_CP_NOP, .access = PL1_W },
4339 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4340 .type = ARM_CP_NOP, .access = PL1_W },
4341 /* MMU Domain access control / MPU write buffer control */
4342 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4343 .access = PL1_RW, .resetvalue = 0,
4344 .writefn = dacr_write, .raw_writefn = raw_write,
4345 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4346 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4347 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4348 .type = ARM_CP_ALIAS,
4349 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4351 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4352 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4353 .type = ARM_CP_ALIAS,
4354 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4356 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4357 /* We rely on the access checks not allowing the guest to write to the
4358 * state field when SPSel indicates that it's being used as the stack
4361 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4363 .access = PL1_RW, .accessfn = sp_el0_access,
4364 .type = ARM_CP_ALIAS,
4365 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4366 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4367 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4368 .access = PL2_RW, .type = ARM_CP_ALIAS,
4369 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4370 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4371 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4372 .type = ARM_CP_NO_RAW,
4373 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4374 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4375 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4376 .type = ARM_CP_ALIAS,
4377 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4378 .access = PL2_RW, .accessfn = fpexc32_access },
4379 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4381 .access = PL2_RW, .resetvalue = 0,
4382 .writefn = dacr_write, .raw_writefn = raw_write,
4383 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4384 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4385 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4386 .access = PL2_RW, .resetvalue = 0,
4387 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4388 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4389 .type = ARM_CP_ALIAS,
4390 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4392 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4393 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4394 .type = ARM_CP_ALIAS,
4395 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4397 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4398 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4399 .type = ARM_CP_ALIAS,
4400 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4403 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4404 .type = ARM_CP_ALIAS,
4405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4407 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4408 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4409 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4411 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4412 { .name = "SDCR", .type = ARM_CP_ALIAS,
4413 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4414 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4415 .writefn = sdcr_write,
4416 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4420 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4421 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4422 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4423 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4425 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4426 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4427 .type = ARM_CP_NO_RAW,
4428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4430 .type = ARM_CP_CONST, .resetvalue = 0 },
4431 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4432 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4433 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4434 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4435 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4437 .type = ARM_CP_CONST, .resetvalue = 0 },
4438 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4439 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4440 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4441 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4442 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4443 .access = PL2_RW, .type = ARM_CP_CONST,
4445 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4446 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4447 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4448 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4449 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4450 .access = PL2_RW, .type = ARM_CP_CONST,
4452 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4453 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4454 .access = PL2_RW, .type = ARM_CP_CONST,
4456 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4457 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4458 .access = PL2_RW, .type = ARM_CP_CONST,
4460 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4461 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4462 .access = PL2_RW, .type = ARM_CP_CONST,
4464 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4465 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4466 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4467 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4468 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4469 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4470 .type = ARM_CP_CONST, .resetvalue = 0 },
4471 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4472 .cp = 15, .opc1 = 6, .crm = 2,
4473 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4474 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4475 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4476 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4477 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4478 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4479 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4481 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4482 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4483 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4484 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4486 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4487 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4488 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4490 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4492 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4493 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4494 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4495 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4496 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4497 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4499 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4500 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4501 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4502 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4503 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4505 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4506 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4507 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4508 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4510 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4511 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4513 .access = PL2_RW, .accessfn = access_tda,
4514 .type = ARM_CP_CONST, .resetvalue = 0 },
4515 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4516 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4517 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4518 .type = ARM_CP_CONST, .resetvalue = 0 },
4519 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4520 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4521 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4522 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4523 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4524 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4526 .type = ARM_CP_CONST,
4527 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4528 .access = PL2_RW, .resetvalue = 0 },
4532 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4533 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4534 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4535 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4537 .type = ARM_CP_CONST, .resetvalue = 0 },
4541 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4543 ARMCPU *cpu = arm_env_get_cpu(env);
4544 uint64_t valid_mask = HCR_MASK;
4546 if (arm_feature(env, ARM_FEATURE_EL3)) {
4547 valid_mask &= ~HCR_HCD;
4548 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4549 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4550 * However, if we're using the SMC PSCI conduit then QEMU is
4551 * effectively acting like EL3 firmware and so the guest at
4552 * EL2 should retain the ability to prevent EL1 from being
4553 * able to make SMC calls into the ersatz firmware, so in
4554 * that case HCR.TSC should be read/write.
4556 valid_mask &= ~HCR_TSC;
4558 if (cpu_isar_feature(aa64_lor, cpu)) {
4559 valid_mask |= HCR_TLOR;
4561 if (cpu_isar_feature(aa64_pauth, cpu)) {
4562 valid_mask |= HCR_API | HCR_APK;
4565 /* Clear RES0 bits. */
4566 value &= valid_mask;
4568 /* These bits change the MMU setup:
4569 * HCR_VM enables stage 2 translation
4570 * HCR_PTW forbids certain page-table setups
4571 * HCR_DC Disables stage1 and enables stage2 translation
4573 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4574 tlb_flush(CPU(cpu));
4576 env->cp15.hcr_el2 = value;
4579 * Updates to VI and VF require us to update the status of
4580 * virtual interrupts, which are the logical OR of these bits
4581 * and the state of the input lines from the GIC. (This requires
4582 * that we have the iothread lock, which is done by marking the
4583 * reginfo structs as ARM_CP_IO.)
4584 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4585 * possible for it to be taken immediately, because VIRQ and
4586 * VFIQ are masked unless running at EL0 or EL1, and HCR
4587 * can only be written at EL2.
4589 g_assert(qemu_mutex_iothread_locked());
4590 arm_cpu_update_virq(cpu);
4591 arm_cpu_update_vfiq(cpu);
4594 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4597 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4598 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4599 hcr_write(env, NULL, value);
4602 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4605 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4606 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4607 hcr_write(env, NULL, value);
4611 * Return the effective value of HCR_EL2.
4612 * Bits that are not included here:
4613 * RW (read from SCR_EL3.RW as needed)
4615 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4617 uint64_t ret = env->cp15.hcr_el2;
4619 if (arm_is_secure_below_el3(env)) {
4621 * "This register has no effect if EL2 is not enabled in the
4622 * current Security state". This is ARMv8.4-SecEL2 speak for
4623 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4625 * Prior to that, the language was "In an implementation that
4626 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4627 * as if this field is 0 for all purposes other than a direct
4628 * read or write access of HCR_EL2". With lots of enumeration
4629 * on a per-field basis. In current QEMU, this is condition
4630 * is arm_is_secure_below_el3.
4632 * Since the v8.4 language applies to the entire register, and
4633 * appears to be backward compatible, use that.
4636 } else if (ret & HCR_TGE) {
4637 /* These bits are up-to-date as of ARMv8.4. */
4638 if (ret & HCR_E2H) {
4639 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4640 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4641 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4642 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4644 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4646 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4647 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4648 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4655 static const ARMCPRegInfo el2_cp_reginfo[] = {
4656 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4658 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4659 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4660 .writefn = hcr_write },
4661 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4662 .type = ARM_CP_ALIAS | ARM_CP_IO,
4663 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4664 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4665 .writefn = hcr_writelow },
4666 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4669 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4670 .type = ARM_CP_ALIAS,
4671 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4673 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4674 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4675 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4676 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4677 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4678 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4679 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4680 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4681 .type = ARM_CP_ALIAS,
4682 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4684 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4685 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4686 .type = ARM_CP_ALIAS,
4687 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4689 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4690 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4691 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4692 .access = PL2_RW, .writefn = vbar_write,
4693 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4695 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4696 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4697 .access = PL3_RW, .type = ARM_CP_ALIAS,
4698 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4699 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4701 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4702 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4703 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4704 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4705 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4707 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4708 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4709 .access = PL2_RW, .type = ARM_CP_ALIAS,
4710 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4711 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4712 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4713 .access = PL2_RW, .type = ARM_CP_CONST,
4715 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4716 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4717 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4718 .access = PL2_RW, .type = ARM_CP_CONST,
4720 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4721 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4722 .access = PL2_RW, .type = ARM_CP_CONST,
4724 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4726 .access = PL2_RW, .type = ARM_CP_CONST,
4728 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4729 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4731 /* no .writefn needed as this can't cause an ASID change;
4732 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4734 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4735 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4736 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4737 .type = ARM_CP_ALIAS,
4738 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4739 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4740 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4741 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4743 /* no .writefn needed as this can't cause an ASID change;
4744 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4746 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4747 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4748 .cp = 15, .opc1 = 6, .crm = 2,
4749 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4750 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4751 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4752 .writefn = vttbr_write },
4753 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4755 .access = PL2_RW, .writefn = vttbr_write,
4756 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4757 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4759 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4760 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4761 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4762 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4763 .access = PL2_RW, .resetvalue = 0,
4764 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4765 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4767 .access = PL2_RW, .resetvalue = 0,
4768 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4769 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4770 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4771 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4772 { .name = "TLBIALLNSNH",
4773 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4774 .type = ARM_CP_NO_RAW, .access = PL2_W,
4775 .writefn = tlbiall_nsnh_write },
4776 { .name = "TLBIALLNSNHIS",
4777 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4778 .type = ARM_CP_NO_RAW, .access = PL2_W,
4779 .writefn = tlbiall_nsnh_is_write },
4780 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4781 .type = ARM_CP_NO_RAW, .access = PL2_W,
4782 .writefn = tlbiall_hyp_write },
4783 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4784 .type = ARM_CP_NO_RAW, .access = PL2_W,
4785 .writefn = tlbiall_hyp_is_write },
4786 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4787 .type = ARM_CP_NO_RAW, .access = PL2_W,
4788 .writefn = tlbimva_hyp_write },
4789 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4790 .type = ARM_CP_NO_RAW, .access = PL2_W,
4791 .writefn = tlbimva_hyp_is_write },
4792 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4793 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4794 .type = ARM_CP_NO_RAW, .access = PL2_W,
4795 .writefn = tlbi_aa64_alle2_write },
4796 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4798 .type = ARM_CP_NO_RAW, .access = PL2_W,
4799 .writefn = tlbi_aa64_vae2_write },
4800 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4802 .access = PL2_W, .type = ARM_CP_NO_RAW,
4803 .writefn = tlbi_aa64_vae2_write },
4804 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4806 .access = PL2_W, .type = ARM_CP_NO_RAW,
4807 .writefn = tlbi_aa64_alle2is_write },
4808 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4810 .type = ARM_CP_NO_RAW, .access = PL2_W,
4811 .writefn = tlbi_aa64_vae2is_write },
4812 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4814 .access = PL2_W, .type = ARM_CP_NO_RAW,
4815 .writefn = tlbi_aa64_vae2is_write },
4816 #ifndef CONFIG_USER_ONLY
4817 /* Unlike the other EL2-related AT operations, these must
4818 * UNDEF from EL3 if EL2 is not implemented, which is why we
4819 * define them here rather than with the rest of the AT ops.
4821 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4823 .access = PL2_W, .accessfn = at_s1e2_access,
4824 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4825 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4827 .access = PL2_W, .accessfn = at_s1e2_access,
4828 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4829 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4830 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4831 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4832 * to behave as if SCR.NS was 1.
4834 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4836 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4837 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4839 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4840 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4841 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4842 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4843 * reset values as IMPDEF. We choose to reset to 3 to comply with
4844 * both ARMv7 and ARMv8.
4846 .access = PL2_RW, .resetvalue = 3,
4847 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4848 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4850 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4851 .writefn = gt_cntvoff_write,
4852 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4853 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4854 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4855 .writefn = gt_cntvoff_write,
4856 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4857 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4859 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4860 .type = ARM_CP_IO, .access = PL2_RW,
4861 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4862 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4864 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4865 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4866 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4867 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4868 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4869 .resetfn = gt_hyp_timer_reset,
4870 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4871 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4873 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4875 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4877 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4879 /* The only field of MDCR_EL2 that has a defined architectural reset value
4880 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4881 * don't implement any PMU event counters, so using zero as a reset
4882 * value for MDCR_EL2 is okay
4884 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4885 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4886 .access = PL2_RW, .resetvalue = 0,
4887 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4888 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4889 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4890 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4891 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4892 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4893 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4895 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4896 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4897 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4899 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4903 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4904 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4905 .type = ARM_CP_ALIAS | ARM_CP_IO,
4906 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4908 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4909 .writefn = hcr_writehigh },
4913 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4916 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4917 * At Secure EL1 it traps to EL3.
4919 if (arm_current_el(env) == 3) {
4920 return CP_ACCESS_OK;
4922 if (arm_is_secure_below_el3(env)) {
4923 return CP_ACCESS_TRAP_EL3;
4925 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4927 return CP_ACCESS_OK;
4929 return CP_ACCESS_TRAP_UNCATEGORIZED;
4932 static const ARMCPRegInfo el3_cp_reginfo[] = {
4933 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4935 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4936 .resetvalue = 0, .writefn = scr_write },
4937 { .name = "SCR", .type = ARM_CP_ALIAS,
4938 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4939 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4940 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4941 .writefn = scr_write },
4942 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4944 .access = PL3_RW, .resetvalue = 0,
4945 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4947 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4948 .access = PL3_RW, .resetvalue = 0,
4949 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4950 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4951 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4952 .writefn = vbar_write, .resetvalue = 0,
4953 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4954 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4955 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4956 .access = PL3_RW, .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4958 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4961 /* no .writefn needed as this can't cause an ASID change;
4962 * we must provide a .raw_writefn and .resetfn because we handle
4963 * reset and migration for the AArch32 TTBCR(S), which might be
4964 * using mask and base_mask.
4966 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4967 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4968 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4969 .type = ARM_CP_ALIAS,
4970 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4972 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4973 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4975 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4976 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4978 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4979 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4980 .type = ARM_CP_ALIAS,
4981 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4983 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4984 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4985 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4986 .access = PL3_RW, .writefn = vbar_write,
4987 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4989 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4991 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4992 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4993 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4995 .access = PL3_RW, .resetvalue = 0,
4996 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4997 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4999 .access = PL3_RW, .type = ARM_CP_CONST,
5001 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5002 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5003 .access = PL3_RW, .type = ARM_CP_CONST,
5005 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5006 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5007 .access = PL3_RW, .type = ARM_CP_CONST,
5009 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5010 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5011 .access = PL3_W, .type = ARM_CP_NO_RAW,
5012 .writefn = tlbi_aa64_alle3is_write },
5013 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5015 .access = PL3_W, .type = ARM_CP_NO_RAW,
5016 .writefn = tlbi_aa64_vae3is_write },
5017 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5019 .access = PL3_W, .type = ARM_CP_NO_RAW,
5020 .writefn = tlbi_aa64_vae3is_write },
5021 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5023 .access = PL3_W, .type = ARM_CP_NO_RAW,
5024 .writefn = tlbi_aa64_alle3_write },
5025 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5027 .access = PL3_W, .type = ARM_CP_NO_RAW,
5028 .writefn = tlbi_aa64_vae3_write },
5029 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5031 .access = PL3_W, .type = ARM_CP_NO_RAW,
5032 .writefn = tlbi_aa64_vae3_write },
5036 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5039 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5040 * but the AArch32 CTR has its own reginfo struct)
5042 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5043 return CP_ACCESS_TRAP;
5045 return CP_ACCESS_OK;
5048 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5051 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5052 * read via a bit in OSLSR_EL1.
5056 if (ri->state == ARM_CP_STATE_AA32) {
5057 oslock = (value == 0xC5ACCE55);
5062 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5065 static const ARMCPRegInfo debug_cp_reginfo[] = {
5066 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5067 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5068 * unlike DBGDRAR it is never accessible from EL0.
5069 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5072 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5073 .access = PL0_R, .accessfn = access_tdra,
5074 .type = ARM_CP_CONST, .resetvalue = 0 },
5075 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5076 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5077 .access = PL1_R, .accessfn = access_tdra,
5078 .type = ARM_CP_CONST, .resetvalue = 0 },
5079 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5080 .access = PL0_R, .accessfn = access_tdra,
5081 .type = ARM_CP_CONST, .resetvalue = 0 },
5082 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5083 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5084 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5085 .access = PL1_RW, .accessfn = access_tda,
5086 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5088 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5089 * We don't implement the configurable EL0 access.
5091 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5092 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5093 .type = ARM_CP_ALIAS,
5094 .access = PL1_R, .accessfn = access_tda,
5095 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5096 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5098 .access = PL1_W, .type = ARM_CP_NO_RAW,
5099 .accessfn = access_tdosa,
5100 .writefn = oslar_write },
5101 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5103 .access = PL1_R, .resetvalue = 10,
5104 .accessfn = access_tdosa,
5105 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5106 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5107 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5108 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5109 .access = PL1_RW, .accessfn = access_tdosa,
5110 .type = ARM_CP_NOP },
5111 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5112 * implement vector catch debug events yet.
5115 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5116 .access = PL1_RW, .accessfn = access_tda,
5117 .type = ARM_CP_NOP },
5118 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5119 * to save and restore a 32-bit guest's DBGVCR)
5121 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5122 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5123 .access = PL2_RW, .accessfn = access_tda,
5124 .type = ARM_CP_NOP },
5125 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5126 * Channel but Linux may try to access this register. The 32-bit
5127 * alias is DBGDCCINT.
5129 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5131 .access = PL1_RW, .accessfn = access_tda,
5132 .type = ARM_CP_NOP },
5136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5137 /* 64 bit access versions of the (dummy) debug registers */
5138 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5139 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5140 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5145 /* Return the exception level to which exceptions should be taken
5146 * via SVEAccessTrap. If an exception should be routed through
5147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5148 * take care of raising that exception.
5149 * C.f. the ARM pseudocode function CheckSVEEnabled.
5151 int sve_exception_el(CPUARMState *env, int el)
5153 #ifndef CONFIG_USER_ONLY
5155 bool disabled = false;
5157 /* The CPACR.ZEN controls traps to EL1:
5158 * 0, 2 : trap EL0 and EL1 accesses
5159 * 1 : trap only EL0 accesses
5160 * 3 : trap no accesses
5162 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5164 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5169 return (arm_feature(env, ARM_FEATURE_EL2)
5170 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5173 /* Check CPACR.FPEN. */
5174 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5176 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5184 /* CPTR_EL2. Since TZ and TFP are positive,
5185 * they will be zero when EL2 is not present.
5187 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5188 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5191 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5196 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5197 if (arm_feature(env, ARM_FEATURE_EL3)
5198 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5206 * Given that SVE is enabled, return the vector length for EL.
5208 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5210 ARMCPU *cpu = arm_env_get_cpu(env);
5211 uint32_t zcr_len = cpu->sve_max_vq - 1;
5214 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5216 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5217 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5219 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5220 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5225 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5228 int cur_el = arm_current_el(env);
5229 int old_len = sve_zcr_len_for_el(env, cur_el);
5232 /* Bits other than [3:0] are RAZ/WI. */
5233 raw_write(env, ri, value & 0xf);
5236 * Because we arrived here, we know both FP and SVE are enabled;
5237 * otherwise we would have trapped access to the ZCR_ELn register.
5239 new_len = sve_zcr_len_for_el(env, cur_el);
5240 if (new_len < old_len) {
5241 aarch64_sve_narrow_vq(env, new_len + 1);
5245 static const ARMCPRegInfo zcr_el1_reginfo = {
5246 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5247 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5248 .access = PL1_RW, .type = ARM_CP_SVE,
5249 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5250 .writefn = zcr_write, .raw_writefn = raw_write
5253 static const ARMCPRegInfo zcr_el2_reginfo = {
5254 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5255 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5256 .access = PL2_RW, .type = ARM_CP_SVE,
5257 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5258 .writefn = zcr_write, .raw_writefn = raw_write
5261 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5262 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5263 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5264 .access = PL2_RW, .type = ARM_CP_SVE,
5265 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5268 static const ARMCPRegInfo zcr_el3_reginfo = {
5269 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5270 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5271 .access = PL3_RW, .type = ARM_CP_SVE,
5272 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5273 .writefn = zcr_write, .raw_writefn = raw_write
5276 void hw_watchpoint_update(ARMCPU *cpu, int n)
5278 CPUARMState *env = &cpu->env;
5280 vaddr wvr = env->cp15.dbgwvr[n];
5281 uint64_t wcr = env->cp15.dbgwcr[n];
5283 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5285 if (env->cpu_watchpoint[n]) {
5286 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5287 env->cpu_watchpoint[n] = NULL;
5290 if (!extract64(wcr, 0, 1)) {
5291 /* E bit clear : watchpoint disabled */
5295 switch (extract64(wcr, 3, 2)) {
5297 /* LSC 00 is reserved and must behave as if the wp is disabled */
5300 flags |= BP_MEM_READ;
5303 flags |= BP_MEM_WRITE;
5306 flags |= BP_MEM_ACCESS;
5310 /* Attempts to use both MASK and BAS fields simultaneously are
5311 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5312 * thus generating a watchpoint for every byte in the masked region.
5314 mask = extract64(wcr, 24, 4);
5315 if (mask == 1 || mask == 2) {
5316 /* Reserved values of MASK; we must act as if the mask value was
5317 * some non-reserved value, or as if the watchpoint were disabled.
5318 * We choose the latter.
5322 /* Watchpoint covers an aligned area up to 2GB in size */
5324 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5325 * whether the watchpoint fires when the unmasked bits match; we opt
5326 * to generate the exceptions.
5330 /* Watchpoint covers bytes defined by the byte address select bits */
5331 int bas = extract64(wcr, 5, 8);
5335 /* This must act as if the watchpoint is disabled */
5339 if (extract64(wvr, 2, 1)) {
5340 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5341 * ignored, and BAS[3:0] define which bytes to watch.
5345 /* The BAS bits are supposed to be programmed to indicate a contiguous
5346 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5347 * we fire for each byte in the word/doubleword addressed by the WVR.
5348 * We choose to ignore any non-zero bits after the first range of 1s.
5350 basstart = ctz32(bas);
5351 len = cto32(bas >> basstart);
5355 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5356 &env->cpu_watchpoint[n]);
5359 void hw_watchpoint_update_all(ARMCPU *cpu)
5362 CPUARMState *env = &cpu->env;
5364 /* Completely clear out existing QEMU watchpoints and our array, to
5365 * avoid possible stale entries following migration load.
5367 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5368 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5370 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5371 hw_watchpoint_update(cpu, i);
5375 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5378 ARMCPU *cpu = arm_env_get_cpu(env);
5381 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5382 * register reads and behaves as if values written are sign extended.
5383 * Bits [1:0] are RES0.
5385 value = sextract64(value, 0, 49) & ~3ULL;
5387 raw_write(env, ri, value);
5388 hw_watchpoint_update(cpu, i);
5391 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5394 ARMCPU *cpu = arm_env_get_cpu(env);
5397 raw_write(env, ri, value);
5398 hw_watchpoint_update(cpu, i);
5401 void hw_breakpoint_update(ARMCPU *cpu, int n)
5403 CPUARMState *env = &cpu->env;
5404 uint64_t bvr = env->cp15.dbgbvr[n];
5405 uint64_t bcr = env->cp15.dbgbcr[n];
5410 if (env->cpu_breakpoint[n]) {
5411 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5412 env->cpu_breakpoint[n] = NULL;
5415 if (!extract64(bcr, 0, 1)) {
5416 /* E bit clear : watchpoint disabled */
5420 bt = extract64(bcr, 20, 4);
5423 case 4: /* unlinked address mismatch (reserved if AArch64) */
5424 case 5: /* linked address mismatch (reserved if AArch64) */
5425 qemu_log_mask(LOG_UNIMP,
5426 "arm: address mismatch breakpoint types not implemented\n");
5428 case 0: /* unlinked address match */
5429 case 1: /* linked address match */
5431 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5432 * we behave as if the register was sign extended. Bits [1:0] are
5433 * RES0. The BAS field is used to allow setting breakpoints on 16
5434 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5435 * a bp will fire if the addresses covered by the bp and the addresses
5436 * covered by the insn overlap but the insn doesn't start at the
5437 * start of the bp address range. We choose to require the insn and
5438 * the bp to have the same address. The constraints on writing to
5439 * BAS enforced in dbgbcr_write mean we have only four cases:
5440 * 0b0000 => no breakpoint
5441 * 0b0011 => breakpoint on addr
5442 * 0b1100 => breakpoint on addr + 2
5443 * 0b1111 => breakpoint on addr
5444 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5446 int bas = extract64(bcr, 5, 4);
5447 addr = sextract64(bvr, 0, 49) & ~3ULL;
5456 case 2: /* unlinked context ID match */
5457 case 8: /* unlinked VMID match (reserved if no EL2) */
5458 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5459 qemu_log_mask(LOG_UNIMP,
5460 "arm: unlinked context breakpoint types not implemented\n");
5462 case 9: /* linked VMID match (reserved if no EL2) */
5463 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5464 case 3: /* linked context ID match */
5466 /* We must generate no events for Linked context matches (unless
5467 * they are linked to by some other bp/wp, which is handled in
5468 * updates for the linking bp/wp). We choose to also generate no events
5469 * for reserved values.
5474 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5477 void hw_breakpoint_update_all(ARMCPU *cpu)
5480 CPUARMState *env = &cpu->env;
5482 /* Completely clear out existing QEMU breakpoints and our array, to
5483 * avoid possible stale entries following migration load.
5485 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5486 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5488 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5489 hw_breakpoint_update(cpu, i);
5493 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5496 ARMCPU *cpu = arm_env_get_cpu(env);
5499 raw_write(env, ri, value);
5500 hw_breakpoint_update(cpu, i);
5503 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5506 ARMCPU *cpu = arm_env_get_cpu(env);
5509 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5512 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5513 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5515 raw_write(env, ri, value);
5516 hw_breakpoint_update(cpu, i);
5519 static void define_debug_regs(ARMCPU *cpu)
5521 /* Define v7 and v8 architectural debug registers.
5522 * These are just dummy implementations for now.
5525 int wrps, brps, ctx_cmps;
5526 ARMCPRegInfo dbgdidr = {
5527 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5528 .access = PL0_R, .accessfn = access_tda,
5529 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5532 /* Note that all these register fields hold "number of Xs minus 1". */
5533 brps = extract32(cpu->dbgdidr, 24, 4);
5534 wrps = extract32(cpu->dbgdidr, 28, 4);
5535 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5537 assert(ctx_cmps <= brps);
5539 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5540 * of the debug registers such as number of breakpoints;
5541 * check that if they both exist then they agree.
5543 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5544 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5545 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5546 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5549 define_one_arm_cp_reg(cpu, &dbgdidr);
5550 define_arm_cp_regs(cpu, debug_cp_reginfo);
5552 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5553 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5556 for (i = 0; i < brps + 1; i++) {
5557 ARMCPRegInfo dbgregs[] = {
5558 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5559 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5560 .access = PL1_RW, .accessfn = access_tda,
5561 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5562 .writefn = dbgbvr_write, .raw_writefn = raw_write
5564 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5565 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5566 .access = PL1_RW, .accessfn = access_tda,
5567 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5568 .writefn = dbgbcr_write, .raw_writefn = raw_write
5572 define_arm_cp_regs(cpu, dbgregs);
5575 for (i = 0; i < wrps + 1; i++) {
5576 ARMCPRegInfo dbgregs[] = {
5577 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5578 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5579 .access = PL1_RW, .accessfn = access_tda,
5580 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5581 .writefn = dbgwvr_write, .raw_writefn = raw_write
5583 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5584 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5585 .access = PL1_RW, .accessfn = access_tda,
5586 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5587 .writefn = dbgwcr_write, .raw_writefn = raw_write
5591 define_arm_cp_regs(cpu, dbgregs);
5595 /* We don't know until after realize whether there's a GICv3
5596 * attached, and that is what registers the gicv3 sysregs.
5597 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5600 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5602 ARMCPU *cpu = arm_env_get_cpu(env);
5603 uint64_t pfr1 = cpu->id_pfr1;
5605 if (env->gicv3state) {
5611 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5613 ARMCPU *cpu = arm_env_get_cpu(env);
5614 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5616 if (env->gicv3state) {
5622 /* Shared logic between LORID and the rest of the LOR* registers.
5623 * Secure state has already been delt with.
5625 static CPAccessResult access_lor_ns(CPUARMState *env)
5627 int el = arm_current_el(env);
5629 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5630 return CP_ACCESS_TRAP_EL2;
5632 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5633 return CP_ACCESS_TRAP_EL3;
5635 return CP_ACCESS_OK;
5638 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5641 if (arm_is_secure_below_el3(env)) {
5642 /* Access ok in secure mode. */
5643 return CP_ACCESS_OK;
5645 return access_lor_ns(env);
5648 static CPAccessResult access_lor_other(CPUARMState *env,
5649 const ARMCPRegInfo *ri, bool isread)
5651 if (arm_is_secure_below_el3(env)) {
5652 /* Access denied in secure mode. */
5653 return CP_ACCESS_TRAP;
5655 return access_lor_ns(env);
5658 #ifdef TARGET_AARCH64
5659 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5662 int el = arm_current_el(env);
5665 arm_feature(env, ARM_FEATURE_EL2) &&
5666 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5667 return CP_ACCESS_TRAP_EL2;
5670 arm_feature(env, ARM_FEATURE_EL3) &&
5671 !(env->cp15.scr_el3 & SCR_APK)) {
5672 return CP_ACCESS_TRAP_EL3;
5674 return CP_ACCESS_OK;
5677 static const ARMCPRegInfo pauth_reginfo[] = {
5678 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5679 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5680 .access = PL1_RW, .accessfn = access_pauth,
5681 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5682 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5684 .access = PL1_RW, .accessfn = access_pauth,
5685 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5686 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5688 .access = PL1_RW, .accessfn = access_pauth,
5689 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5690 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5692 .access = PL1_RW, .accessfn = access_pauth,
5693 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5694 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5696 .access = PL1_RW, .accessfn = access_pauth,
5697 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5698 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5699 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5700 .access = PL1_RW, .accessfn = access_pauth,
5701 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5702 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5703 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5704 .access = PL1_RW, .accessfn = access_pauth,
5705 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5706 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5708 .access = PL1_RW, .accessfn = access_pauth,
5709 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5710 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5712 .access = PL1_RW, .accessfn = access_pauth,
5713 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5714 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5716 .access = PL1_RW, .accessfn = access_pauth,
5717 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5722 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5725 int el = arm_current_el(env);
5728 uint64_t sctlr = arm_sctlr(env, el);
5729 if (!(sctlr & SCTLR_EnRCTX)) {
5730 return CP_ACCESS_TRAP;
5732 } else if (el == 1) {
5733 uint64_t hcr = arm_hcr_el2_eff(env);
5735 return CP_ACCESS_TRAP_EL2;
5738 return CP_ACCESS_OK;
5741 static const ARMCPRegInfo predinv_reginfo[] = {
5742 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5744 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5745 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5746 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5747 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5748 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5749 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5750 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5752 * Note the AArch32 opcodes have a different OPC1.
5754 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5755 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5756 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5757 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5758 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5759 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5760 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5761 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5762 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5766 void register_cp_regs_for_features(ARMCPU *cpu)
5768 /* Register all the coprocessor registers based on feature bits */
5769 CPUARMState *env = &cpu->env;
5770 if (arm_feature(env, ARM_FEATURE_M)) {
5771 /* M profile has no coprocessor registers */
5775 define_arm_cp_regs(cpu, cp_reginfo);
5776 if (!arm_feature(env, ARM_FEATURE_V8)) {
5777 /* Must go early as it is full of wildcards that may be
5778 * overridden by later definitions.
5780 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5783 if (arm_feature(env, ARM_FEATURE_V6)) {
5784 /* The ID registers all have impdef reset values */
5785 ARMCPRegInfo v6_idregs[] = {
5786 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5788 .access = PL1_R, .type = ARM_CP_CONST,
5789 .resetvalue = cpu->id_pfr0 },
5790 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5791 * the value of the GIC field until after we define these regs.
5793 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5795 .access = PL1_R, .type = ARM_CP_NO_RAW,
5796 .readfn = id_pfr1_read,
5797 .writefn = arm_cp_write_ignore },
5798 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5800 .access = PL1_R, .type = ARM_CP_CONST,
5801 .resetvalue = cpu->id_dfr0 },
5802 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5804 .access = PL1_R, .type = ARM_CP_CONST,
5805 .resetvalue = cpu->id_afr0 },
5806 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5808 .access = PL1_R, .type = ARM_CP_CONST,
5809 .resetvalue = cpu->id_mmfr0 },
5810 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5812 .access = PL1_R, .type = ARM_CP_CONST,
5813 .resetvalue = cpu->id_mmfr1 },
5814 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5816 .access = PL1_R, .type = ARM_CP_CONST,
5817 .resetvalue = cpu->id_mmfr2 },
5818 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5820 .access = PL1_R, .type = ARM_CP_CONST,
5821 .resetvalue = cpu->id_mmfr3 },
5822 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5824 .access = PL1_R, .type = ARM_CP_CONST,
5825 .resetvalue = cpu->isar.id_isar0 },
5826 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5828 .access = PL1_R, .type = ARM_CP_CONST,
5829 .resetvalue = cpu->isar.id_isar1 },
5830 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5832 .access = PL1_R, .type = ARM_CP_CONST,
5833 .resetvalue = cpu->isar.id_isar2 },
5834 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5836 .access = PL1_R, .type = ARM_CP_CONST,
5837 .resetvalue = cpu->isar.id_isar3 },
5838 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5840 .access = PL1_R, .type = ARM_CP_CONST,
5841 .resetvalue = cpu->isar.id_isar4 },
5842 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5844 .access = PL1_R, .type = ARM_CP_CONST,
5845 .resetvalue = cpu->isar.id_isar5 },
5846 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5848 .access = PL1_R, .type = ARM_CP_CONST,
5849 .resetvalue = cpu->id_mmfr4 },
5850 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5852 .access = PL1_R, .type = ARM_CP_CONST,
5853 .resetvalue = cpu->isar.id_isar6 },
5856 define_arm_cp_regs(cpu, v6_idregs);
5857 define_arm_cp_regs(cpu, v6_cp_reginfo);
5859 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5861 if (arm_feature(env, ARM_FEATURE_V6K)) {
5862 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5864 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5865 !arm_feature(env, ARM_FEATURE_PMSA)) {
5866 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5868 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5869 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5871 if (arm_feature(env, ARM_FEATURE_V7)) {
5872 /* v7 performance monitor control register: same implementor
5873 * field as main ID register, and we implement four counters in
5874 * addition to the cycle count register.
5876 unsigned int i, pmcrn = 4;
5877 ARMCPRegInfo pmcr = {
5878 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5880 .type = ARM_CP_IO | ARM_CP_ALIAS,
5881 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5882 .accessfn = pmreg_access, .writefn = pmcr_write,
5883 .raw_writefn = raw_write,
5885 ARMCPRegInfo pmcr64 = {
5886 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5887 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5888 .access = PL0_RW, .accessfn = pmreg_access,
5890 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5891 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5892 .writefn = pmcr_write, .raw_writefn = raw_write,
5894 define_one_arm_cp_reg(cpu, &pmcr);
5895 define_one_arm_cp_reg(cpu, &pmcr64);
5896 for (i = 0; i < pmcrn; i++) {
5897 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5898 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5899 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5900 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5901 ARMCPRegInfo pmev_regs[] = {
5902 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5903 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5904 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5905 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5906 .accessfn = pmreg_access },
5907 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5908 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5909 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5911 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5912 .raw_readfn = pmevcntr_rawread,
5913 .raw_writefn = pmevcntr_rawwrite },
5914 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5915 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5916 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5917 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5918 .accessfn = pmreg_access },
5919 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5920 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5921 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5923 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5924 .raw_writefn = pmevtyper_rawwrite },
5927 define_arm_cp_regs(cpu, pmev_regs);
5928 g_free(pmevcntr_name);
5929 g_free(pmevcntr_el0_name);
5930 g_free(pmevtyper_name);
5931 g_free(pmevtyper_el0_name);
5933 ARMCPRegInfo clidr = {
5934 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5935 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5936 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5938 define_one_arm_cp_reg(cpu, &clidr);
5939 define_arm_cp_regs(cpu, v7_cp_reginfo);
5940 define_debug_regs(cpu);
5942 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5944 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5945 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5946 ARMCPRegInfo v81_pmu_regs[] = {
5947 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5948 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5949 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5950 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5951 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5953 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5954 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5957 define_arm_cp_regs(cpu, v81_pmu_regs);
5959 if (arm_feature(env, ARM_FEATURE_V8)) {
5960 /* AArch64 ID registers, which all have impdef reset values.
5961 * Note that within the ID register ranges the unused slots
5962 * must all RAZ, not UNDEF; future architecture versions may
5963 * define new registers here.
5965 ARMCPRegInfo v8_idregs[] = {
5966 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5967 * know the right value for the GIC field until after we
5968 * define these regs.
5970 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5972 .access = PL1_R, .type = ARM_CP_NO_RAW,
5973 .readfn = id_aa64pfr0_read,
5974 .writefn = arm_cp_write_ignore },
5975 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5977 .access = PL1_R, .type = ARM_CP_CONST,
5978 .resetvalue = cpu->isar.id_aa64pfr1},
5979 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5981 .access = PL1_R, .type = ARM_CP_CONST,
5983 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5985 .access = PL1_R, .type = ARM_CP_CONST,
5987 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5989 .access = PL1_R, .type = ARM_CP_CONST,
5990 /* At present, only SVEver == 0 is defined anyway. */
5992 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5994 .access = PL1_R, .type = ARM_CP_CONST,
5996 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5998 .access = PL1_R, .type = ARM_CP_CONST,
6000 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6002 .access = PL1_R, .type = ARM_CP_CONST,
6004 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6006 .access = PL1_R, .type = ARM_CP_CONST,
6007 .resetvalue = cpu->id_aa64dfr0 },
6008 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6010 .access = PL1_R, .type = ARM_CP_CONST,
6011 .resetvalue = cpu->id_aa64dfr1 },
6012 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6014 .access = PL1_R, .type = ARM_CP_CONST,
6016 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6018 .access = PL1_R, .type = ARM_CP_CONST,
6020 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6022 .access = PL1_R, .type = ARM_CP_CONST,
6023 .resetvalue = cpu->id_aa64afr0 },
6024 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6026 .access = PL1_R, .type = ARM_CP_CONST,
6027 .resetvalue = cpu->id_aa64afr1 },
6028 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6030 .access = PL1_R, .type = ARM_CP_CONST,
6032 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6034 .access = PL1_R, .type = ARM_CP_CONST,
6036 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6038 .access = PL1_R, .type = ARM_CP_CONST,
6039 .resetvalue = cpu->isar.id_aa64isar0 },
6040 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6042 .access = PL1_R, .type = ARM_CP_CONST,
6043 .resetvalue = cpu->isar.id_aa64isar1 },
6044 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6046 .access = PL1_R, .type = ARM_CP_CONST,
6048 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6050 .access = PL1_R, .type = ARM_CP_CONST,
6052 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6053 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6054 .access = PL1_R, .type = ARM_CP_CONST,
6056 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6058 .access = PL1_R, .type = ARM_CP_CONST,
6060 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6062 .access = PL1_R, .type = ARM_CP_CONST,
6064 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6066 .access = PL1_R, .type = ARM_CP_CONST,
6068 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6070 .access = PL1_R, .type = ARM_CP_CONST,
6071 .resetvalue = cpu->isar.id_aa64mmfr0 },
6072 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6074 .access = PL1_R, .type = ARM_CP_CONST,
6075 .resetvalue = cpu->isar.id_aa64mmfr1 },
6076 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6078 .access = PL1_R, .type = ARM_CP_CONST,
6080 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6082 .access = PL1_R, .type = ARM_CP_CONST,
6084 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6086 .access = PL1_R, .type = ARM_CP_CONST,
6088 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6090 .access = PL1_R, .type = ARM_CP_CONST,
6092 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6094 .access = PL1_R, .type = ARM_CP_CONST,
6096 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6098 .access = PL1_R, .type = ARM_CP_CONST,
6100 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6102 .access = PL1_R, .type = ARM_CP_CONST,
6103 .resetvalue = cpu->isar.mvfr0 },
6104 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6106 .access = PL1_R, .type = ARM_CP_CONST,
6107 .resetvalue = cpu->isar.mvfr1 },
6108 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6110 .access = PL1_R, .type = ARM_CP_CONST,
6111 .resetvalue = cpu->isar.mvfr2 },
6112 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6114 .access = PL1_R, .type = ARM_CP_CONST,
6116 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6118 .access = PL1_R, .type = ARM_CP_CONST,
6120 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6122 .access = PL1_R, .type = ARM_CP_CONST,
6124 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6126 .access = PL1_R, .type = ARM_CP_CONST,
6128 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6130 .access = PL1_R, .type = ARM_CP_CONST,
6132 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6133 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6134 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6135 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6136 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6138 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6139 .resetvalue = cpu->pmceid0 },
6140 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6141 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6142 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6143 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6144 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6146 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6147 .resetvalue = cpu->pmceid1 },
6150 #ifdef CONFIG_USER_ONLY
6151 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6152 { .name = "ID_AA64PFR0_EL1",
6153 .exported_bits = 0x000f000f00ff0000,
6154 .fixed_bits = 0x0000000000000011 },
6155 { .name = "ID_AA64PFR1_EL1",
6156 .exported_bits = 0x00000000000000f0 },
6157 { .name = "ID_AA64PFR*_EL1_RESERVED",
6159 { .name = "ID_AA64ZFR0_EL1" },
6160 { .name = "ID_AA64MMFR0_EL1",
6161 .fixed_bits = 0x00000000ff000000 },
6162 { .name = "ID_AA64MMFR1_EL1" },
6163 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6165 { .name = "ID_AA64DFR0_EL1",
6166 .fixed_bits = 0x0000000000000006 },
6167 { .name = "ID_AA64DFR1_EL1" },
6168 { .name = "ID_AA64DFR*_EL1_RESERVED",
6170 { .name = "ID_AA64AFR*",
6172 { .name = "ID_AA64ISAR0_EL1",
6173 .exported_bits = 0x00fffffff0fffff0 },
6174 { .name = "ID_AA64ISAR1_EL1",
6175 .exported_bits = 0x000000f0ffffffff },
6176 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6178 REGUSERINFO_SENTINEL
6180 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6182 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6183 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6184 !arm_feature(env, ARM_FEATURE_EL2)) {
6185 ARMCPRegInfo rvbar = {
6186 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6187 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6188 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6190 define_one_arm_cp_reg(cpu, &rvbar);
6192 define_arm_cp_regs(cpu, v8_idregs);
6193 define_arm_cp_regs(cpu, v8_cp_reginfo);
6195 if (arm_feature(env, ARM_FEATURE_EL2)) {
6196 uint64_t vmpidr_def = mpidr_read_val(env);
6197 ARMCPRegInfo vpidr_regs[] = {
6198 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6199 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6200 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6201 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6202 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6203 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6204 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6205 .access = PL2_RW, .resetvalue = cpu->midr,
6206 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6207 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6208 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6209 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6210 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6211 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6212 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6213 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6215 .resetvalue = vmpidr_def,
6216 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6219 define_arm_cp_regs(cpu, vpidr_regs);
6220 define_arm_cp_regs(cpu, el2_cp_reginfo);
6221 if (arm_feature(env, ARM_FEATURE_V8)) {
6222 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6224 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6225 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6226 ARMCPRegInfo rvbar = {
6227 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6228 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6229 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6231 define_one_arm_cp_reg(cpu, &rvbar);
6234 /* If EL2 is missing but higher ELs are enabled, we need to
6235 * register the no_el2 reginfos.
6237 if (arm_feature(env, ARM_FEATURE_EL3)) {
6238 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6239 * of MIDR_EL1 and MPIDR_EL1.
6241 ARMCPRegInfo vpidr_regs[] = {
6242 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6243 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6244 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6245 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6246 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6247 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6248 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6249 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6250 .type = ARM_CP_NO_RAW,
6251 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6254 define_arm_cp_regs(cpu, vpidr_regs);
6255 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6256 if (arm_feature(env, ARM_FEATURE_V8)) {
6257 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6261 if (arm_feature(env, ARM_FEATURE_EL3)) {
6262 define_arm_cp_regs(cpu, el3_cp_reginfo);
6263 ARMCPRegInfo el3_regs[] = {
6264 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6265 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6266 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6267 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6268 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6270 .raw_writefn = raw_write, .writefn = sctlr_write,
6271 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6272 .resetvalue = cpu->reset_sctlr },
6276 define_arm_cp_regs(cpu, el3_regs);
6278 /* The behaviour of NSACR is sufficiently various that we don't
6279 * try to describe it in a single reginfo:
6280 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6281 * reads as constant 0xc00 from NS EL1 and NS EL2
6282 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6283 * if v7 without EL3, register doesn't exist
6284 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6286 if (arm_feature(env, ARM_FEATURE_EL3)) {
6287 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6288 ARMCPRegInfo nsacr = {
6289 .name = "NSACR", .type = ARM_CP_CONST,
6290 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6291 .access = PL1_RW, .accessfn = nsacr_access,
6294 define_one_arm_cp_reg(cpu, &nsacr);
6296 ARMCPRegInfo nsacr = {
6298 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6299 .access = PL3_RW | PL1_R,
6301 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6303 define_one_arm_cp_reg(cpu, &nsacr);
6306 if (arm_feature(env, ARM_FEATURE_V8)) {
6307 ARMCPRegInfo nsacr = {
6308 .name = "NSACR", .type = ARM_CP_CONST,
6309 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6313 define_one_arm_cp_reg(cpu, &nsacr);
6317 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6318 if (arm_feature(env, ARM_FEATURE_V6)) {
6319 /* PMSAv6 not implemented */
6320 assert(arm_feature(env, ARM_FEATURE_V7));
6321 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6322 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6324 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6327 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6328 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6329 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6330 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6331 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6334 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6335 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6337 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6338 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6340 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6341 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6343 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6344 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6346 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6347 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6349 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6350 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6352 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6353 define_arm_cp_regs(cpu, omap_cp_reginfo);
6355 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6356 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6358 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6359 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6361 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6362 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6364 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6365 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6367 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6368 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6369 * be read-only (ie write causes UNDEF exception).
6372 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6373 /* Pre-v8 MIDR space.
6374 * Note that the MIDR isn't a simple constant register because
6375 * of the TI925 behaviour where writes to another register can
6376 * cause the MIDR value to change.
6378 * Unimplemented registers in the c15 0 0 0 space default to
6379 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6380 * and friends override accordingly.
6383 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6384 .access = PL1_R, .resetvalue = cpu->midr,
6385 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6386 .readfn = midr_read,
6387 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6388 .type = ARM_CP_OVERRIDE },
6389 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6391 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6392 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6394 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6395 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6397 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6398 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6400 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6401 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6403 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6404 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6407 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6408 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6410 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6411 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6412 .readfn = midr_read },
6413 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6414 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6416 .access = PL1_R, .resetvalue = cpu->midr },
6417 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6418 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6419 .access = PL1_R, .resetvalue = cpu->midr },
6420 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6425 ARMCPRegInfo id_cp_reginfo[] = {
6426 /* These are common to v8 and pre-v8 */
6428 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6429 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6430 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6431 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6432 .access = PL0_R, .accessfn = ctr_el0_access,
6433 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6434 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6436 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6437 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6440 /* TLBTR is specific to VMSA */
6441 ARMCPRegInfo id_tlbtr_reginfo = {
6443 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6444 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6446 /* MPUIR is specific to PMSA V6+ */
6447 ARMCPRegInfo id_mpuir_reginfo = {
6449 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6450 .access = PL1_R, .type = ARM_CP_CONST,
6451 .resetvalue = cpu->pmsav7_dregion << 8
6453 ARMCPRegInfo crn0_wi_reginfo = {
6454 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6455 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6456 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6458 #ifdef CONFIG_USER_ONLY
6459 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6460 { .name = "MIDR_EL1",
6461 .exported_bits = 0x00000000ffffffff },
6462 { .name = "REVIDR_EL1" },
6463 REGUSERINFO_SENTINEL
6465 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6467 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6468 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6470 /* Register the blanket "writes ignored" value first to cover the
6471 * whole space. Then update the specific ID registers to allow write
6472 * access, so that they ignore writes rather than causing them to
6475 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6476 for (r = id_pre_v8_midr_cp_reginfo;
6477 r->type != ARM_CP_SENTINEL; r++) {
6480 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6483 id_mpuir_reginfo.access = PL1_RW;
6484 id_tlbtr_reginfo.access = PL1_RW;
6486 if (arm_feature(env, ARM_FEATURE_V8)) {
6487 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6489 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6491 define_arm_cp_regs(cpu, id_cp_reginfo);
6492 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6493 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6494 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6495 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6499 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6500 ARMCPRegInfo mpidr_cp_reginfo[] = {
6501 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6502 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6503 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6506 #ifdef CONFIG_USER_ONLY
6507 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6508 { .name = "MPIDR_EL1",
6509 .fixed_bits = 0x0000000080000000 },
6510 REGUSERINFO_SENTINEL
6512 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6514 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6517 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6518 ARMCPRegInfo auxcr_reginfo[] = {
6519 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6520 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6521 .access = PL1_RW, .type = ARM_CP_CONST,
6522 .resetvalue = cpu->reset_auxcr },
6523 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6524 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6525 .access = PL2_RW, .type = ARM_CP_CONST,
6527 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6528 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6529 .access = PL3_RW, .type = ARM_CP_CONST,
6533 define_arm_cp_regs(cpu, auxcr_reginfo);
6534 if (arm_feature(env, ARM_FEATURE_V8)) {
6535 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6536 ARMCPRegInfo hactlr2_reginfo = {
6537 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6538 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6539 .access = PL2_RW, .type = ARM_CP_CONST,
6542 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6546 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6547 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6548 /* 32 bit view is [31:18] 0...0 [43:32]. */
6549 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6550 | extract64(cpu->reset_cbar, 32, 12);
6551 ARMCPRegInfo cbar_reginfo[] = {
6553 .type = ARM_CP_CONST,
6554 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6555 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6556 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6557 .type = ARM_CP_CONST,
6558 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6559 .access = PL1_R, .resetvalue = cbar32 },
6562 /* We don't implement a r/w 64 bit CBAR currently */
6563 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6564 define_arm_cp_regs(cpu, cbar_reginfo);
6566 ARMCPRegInfo cbar = {
6568 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6569 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6570 .fieldoffset = offsetof(CPUARMState,
6571 cp15.c15_config_base_address)
6573 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6574 cbar.access = PL1_R;
6575 cbar.fieldoffset = 0;
6576 cbar.type = ARM_CP_CONST;
6578 define_one_arm_cp_reg(cpu, &cbar);
6582 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6583 ARMCPRegInfo vbar_cp_reginfo[] = {
6584 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6585 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6586 .access = PL1_RW, .writefn = vbar_write,
6587 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6588 offsetof(CPUARMState, cp15.vbar_ns) },
6592 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6595 /* Generic registers whose values depend on the implementation */
6597 ARMCPRegInfo sctlr = {
6598 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6599 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6601 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6602 offsetof(CPUARMState, cp15.sctlr_ns) },
6603 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6604 .raw_writefn = raw_write,
6606 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6607 /* Normally we would always end the TB on an SCTLR write, but Linux
6608 * arch/arm/mach-pxa/sleep.S expects two instructions following
6609 * an MMU enable to execute from cache. Imitate this behaviour.
6611 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6613 define_one_arm_cp_reg(cpu, &sctlr);
6616 if (cpu_isar_feature(aa64_lor, cpu)) {
6618 * A trivial implementation of ARMv8.1-LOR leaves all of these
6619 * registers fixed at 0, which indicates that there are zero
6620 * supported Limited Ordering regions.
6622 static const ARMCPRegInfo lor_reginfo[] = {
6623 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6624 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6625 .access = PL1_RW, .accessfn = access_lor_other,
6626 .type = ARM_CP_CONST, .resetvalue = 0 },
6627 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6628 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6629 .access = PL1_RW, .accessfn = access_lor_other,
6630 .type = ARM_CP_CONST, .resetvalue = 0 },
6631 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6632 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6633 .access = PL1_RW, .accessfn = access_lor_other,
6634 .type = ARM_CP_CONST, .resetvalue = 0 },
6635 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6636 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6637 .access = PL1_RW, .accessfn = access_lor_other,
6638 .type = ARM_CP_CONST, .resetvalue = 0 },
6639 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6640 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6641 .access = PL1_R, .accessfn = access_lorid,
6642 .type = ARM_CP_CONST, .resetvalue = 0 },
6645 define_arm_cp_regs(cpu, lor_reginfo);
6648 if (cpu_isar_feature(aa64_sve, cpu)) {
6649 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6650 if (arm_feature(env, ARM_FEATURE_EL2)) {
6651 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6653 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6655 if (arm_feature(env, ARM_FEATURE_EL3)) {
6656 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6660 #ifdef TARGET_AARCH64
6661 if (cpu_isar_feature(aa64_pauth, cpu)) {
6662 define_arm_cp_regs(cpu, pauth_reginfo);
6667 * While all v8.0 cpus support aarch64, QEMU does have configurations
6668 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6669 * which will set ID_ISAR6.
6671 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6672 ? cpu_isar_feature(aa64_predinv, cpu)
6673 : cpu_isar_feature(aa32_predinv, cpu)) {
6674 define_arm_cp_regs(cpu, predinv_reginfo);
6678 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6680 CPUState *cs = CPU(cpu);
6681 CPUARMState *env = &cpu->env;
6683 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6684 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6685 aarch64_fpu_gdb_set_reg,
6686 34, "aarch64-fpu.xml", 0);
6687 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6688 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6689 51, "arm-neon.xml", 0);
6690 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6691 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6692 35, "arm-vfp3.xml", 0);
6693 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6694 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6695 19, "arm-vfp.xml", 0);
6697 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6698 arm_gen_dynamic_xml(cs),
6699 "system-registers.xml", 0);
6702 /* Sort alphabetically by type name, except for "any". */
6703 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6705 ObjectClass *class_a = (ObjectClass *)a;
6706 ObjectClass *class_b = (ObjectClass *)b;
6707 const char *name_a, *name_b;
6709 name_a = object_class_get_name(class_a);
6710 name_b = object_class_get_name(class_b);
6711 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6713 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6716 return strcmp(name_a, name_b);
6720 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6722 ObjectClass *oc = data;
6723 CPUListState *s = user_data;
6724 const char *typename;
6727 typename = object_class_get_name(oc);
6728 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6729 (*s->cpu_fprintf)(s->file, " %s\n",
6734 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6738 .cpu_fprintf = cpu_fprintf,
6742 list = object_class_get_list(TYPE_ARM_CPU, false);
6743 list = g_slist_sort(list, arm_cpu_list_compare);
6744 (*cpu_fprintf)(f, "Available CPUs:\n");
6745 g_slist_foreach(list, arm_cpu_list_entry, &s);
6749 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6751 ObjectClass *oc = data;
6752 CpuDefinitionInfoList **cpu_list = user_data;
6753 CpuDefinitionInfoList *entry;
6754 CpuDefinitionInfo *info;
6755 const char *typename;
6757 typename = object_class_get_name(oc);
6758 info = g_malloc0(sizeof(*info));
6759 info->name = g_strndup(typename,
6760 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6761 info->q_typename = g_strdup(typename);
6763 entry = g_malloc0(sizeof(*entry));
6764 entry->value = info;
6765 entry->next = *cpu_list;
6769 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6771 CpuDefinitionInfoList *cpu_list = NULL;
6774 list = object_class_get_list(TYPE_ARM_CPU, false);
6775 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6781 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6782 void *opaque, int state, int secstate,
6783 int crm, int opc1, int opc2,
6786 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6787 * add a single reginfo struct to the hash table.
6789 uint32_t *key = g_new(uint32_t, 1);
6790 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6791 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6792 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6794 r2->name = g_strdup(name);
6795 /* Reset the secure state to the specific incoming state. This is
6796 * necessary as the register may have been defined with both states.
6798 r2->secure = secstate;
6800 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6801 /* Register is banked (using both entries in array).
6802 * Overwriting fieldoffset as the array is only used to define
6803 * banked registers but later only fieldoffset is used.
6805 r2->fieldoffset = r->bank_fieldoffsets[ns];
6808 if (state == ARM_CP_STATE_AA32) {
6809 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6810 /* If the register is banked then we don't need to migrate or
6811 * reset the 32-bit instance in certain cases:
6813 * 1) If the register has both 32-bit and 64-bit instances then we
6814 * can count on the 64-bit instance taking care of the
6816 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6817 * taking care of the secure bank. This requires that separate
6818 * 32 and 64-bit definitions are provided.
6820 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6821 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6822 r2->type |= ARM_CP_ALIAS;
6824 } else if ((secstate != r->secure) && !ns) {
6825 /* The register is not banked so we only want to allow migration of
6826 * the non-secure instance.
6828 r2->type |= ARM_CP_ALIAS;
6831 if (r->state == ARM_CP_STATE_BOTH) {
6832 /* We assume it is a cp15 register if the .cp field is left unset.
6838 #ifdef HOST_WORDS_BIGENDIAN
6839 if (r2->fieldoffset) {
6840 r2->fieldoffset += sizeof(uint32_t);
6845 if (state == ARM_CP_STATE_AA64) {
6846 /* To allow abbreviation of ARMCPRegInfo
6847 * definitions, we treat cp == 0 as equivalent to
6848 * the value for "standard guest-visible sysreg".
6849 * STATE_BOTH definitions are also always "standard
6850 * sysreg" in their AArch64 view (the .cp value may
6851 * be non-zero for the benefit of the AArch32 view).
6853 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6854 r2->cp = CP_REG_ARM64_SYSREG_CP;
6856 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6857 r2->opc0, opc1, opc2);
6859 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6862 r2->opaque = opaque;
6864 /* reginfo passed to helpers is correct for the actual access,
6865 * and is never ARM_CP_STATE_BOTH:
6868 /* Make sure reginfo passed to helpers for wildcarded regs
6869 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6874 /* By convention, for wildcarded registers only the first
6875 * entry is used for migration; the others are marked as
6876 * ALIAS so we don't try to transfer the register
6877 * multiple times. Special registers (ie NOP/WFI) are
6878 * never migratable and not even raw-accessible.
6880 if ((r->type & ARM_CP_SPECIAL)) {
6881 r2->type |= ARM_CP_NO_RAW;
6883 if (((r->crm == CP_ANY) && crm != 0) ||
6884 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6885 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6886 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6889 /* Check that raw accesses are either forbidden or handled. Note that
6890 * we can't assert this earlier because the setup of fieldoffset for
6891 * banked registers has to be done first.
6893 if (!(r2->type & ARM_CP_NO_RAW)) {
6894 assert(!raw_accessors_invalid(r2));
6897 /* Overriding of an existing definition must be explicitly
6900 if (!(r->type & ARM_CP_OVERRIDE)) {
6901 ARMCPRegInfo *oldreg;
6902 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6903 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6904 fprintf(stderr, "Register redefined: cp=%d %d bit "
6905 "crn=%d crm=%d opc1=%d opc2=%d, "
6906 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6907 r2->crn, r2->crm, r2->opc1, r2->opc2,
6908 oldreg->name, r2->name);
6909 g_assert_not_reached();
6912 g_hash_table_insert(cpu->cp_regs, key, r2);
6916 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6917 const ARMCPRegInfo *r, void *opaque)
6919 /* Define implementations of coprocessor registers.
6920 * We store these in a hashtable because typically
6921 * there are less than 150 registers in a space which
6922 * is 16*16*16*8*8 = 262144 in size.
6923 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6924 * If a register is defined twice then the second definition is
6925 * used, so this can be used to define some generic registers and
6926 * then override them with implementation specific variations.
6927 * At least one of the original and the second definition should
6928 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6929 * against accidental use.
6931 * The state field defines whether the register is to be
6932 * visible in the AArch32 or AArch64 execution state. If the
6933 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6934 * reginfo structure for the AArch32 view, which sees the lower
6935 * 32 bits of the 64 bit register.
6937 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6938 * be wildcarded. AArch64 registers are always considered to be 64
6939 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6940 * the register, if any.
6942 int crm, opc1, opc2, state;
6943 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6944 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6945 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6946 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6947 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6948 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6949 /* 64 bit registers have only CRm and Opc1 fields */
6950 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6951 /* op0 only exists in the AArch64 encodings */
6952 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6953 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6954 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6955 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6956 * encodes a minimum access level for the register. We roll this
6957 * runtime check into our general permission check code, so check
6958 * here that the reginfo's specified permissions are strict enough
6959 * to encompass the generic architectural permission check.
6961 if (r->state != ARM_CP_STATE_AA32) {
6965 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6966 mask = PL0U_R | PL1_RW;
6981 /* unallocated encoding, so not possible */
6989 /* min_EL EL1, secure mode only (we don't check the latter) */
6993 /* broken reginfo with out-of-range opc1 */
6997 /* assert our permissions are not too lax (stricter is fine) */
6998 assert((r->access & ~mask) == 0);
7001 /* Check that the register definition has enough info to handle
7002 * reads and writes if they are permitted.
7004 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7005 if (r->access & PL3_R) {
7006 assert((r->fieldoffset ||
7007 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7010 if (r->access & PL3_W) {
7011 assert((r->fieldoffset ||
7012 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7016 /* Bad type field probably means missing sentinel at end of reg list */
7017 assert(cptype_valid(r->type));
7018 for (crm = crmmin; crm <= crmmax; crm++) {
7019 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7020 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7021 for (state = ARM_CP_STATE_AA32;
7022 state <= ARM_CP_STATE_AA64; state++) {
7023 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7026 if (state == ARM_CP_STATE_AA32) {
7027 /* Under AArch32 CP registers can be common
7028 * (same for secure and non-secure world) or banked.
7032 switch (r->secure) {
7033 case ARM_CP_SECSTATE_S:
7034 case ARM_CP_SECSTATE_NS:
7035 add_cpreg_to_hashtable(cpu, r, opaque, state,
7036 r->secure, crm, opc1, opc2,
7040 name = g_strdup_printf("%s_S", r->name);
7041 add_cpreg_to_hashtable(cpu, r, opaque, state,
7043 crm, opc1, opc2, name);
7045 add_cpreg_to_hashtable(cpu, r, opaque, state,
7047 crm, opc1, opc2, r->name);
7051 /* AArch64 registers get mapped to non-secure instance
7053 add_cpreg_to_hashtable(cpu, r, opaque, state,
7055 crm, opc1, opc2, r->name);
7063 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7064 const ARMCPRegInfo *regs, void *opaque)
7066 /* Define a whole list of registers */
7067 const ARMCPRegInfo *r;
7068 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7069 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7074 * Modify ARMCPRegInfo for access from userspace.
7076 * This is a data driven modification directed by
7077 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7078 * user-space cannot alter any values and dynamic values pertaining to
7079 * execution state are hidden from user space view anyway.
7081 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7083 const ARMCPRegUserSpaceInfo *m;
7086 for (m = mods; m->name; m++) {
7087 GPatternSpec *pat = NULL;
7089 pat = g_pattern_spec_new(m->name);
7091 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7092 if (pat && g_pattern_match_string(pat, r->name)) {
7093 r->type = ARM_CP_CONST;
7097 } else if (strcmp(r->name, m->name) == 0) {
7098 r->type = ARM_CP_CONST;
7100 r->resetvalue &= m->exported_bits;
7101 r->resetvalue |= m->fixed_bits;
7106 g_pattern_spec_free(pat);
7111 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7113 return g_hash_table_lookup(cpregs, &encoded_cp);
7116 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7119 /* Helper coprocessor write function for write-ignore registers */
7122 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7124 /* Helper coprocessor write function for read-as-zero registers */
7128 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7130 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7133 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7135 /* Return true if it is not valid for us to switch to
7136 * this CPU mode (ie all the UNPREDICTABLE cases in
7137 * the ARM ARM CPSRWriteByInstr pseudocode).
7140 /* Changes to or from Hyp via MSR and CPS are illegal. */
7141 if (write_type == CPSRWriteByInstr &&
7142 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7143 mode == ARM_CPU_MODE_HYP)) {
7148 case ARM_CPU_MODE_USR:
7150 case ARM_CPU_MODE_SYS:
7151 case ARM_CPU_MODE_SVC:
7152 case ARM_CPU_MODE_ABT:
7153 case ARM_CPU_MODE_UND:
7154 case ARM_CPU_MODE_IRQ:
7155 case ARM_CPU_MODE_FIQ:
7156 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7157 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7159 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7160 * and CPS are treated as illegal mode changes.
7162 if (write_type == CPSRWriteByInstr &&
7163 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7164 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7168 case ARM_CPU_MODE_HYP:
7169 return !arm_feature(env, ARM_FEATURE_EL2)
7170 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7171 case ARM_CPU_MODE_MON:
7172 return arm_current_el(env) < 3;
7178 uint32_t cpsr_read(CPUARMState *env)
7181 ZF = (env->ZF == 0);
7182 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7183 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7184 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7185 | ((env->condexec_bits & 0xfc) << 8)
7186 | (env->GE << 16) | (env->daif & CPSR_AIF);
7189 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7190 CPSRWriteType write_type)
7192 uint32_t changed_daif;
7194 if (mask & CPSR_NZCV) {
7195 env->ZF = (~val) & CPSR_Z;
7197 env->CF = (val >> 29) & 1;
7198 env->VF = (val << 3) & 0x80000000;
7201 env->QF = ((val & CPSR_Q) != 0);
7203 env->thumb = ((val & CPSR_T) != 0);
7204 if (mask & CPSR_IT_0_1) {
7205 env->condexec_bits &= ~3;
7206 env->condexec_bits |= (val >> 25) & 3;
7208 if (mask & CPSR_IT_2_7) {
7209 env->condexec_bits &= 3;
7210 env->condexec_bits |= (val >> 8) & 0xfc;
7212 if (mask & CPSR_GE) {
7213 env->GE = (val >> 16) & 0xf;
7216 /* In a V7 implementation that includes the security extensions but does
7217 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7218 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7219 * bits respectively.
7221 * In a V8 implementation, it is permitted for privileged software to
7222 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7224 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7225 arm_feature(env, ARM_FEATURE_EL3) &&
7226 !arm_feature(env, ARM_FEATURE_EL2) &&
7227 !arm_is_secure(env)) {
7229 changed_daif = (env->daif ^ val) & mask;
7231 if (changed_daif & CPSR_A) {
7232 /* Check to see if we are allowed to change the masking of async
7233 * abort exceptions from a non-secure state.
7235 if (!(env->cp15.scr_el3 & SCR_AW)) {
7236 qemu_log_mask(LOG_GUEST_ERROR,
7237 "Ignoring attempt to switch CPSR_A flag from "
7238 "non-secure world with SCR.AW bit clear\n");
7243 if (changed_daif & CPSR_F) {
7244 /* Check to see if we are allowed to change the masking of FIQ
7245 * exceptions from a non-secure state.
7247 if (!(env->cp15.scr_el3 & SCR_FW)) {
7248 qemu_log_mask(LOG_GUEST_ERROR,
7249 "Ignoring attempt to switch CPSR_F flag from "
7250 "non-secure world with SCR.FW bit clear\n");
7254 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7255 * If this bit is set software is not allowed to mask
7256 * FIQs, but is allowed to set CPSR_F to 0.
7258 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7260 qemu_log_mask(LOG_GUEST_ERROR,
7261 "Ignoring attempt to enable CPSR_F flag "
7262 "(non-maskable FIQ [NMFI] support enabled)\n");
7268 env->daif &= ~(CPSR_AIF & mask);
7269 env->daif |= val & CPSR_AIF & mask;
7271 if (write_type != CPSRWriteRaw &&
7272 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7273 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7274 /* Note that we can only get here in USR mode if this is a
7275 * gdb stub write; for this case we follow the architectural
7276 * behaviour for guest writes in USR mode of ignoring an attempt
7277 * to switch mode. (Those are caught by translate.c for writes
7278 * triggered by guest instructions.)
7281 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7282 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7283 * v7, and has defined behaviour in v8:
7284 * + leave CPSR.M untouched
7285 * + allow changes to the other CPSR fields
7287 * For user changes via the GDB stub, we don't set PSTATE.IL,
7288 * as this would be unnecessarily harsh for a user error.
7291 if (write_type != CPSRWriteByGDBStub &&
7292 arm_feature(env, ARM_FEATURE_V8)) {
7296 qemu_log_mask(LOG_GUEST_ERROR,
7297 "Illegal AArch32 mode switch attempt from %s to %s\n",
7298 aarch32_mode_name(env->uncached_cpsr),
7299 aarch32_mode_name(val));
7301 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7302 write_type == CPSRWriteExceptionReturn ?
7303 "Exception return from AArch32" :
7304 "AArch32 mode switch from",
7305 aarch32_mode_name(env->uncached_cpsr),
7306 aarch32_mode_name(val), env->regs[15]);
7307 switch_mode(env, val & CPSR_M);
7310 mask &= ~CACHED_CPSR_BITS;
7311 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7314 /* Sign/zero extend */
7315 uint32_t HELPER(sxtb16)(uint32_t x)
7318 res = (uint16_t)(int8_t)x;
7319 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7323 uint32_t HELPER(uxtb16)(uint32_t x)
7326 res = (uint16_t)(uint8_t)x;
7327 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7331 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7335 if (num == INT_MIN && den == -1)
7340 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7347 uint32_t HELPER(rbit)(uint32_t x)
7352 #ifdef CONFIG_USER_ONLY
7354 /* These should probably raise undefined insn exceptions. */
7355 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7357 ARMCPU *cpu = arm_env_get_cpu(env);
7359 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7362 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7364 ARMCPU *cpu = arm_env_get_cpu(env);
7366 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7370 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7372 /* translate.c should never generate calls here in user-only mode */
7373 g_assert_not_reached();
7376 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7378 /* translate.c should never generate calls here in user-only mode */
7379 g_assert_not_reached();
7382 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7384 /* The TT instructions can be used by unprivileged code, but in
7385 * user-only emulation we don't have the MPU.
7386 * Luckily since we know we are NonSecure unprivileged (and that in
7387 * turn means that the A flag wasn't specified), all the bits in the
7388 * register must be zero:
7389 * IREGION: 0 because IRVALID is 0
7390 * IRVALID: 0 because NS
7392 * NSRW: 0 because NS
7394 * RW: 0 because unpriv and A flag not set
7395 * R: 0 because unpriv and A flag not set
7396 * SRVALID: 0 because NS
7397 * MRVALID: 0 because unpriv and A flag not set
7398 * SREGION: 0 becaus SRVALID is 0
7399 * MREGION: 0 because MRVALID is 0
7404 static void switch_mode(CPUARMState *env, int mode)
7406 ARMCPU *cpu = arm_env_get_cpu(env);
7408 if (mode != ARM_CPU_MODE_USR) {
7409 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7413 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7414 uint32_t cur_el, bool secure)
7419 void aarch64_sync_64_to_32(CPUARMState *env)
7421 g_assert_not_reached();
7426 static void switch_mode(CPUARMState *env, int mode)
7431 old_mode = env->uncached_cpsr & CPSR_M;
7432 if (mode == old_mode)
7435 if (old_mode == ARM_CPU_MODE_FIQ) {
7436 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7437 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7438 } else if (mode == ARM_CPU_MODE_FIQ) {
7439 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7440 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7443 i = bank_number(old_mode);
7444 env->banked_r13[i] = env->regs[13];
7445 env->banked_spsr[i] = env->spsr;
7447 i = bank_number(mode);
7448 env->regs[13] = env->banked_r13[i];
7449 env->spsr = env->banked_spsr[i];
7451 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7452 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7455 /* Physical Interrupt Target EL Lookup Table
7457 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7459 * The below multi-dimensional table is used for looking up the target
7460 * exception level given numerous condition criteria. Specifically, the
7461 * target EL is based on SCR and HCR routing controls as well as the
7462 * currently executing EL and secure state.
7465 * target_el_table[2][2][2][2][2][4]
7466 * | | | | | +--- Current EL
7467 * | | | | +------ Non-secure(0)/Secure(1)
7468 * | | | +--------- HCR mask override
7469 * | | +------------ SCR exec state control
7470 * | +--------------- SCR mask override
7471 * +------------------ 32-bit(0)/64-bit(1) EL3
7473 * The table values are as such:
7477 * The ARM ARM target EL table includes entries indicating that an "exception
7478 * is not taken". The two cases where this is applicable are:
7479 * 1) An exception is taken from EL3 but the SCR does not have the exception
7481 * 2) An exception is taken from EL2 but the HCR does not have the exception
7483 * In these two cases, the below table contain a target of EL1. This value is
7484 * returned as it is expected that the consumer of the table data will check
7485 * for "target EL >= current EL" to ensure the exception is not taken.
7489 * BIT IRQ IMO Non-secure Secure
7490 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7492 static const int8_t target_el_table[2][2][2][2][2][4] = {
7493 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7494 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7495 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7496 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7497 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7498 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7499 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7500 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7501 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7502 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7503 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7504 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7505 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7506 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7507 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7508 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7512 * Determine the target EL for physical exceptions
7514 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7515 uint32_t cur_el, bool secure)
7517 CPUARMState *env = cs->env_ptr;
7522 /* Is the highest EL AArch64? */
7523 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7526 if (arm_feature(env, ARM_FEATURE_EL3)) {
7527 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7529 /* Either EL2 is the highest EL (and so the EL2 register width
7530 * is given by is64); or there is no EL2 or EL3, in which case
7531 * the value of 'rw' does not affect the table lookup anyway.
7536 hcr_el2 = arm_hcr_el2_eff(env);
7539 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7540 hcr = hcr_el2 & HCR_IMO;
7543 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7544 hcr = hcr_el2 & HCR_FMO;
7547 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7548 hcr = hcr_el2 & HCR_AMO;
7552 /* Perform a table-lookup for the target EL given the current state */
7553 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7555 assert(target_el > 0);
7560 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7561 ARMMMUIdx mmu_idx, bool ignfault)
7563 CPUState *cs = CPU(cpu);
7564 CPUARMState *env = &cpu->env;
7565 MemTxAttrs attrs = {};
7567 target_ulong page_size;
7570 ARMMMUFaultInfo fi = {};
7571 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7575 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7576 &attrs, &prot, &page_size, &fi, NULL)) {
7577 /* MPU/SAU lookup failed */
7578 if (fi.type == ARMFault_QEMU_SFault) {
7579 qemu_log_mask(CPU_LOG_INT,
7580 "...SecureFault with SFSR.AUVIOL during stacking\n");
7581 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7582 env->v7m.sfar = addr;
7583 exc = ARMV7M_EXCP_SECURE;
7586 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7587 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7588 exc = ARMV7M_EXCP_MEM;
7589 exc_secure = secure;
7593 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7595 if (txres != MEMTX_OK) {
7596 /* BusFault trying to write the data */
7597 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7598 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7599 exc = ARMV7M_EXCP_BUS;
7606 /* By pending the exception at this point we are making
7607 * the IMPDEF choice "overridden exceptions pended" (see the
7608 * MergeExcInfo() pseudocode). The other choice would be to not
7609 * pend them now and then make a choice about which to throw away
7610 * later if we have two derived exceptions.
7611 * The only case when we must not pend the exception but instead
7612 * throw it away is if we are doing the push of the callee registers
7613 * and we've already generated a derived exception. Even in this
7614 * case we will still update the fault status registers.
7617 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7622 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7625 CPUState *cs = CPU(cpu);
7626 CPUARMState *env = &cpu->env;
7627 MemTxAttrs attrs = {};
7629 target_ulong page_size;
7632 ARMMMUFaultInfo fi = {};
7633 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7638 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7639 &attrs, &prot, &page_size, &fi, NULL)) {
7640 /* MPU/SAU lookup failed */
7641 if (fi.type == ARMFault_QEMU_SFault) {
7642 qemu_log_mask(CPU_LOG_INT,
7643 "...SecureFault with SFSR.AUVIOL during unstack\n");
7644 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7645 env->v7m.sfar = addr;
7646 exc = ARMV7M_EXCP_SECURE;
7649 qemu_log_mask(CPU_LOG_INT,
7650 "...MemManageFault with CFSR.MUNSTKERR\n");
7651 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7652 exc = ARMV7M_EXCP_MEM;
7653 exc_secure = secure;
7658 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7660 if (txres != MEMTX_OK) {
7661 /* BusFault trying to read the data */
7662 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7663 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7664 exc = ARMV7M_EXCP_BUS;
7673 /* By pending the exception at this point we are making
7674 * the IMPDEF choice "overridden exceptions pended" (see the
7675 * MergeExcInfo() pseudocode). The other choice would be to not
7676 * pend them now and then make a choice about which to throw away
7677 * later if we have two derived exceptions.
7679 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7683 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7684 * This may change the current stack pointer between Main and Process
7685 * stack pointers if it is done for the CONTROL register for the current
7688 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7692 bool old_is_psp = v7m_using_psp(env);
7694 env->v7m.control[secstate] =
7695 deposit32(env->v7m.control[secstate],
7696 R_V7M_CONTROL_SPSEL_SHIFT,
7697 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7699 if (secstate == env->v7m.secure) {
7700 bool new_is_psp = v7m_using_psp(env);
7703 if (old_is_psp != new_is_psp) {
7704 tmp = env->v7m.other_sp;
7705 env->v7m.other_sp = env->regs[13];
7706 env->regs[13] = tmp;
7711 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7712 * stack pointer between Main and Process stack pointers.
7714 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7716 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7719 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7721 /* Write a new value to v7m.exception, thus transitioning into or out
7722 * of Handler mode; this may result in a change of active stack pointer.
7724 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7727 env->v7m.exception = new_exc;
7729 new_is_psp = v7m_using_psp(env);
7731 if (old_is_psp != new_is_psp) {
7732 tmp = env->v7m.other_sp;
7733 env->v7m.other_sp = env->regs[13];
7734 env->regs[13] = tmp;
7738 /* Switch M profile security state between NS and S */
7739 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7741 uint32_t new_ss_msp, new_ss_psp;
7743 if (env->v7m.secure == new_secstate) {
7747 /* All the banked state is accessed by looking at env->v7m.secure
7748 * except for the stack pointer; rearrange the SP appropriately.
7750 new_ss_msp = env->v7m.other_ss_msp;
7751 new_ss_psp = env->v7m.other_ss_psp;
7753 if (v7m_using_psp(env)) {
7754 env->v7m.other_ss_psp = env->regs[13];
7755 env->v7m.other_ss_msp = env->v7m.other_sp;
7757 env->v7m.other_ss_msp = env->regs[13];
7758 env->v7m.other_ss_psp = env->v7m.other_sp;
7761 env->v7m.secure = new_secstate;
7763 if (v7m_using_psp(env)) {
7764 env->regs[13] = new_ss_psp;
7765 env->v7m.other_sp = new_ss_msp;
7767 env->regs[13] = new_ss_msp;
7768 env->v7m.other_sp = new_ss_psp;
7772 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7775 * - if the return value is a magic value, do exception return (like BX)
7776 * - otherwise bit 0 of the return value is the target security state
7780 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7781 /* Covers FNC_RETURN and EXC_RETURN magic */
7782 min_magic = FNC_RETURN_MIN_MAGIC;
7784 /* EXC_RETURN magic only */
7785 min_magic = EXC_RETURN_MIN_MAGIC;
7788 if (dest >= min_magic) {
7789 /* This is an exception return magic value; put it where
7790 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7791 * Note that if we ever add gen_ss_advance() singlestep support to
7792 * M profile this should count as an "instruction execution complete"
7793 * event (compare gen_bx_excret_final_code()).
7795 env->regs[15] = dest & ~1;
7796 env->thumb = dest & 1;
7797 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7801 /* translate.c should have made BXNS UNDEF unless we're secure */
7802 assert(env->v7m.secure);
7804 switch_v7m_security_state(env, dest & 1);
7806 env->regs[15] = dest & ~1;
7809 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7811 /* Handle v7M BLXNS:
7812 * - bit 0 of the destination address is the target security state
7815 /* At this point regs[15] is the address just after the BLXNS */
7816 uint32_t nextinst = env->regs[15] | 1;
7817 uint32_t sp = env->regs[13] - 8;
7820 /* translate.c will have made BLXNS UNDEF unless we're secure */
7821 assert(env->v7m.secure);
7824 /* target is Secure, so this is just a normal BLX,
7825 * except that the low bit doesn't indicate Thumb/not.
7827 env->regs[14] = nextinst;
7829 env->regs[15] = dest & ~1;
7833 /* Target is non-secure: first push a stack frame */
7834 if (!QEMU_IS_ALIGNED(sp, 8)) {
7835 qemu_log_mask(LOG_GUEST_ERROR,
7836 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7839 if (sp < v7m_sp_limit(env)) {
7840 raise_exception(env, EXCP_STKOF, 0, 1);
7843 saved_psr = env->v7m.exception;
7844 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7845 saved_psr |= XPSR_SFPA;
7848 /* Note that these stores can throw exceptions on MPU faults */
7849 cpu_stl_data(env, sp, nextinst);
7850 cpu_stl_data(env, sp + 4, saved_psr);
7853 env->regs[14] = 0xfeffffff;
7854 if (arm_v7m_is_handler_mode(env)) {
7855 /* Write a dummy value to IPSR, to avoid leaking the current secure
7856 * exception number to non-secure code. This is guaranteed not
7857 * to cause write_v7m_exception() to actually change stacks.
7859 write_v7m_exception(env, 1);
7861 switch_v7m_security_state(env, 0);
7863 env->regs[15] = dest;
7866 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7869 /* Return a pointer to the location where we currently store the
7870 * stack pointer for the requested security state and thread mode.
7871 * This pointer will become invalid if the CPU state is updated
7872 * such that the stack pointers are switched around (eg changing
7873 * the SPSEL control bit).
7874 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7875 * Unlike that pseudocode, we require the caller to pass us in the
7876 * SPSEL control bit value; this is because we also use this
7877 * function in handling of pushing of the callee-saves registers
7878 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7879 * and in the tailchain codepath the SPSEL bit comes from the exception
7880 * return magic LR value from the previous exception. The pseudocode
7881 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7882 * to make this utility function generic enough to do the job.
7884 bool want_psp = threadmode && spsel;
7886 if (secure == env->v7m.secure) {
7887 if (want_psp == v7m_using_psp(env)) {
7888 return &env->regs[13];
7890 return &env->v7m.other_sp;
7894 return &env->v7m.other_ss_psp;
7896 return &env->v7m.other_ss_msp;
7901 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7904 CPUState *cs = CPU(cpu);
7905 CPUARMState *env = &cpu->env;
7907 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7908 uint32_t vector_entry;
7909 MemTxAttrs attrs = {};
7913 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7915 /* We don't do a get_phys_addr() here because the rules for vector
7916 * loads are special: they always use the default memory map, and
7917 * the default memory map permits reads from all addresses.
7918 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7919 * that we want this special case which would always say "yes",
7920 * we just do the SAU lookup here followed by a direct physical load.
7922 attrs.secure = targets_secure;
7925 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7926 V8M_SAttributes sattrs = {};
7928 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7930 attrs.secure = false;
7931 } else if (!targets_secure) {
7932 /* NS access to S memory */
7937 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7939 if (result != MEMTX_OK) {
7942 *pvec = vector_entry;
7946 /* All vector table fetch fails are reported as HardFault, with
7947 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7948 * technically the underlying exception is a MemManage or BusFault
7949 * that is escalated to HardFault.) This is a terminal exception,
7950 * so we will either take the HardFault immediately or else enter
7951 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7953 exc_secure = targets_secure ||
7954 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7955 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7956 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7960 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7963 /* For v8M, push the callee-saves register part of the stack frame.
7964 * Compare the v8M pseudocode PushCalleeStack().
7965 * In the tailchaining case this may not be the current stack.
7967 CPUARMState *env = &cpu->env;
7968 uint32_t *frame_sp_p;
7976 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7977 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7980 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7981 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7982 lr & R_V7M_EXCRET_SPSEL_MASK);
7983 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7985 limit = env->v7m.psplim[M_REG_S];
7987 limit = env->v7m.msplim[M_REG_S];
7990 mmu_idx = arm_mmu_idx(env);
7991 frame_sp_p = &env->regs[13];
7992 limit = v7m_sp_limit(env);
7995 frameptr = *frame_sp_p - 0x28;
7996 if (frameptr < limit) {
7998 * Stack limit failure: set SP to the limit value, and generate
7999 * STKOF UsageFault. Stack pushes below the limit must not be
8000 * performed. It is IMPDEF whether pushes above the limit are
8001 * performed; we choose not to.
8003 qemu_log_mask(CPU_LOG_INT,
8004 "...STKOF during callee-saves register stacking\n");
8005 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8006 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8008 *frame_sp_p = limit;
8012 /* Write as much of the stack frame as we can. A write failure may
8013 * cause us to pend a derived exception.
8016 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
8017 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
8019 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
8021 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
8023 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
8025 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
8027 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
8029 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
8031 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
8034 /* Update SP regardless of whether any of the stack accesses failed. */
8035 *frame_sp_p = frameptr;
8040 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8041 bool ignore_stackfaults)
8043 /* Do the "take the exception" parts of exception entry,
8044 * but not the pushing of state to the stack. This is
8045 * similar to the pseudocode ExceptionTaken() function.
8047 CPUARMState *env = &cpu->env;
8049 bool targets_secure;
8051 bool push_failed = false;
8053 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8054 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8055 targets_secure ? "secure" : "nonsecure", exc);
8057 if (arm_feature(env, ARM_FEATURE_V8)) {
8058 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8059 (lr & R_V7M_EXCRET_S_MASK)) {
8060 /* The background code (the owner of the registers in the
8061 * exception frame) is Secure. This means it may either already
8062 * have or now needs to push callee-saves registers.
8064 if (targets_secure) {
8065 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8066 /* We took an exception from Secure to NonSecure
8067 * (which means the callee-saved registers got stacked)
8068 * and are now tailchaining to a Secure exception.
8069 * Clear DCRS so eventual return from this Secure
8070 * exception unstacks the callee-saved registers.
8072 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8075 /* We're going to a non-secure exception; push the
8076 * callee-saves registers to the stack now, if they're
8077 * not already saved.
8079 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8080 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8081 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8082 ignore_stackfaults);
8084 lr |= R_V7M_EXCRET_DCRS_MASK;
8088 lr &= ~R_V7M_EXCRET_ES_MASK;
8089 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8090 lr |= R_V7M_EXCRET_ES_MASK;
8092 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8093 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8094 lr |= R_V7M_EXCRET_SPSEL_MASK;
8097 /* Clear registers if necessary to prevent non-secure exception
8098 * code being able to see register values from secure code.
8099 * Where register values become architecturally UNKNOWN we leave
8100 * them with their previous values.
8102 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8103 if (!targets_secure) {
8104 /* Always clear the caller-saved registers (they have been
8105 * pushed to the stack earlier in v7m_push_stack()).
8106 * Clear callee-saved registers if the background code is
8107 * Secure (in which case these regs were saved in
8108 * v7m_push_callee_stack()).
8112 for (i = 0; i < 13; i++) {
8113 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8114 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8119 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8124 if (push_failed && !ignore_stackfaults) {
8125 /* Derived exception on callee-saves register stacking:
8126 * we might now want to take a different exception which
8127 * targets a different security state, so try again from the top.
8129 qemu_log_mask(CPU_LOG_INT,
8130 "...derived exception on callee-saves register stacking");
8131 v7m_exception_taken(cpu, lr, true, true);
8135 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8136 /* Vector load failed: derived exception */
8137 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8138 v7m_exception_taken(cpu, lr, true, true);
8142 /* Now we've done everything that might cause a derived exception
8143 * we can go ahead and activate whichever exception we're going to
8144 * take (which might now be the derived exception).
8146 armv7m_nvic_acknowledge_irq(env->nvic);
8148 /* Switch to target security state -- must do this before writing SPSEL */
8149 switch_v7m_security_state(env, targets_secure);
8150 write_v7m_control_spsel(env, 0);
8151 arm_clear_exclusive(env);
8153 env->condexec_bits = 0;
8155 env->regs[15] = addr & 0xfffffffe;
8156 env->thumb = addr & 1;
8159 static bool v7m_push_stack(ARMCPU *cpu)
8161 /* Do the "set up stack frame" part of exception entry,
8162 * similar to pseudocode PushStack().
8163 * Return true if we generate a derived exception (and so
8164 * should ignore further stack faults trying to process
8165 * that derived exception.)
8168 CPUARMState *env = &cpu->env;
8169 uint32_t xpsr = xpsr_read(env);
8170 uint32_t frameptr = env->regs[13];
8171 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8173 /* Align stack pointer if the guest wants that */
8174 if ((frameptr & 4) &&
8175 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8177 xpsr |= XPSR_SPREALIGN;
8182 if (arm_feature(env, ARM_FEATURE_V8)) {
8183 uint32_t limit = v7m_sp_limit(env);
8185 if (frameptr < limit) {
8187 * Stack limit failure: set SP to the limit value, and generate
8188 * STKOF UsageFault. Stack pushes below the limit must not be
8189 * performed. It is IMPDEF whether pushes above the limit are
8190 * performed; we choose not to.
8192 qemu_log_mask(CPU_LOG_INT,
8193 "...STKOF during stacking\n");
8194 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8195 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8197 env->regs[13] = limit;
8202 /* Write as much of the stack frame as we can. If we fail a stack
8203 * write this will result in a derived exception being pended
8204 * (which may be taken in preference to the one we started with
8205 * if it has higher priority).
8208 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8209 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8210 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8211 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8212 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8213 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8214 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8215 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8217 /* Update SP regardless of whether any of the stack accesses failed. */
8218 env->regs[13] = frameptr;
8223 static void do_v7m_exception_exit(ARMCPU *cpu)
8225 CPUARMState *env = &cpu->env;
8228 bool ufault = false;
8229 bool sfault = false;
8230 bool return_to_sp_process;
8231 bool return_to_handler;
8232 bool rettobase = false;
8233 bool exc_secure = false;
8234 bool return_to_secure;
8236 /* If we're not in Handler mode then jumps to magic exception-exit
8237 * addresses don't have magic behaviour. However for the v8M
8238 * security extensions the magic secure-function-return has to
8239 * work in thread mode too, so to avoid doing an extra check in
8240 * the generated code we allow exception-exit magic to also cause the
8241 * internal exception and bring us here in thread mode. Correct code
8242 * will never try to do this (the following insn fetch will always
8243 * fault) so we the overhead of having taken an unnecessary exception
8246 if (!arm_v7m_is_handler_mode(env)) {
8250 /* In the spec pseudocode ExceptionReturn() is called directly
8251 * from BXWritePC() and gets the full target PC value including
8252 * bit zero. In QEMU's implementation we treat it as a normal
8253 * jump-to-register (which is then caught later on), and so split
8254 * the target value up between env->regs[15] and env->thumb in
8255 * gen_bx(). Reconstitute it.
8257 excret = env->regs[15];
8262 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8263 " previous exception %d\n",
8264 excret, env->v7m.exception);
8266 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8267 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8268 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8272 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8273 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8274 * we pick which FAULTMASK to clear.
8276 if (!env->v7m.secure &&
8277 ((excret & R_V7M_EXCRET_ES_MASK) ||
8278 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8280 /* For all other purposes, treat ES as 0 (R_HXSR) */
8281 excret &= ~R_V7M_EXCRET_ES_MASK;
8283 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8286 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8287 /* Auto-clear FAULTMASK on return from other than NMI.
8288 * If the security extension is implemented then this only
8289 * happens if the raw execution priority is >= 0; the
8290 * value of the ES bit in the exception return value indicates
8291 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8293 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8294 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8295 env->v7m.faultmask[exc_secure] = 0;
8298 env->v7m.faultmask[M_REG_NS] = 0;
8302 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8305 /* attempt to exit an exception that isn't active */
8309 /* still an irq active now */
8312 /* we returned to base exception level, no nesting.
8313 * (In the pseudocode this is written using "NestedActivation != 1"
8314 * where we have 'rettobase == false'.)
8319 g_assert_not_reached();
8322 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8323 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8324 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8325 (excret & R_V7M_EXCRET_S_MASK);
8327 if (arm_feature(env, ARM_FEATURE_V8)) {
8328 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8329 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8330 * we choose to take the UsageFault.
8332 if ((excret & R_V7M_EXCRET_S_MASK) ||
8333 (excret & R_V7M_EXCRET_ES_MASK) ||
8334 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8338 if (excret & R_V7M_EXCRET_RES0_MASK) {
8342 /* For v7M we only recognize certain combinations of the low bits */
8343 switch (excret & 0xf) {
8344 case 1: /* Return to Handler */
8346 case 13: /* Return to Thread using Process stack */
8347 case 9: /* Return to Thread using Main stack */
8348 /* We only need to check NONBASETHRDENA for v7M, because in
8349 * v8M this bit does not exist (it is RES1).
8352 !(env->v7m.ccr[env->v7m.secure] &
8353 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8363 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8364 * Handler mode (and will be until we write the new XPSR.Interrupt
8365 * field) this does not switch around the current stack pointer.
8366 * We must do this before we do any kind of tailchaining, including
8367 * for the derived exceptions on integrity check failures, or we will
8368 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8370 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8373 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8374 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8375 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8376 "stackframe: failed EXC_RETURN.ES validity check\n");
8377 v7m_exception_taken(cpu, excret, true, false);
8382 /* Bad exception return: instead of popping the exception
8383 * stack, directly take a usage fault on the current stack.
8385 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8386 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8387 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8388 "stackframe: failed exception return integrity check\n");
8389 v7m_exception_taken(cpu, excret, true, false);
8394 * Tailchaining: if there is currently a pending exception that
8395 * is high enough priority to preempt execution at the level we're
8396 * about to return to, then just directly take that exception now,
8397 * avoiding an unstack-and-then-stack. Note that now we have
8398 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8399 * our current execution priority is already the execution priority we are
8400 * returning to -- none of the state we would unstack or set based on
8401 * the EXCRET value affects it.
8403 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8404 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8405 v7m_exception_taken(cpu, excret, true, false);
8409 switch_v7m_security_state(env, return_to_secure);
8412 /* The stack pointer we should be reading the exception frame from
8413 * depends on bits in the magic exception return type value (and
8414 * for v8M isn't necessarily the stack pointer we will eventually
8415 * end up resuming execution with). Get a pointer to the location
8416 * in the CPU state struct where the SP we need is currently being
8417 * stored; we will use and modify it in place.
8418 * We use this limited C variable scope so we don't accidentally
8419 * use 'frame_sp_p' after we do something that makes it invalid.
8421 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8424 return_to_sp_process);
8425 uint32_t frameptr = *frame_sp_p;
8428 bool return_to_priv = return_to_handler ||
8429 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8431 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8434 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8435 arm_feature(env, ARM_FEATURE_V8)) {
8436 qemu_log_mask(LOG_GUEST_ERROR,
8437 "M profile exception return with non-8-aligned SP "
8438 "for destination state is UNPREDICTABLE\n");
8441 /* Do we need to pop callee-saved registers? */
8442 if (return_to_secure &&
8443 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8444 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8445 uint32_t expected_sig = 0xfefa125b;
8446 uint32_t actual_sig;
8448 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8450 if (pop_ok && expected_sig != actual_sig) {
8451 /* Take a SecureFault on the current stack */
8452 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8453 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8454 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8455 "stackframe: failed exception return integrity "
8456 "signature check\n");
8457 v7m_exception_taken(cpu, excret, true, false);
8462 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8463 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8464 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8465 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8466 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8467 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8468 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8469 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8476 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8477 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8478 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8479 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8480 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8481 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8482 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8483 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8486 /* v7m_stack_read() pended a fault, so take it (as a tail
8487 * chained exception on the same stack frame)
8489 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8490 v7m_exception_taken(cpu, excret, true, false);
8494 /* Returning from an exception with a PC with bit 0 set is defined
8495 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8496 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8497 * the lsbit, and there are several RTOSes out there which incorrectly
8498 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8499 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8500 * complain about the badly behaved guest.
8502 if (env->regs[15] & 1) {
8503 env->regs[15] &= ~1U;
8504 if (!arm_feature(env, ARM_FEATURE_V8)) {
8505 qemu_log_mask(LOG_GUEST_ERROR,
8506 "M profile return from interrupt with misaligned "
8507 "PC is UNPREDICTABLE on v7M\n");
8511 if (arm_feature(env, ARM_FEATURE_V8)) {
8512 /* For v8M we have to check whether the xPSR exception field
8513 * matches the EXCRET value for return to handler/thread
8514 * before we commit to changing the SP and xPSR.
8516 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8517 if (return_to_handler != will_be_handler) {
8518 /* Take an INVPC UsageFault on the current stack.
8519 * By this point we will have switched to the security state
8520 * for the background state, so this UsageFault will target
8523 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8525 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8526 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8527 "stackframe: failed exception return integrity "
8529 v7m_exception_taken(cpu, excret, true, false);
8534 /* Commit to consuming the stack frame */
8536 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8537 * pre-exception SP was not 8-aligned and we added a padding word to
8538 * align it, so we undo this by ORing in the bit that increases it
8539 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8540 * would work too but a logical OR is how the pseudocode specifies it.)
8542 if (xpsr & XPSR_SPREALIGN) {
8545 *frame_sp_p = frameptr;
8547 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8548 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8550 /* The restored xPSR exception field will be zero if we're
8551 * resuming in Thread mode. If that doesn't match what the
8552 * exception return excret specified then this is a UsageFault.
8553 * v7M requires we make this check here; v8M did it earlier.
8555 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8556 /* Take an INVPC UsageFault by pushing the stack again;
8557 * we know we're v7M so this is never a Secure UsageFault.
8559 bool ignore_stackfaults;
8561 assert(!arm_feature(env, ARM_FEATURE_V8));
8562 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8563 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8564 ignore_stackfaults = v7m_push_stack(cpu);
8565 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8566 "failed exception return integrity check\n");
8567 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8571 /* Otherwise, we have a successful exception exit. */
8572 arm_clear_exclusive(env);
8573 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8576 static bool do_v7m_function_return(ARMCPU *cpu)
8578 /* v8M security extensions magic function return.
8580 * (1) throw an exception (longjump)
8581 * (2) return true if we successfully handled the function return
8582 * (3) return false if we failed a consistency check and have
8583 * pended a UsageFault that needs to be taken now
8585 * At this point the magic return value is split between env->regs[15]
8586 * and env->thumb. We don't bother to reconstitute it because we don't
8587 * need it (all values are handled the same way).
8589 CPUARMState *env = &cpu->env;
8590 uint32_t newpc, newpsr, newpsr_exc;
8592 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8595 bool threadmode, spsel;
8598 uint32_t *frame_sp_p;
8601 /* Pull the return address and IPSR from the Secure stack */
8602 threadmode = !arm_v7m_is_handler_mode(env);
8603 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8605 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8606 frameptr = *frame_sp_p;
8608 /* These loads may throw an exception (for MPU faults). We want to
8609 * do them as secure, so work out what MMU index that is.
8611 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8612 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8613 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8614 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8616 /* Consistency checks on new IPSR */
8617 newpsr_exc = newpsr & XPSR_EXCP;
8618 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8619 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8620 /* Pend the fault and tell our caller to take it */
8621 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8622 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8624 qemu_log_mask(CPU_LOG_INT,
8625 "...taking INVPC UsageFault: "
8626 "IPSR consistency check failed\n");
8630 *frame_sp_p = frameptr + 8;
8633 /* This invalidates frame_sp_p */
8634 switch_v7m_security_state(env, true);
8635 env->v7m.exception = newpsr_exc;
8636 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8637 if (newpsr & XPSR_SFPA) {
8638 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8640 xpsr_write(env, 0, XPSR_IT);
8641 env->thumb = newpc & 1;
8642 env->regs[15] = newpc & ~1;
8644 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8648 static void arm_log_exception(int idx)
8650 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8651 const char *exc = NULL;
8652 static const char * const excnames[] = {
8653 [EXCP_UDEF] = "Undefined Instruction",
8655 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8656 [EXCP_DATA_ABORT] = "Data Abort",
8659 [EXCP_BKPT] = "Breakpoint",
8660 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8661 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8662 [EXCP_HVC] = "Hypervisor Call",
8663 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8664 [EXCP_SMC] = "Secure Monitor Call",
8665 [EXCP_VIRQ] = "Virtual IRQ",
8666 [EXCP_VFIQ] = "Virtual FIQ",
8667 [EXCP_SEMIHOST] = "Semihosting call",
8668 [EXCP_NOCP] = "v7M NOCP UsageFault",
8669 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8670 [EXCP_STKOF] = "v8M STKOF UsageFault",
8673 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8674 exc = excnames[idx];
8679 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8683 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8684 uint32_t addr, uint16_t *insn)
8686 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8687 * or false on failure (in which case we will have pended the appropriate
8689 * We need to do the instruction fetch's MPU and SAU checks
8690 * like this because there is no MMU index that would allow
8691 * doing the load with a single function call. Instead we must
8692 * first check that the security attributes permit the load
8693 * and that they don't mismatch on the two halves of the instruction,
8694 * and then we do the load as a secure load (ie using the security
8695 * attributes of the address, not the CPU, as architecturally required).
8697 CPUState *cs = CPU(cpu);
8698 CPUARMState *env = &cpu->env;
8699 V8M_SAttributes sattrs = {};
8700 MemTxAttrs attrs = {};
8701 ARMMMUFaultInfo fi = {};
8703 target_ulong page_size;
8707 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8708 if (!sattrs.nsc || sattrs.ns) {
8709 /* This must be the second half of the insn, and it straddles a
8710 * region boundary with the second half not being S&NSC.
8712 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8713 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8714 qemu_log_mask(CPU_LOG_INT,
8715 "...really SecureFault with SFSR.INVEP\n");
8718 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8719 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8720 /* the MPU lookup failed */
8721 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8723 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8726 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8728 if (txres != MEMTX_OK) {
8729 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8730 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8731 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8737 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8739 /* Check whether this attempt to execute code in a Secure & NS-Callable
8740 * memory region is for an SG instruction; if so, then emulate the
8741 * effect of the SG instruction and return true. Otherwise pend
8742 * the correct kind of exception and return false.
8744 CPUARMState *env = &cpu->env;
8748 /* We should never get here unless get_phys_addr_pmsav8() caused
8749 * an exception for NS executing in S&NSC memory.
8751 assert(!env->v7m.secure);
8752 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8754 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8755 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8757 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8765 if (insn != 0xe97f) {
8766 /* Not an SG instruction first half (we choose the IMPDEF
8767 * early-SG-check option).
8772 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8776 if (insn != 0xe97f) {
8777 /* Not an SG instruction second half (yes, both halves of the SG
8778 * insn have the same hex value)
8783 /* OK, we have confirmed that we really have an SG instruction.
8784 * We know we're NS in S memory so don't need to repeat those checks.
8786 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8787 ", executing it\n", env->regs[15]);
8788 env->regs[14] &= ~1;
8789 switch_v7m_security_state(env, true);
8790 xpsr_write(env, 0, XPSR_IT);
8795 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8796 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8797 qemu_log_mask(CPU_LOG_INT,
8798 "...really SecureFault with SFSR.INVEP\n");
8802 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8804 ARMCPU *cpu = ARM_CPU(cs);
8805 CPUARMState *env = &cpu->env;
8807 bool ignore_stackfaults;
8809 arm_log_exception(cs->exception_index);
8811 /* For exceptions we just mark as pending on the NVIC, and let that
8813 switch (cs->exception_index) {
8815 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8816 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8819 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8820 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8823 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8824 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8827 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8828 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8831 /* The PC already points to the next instruction. */
8832 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8834 case EXCP_PREFETCH_ABORT:
8835 case EXCP_DATA_ABORT:
8836 /* Note that for M profile we don't have a guest facing FSR, but
8837 * the env->exception.fsr will be populated by the code that
8838 * raises the fault, in the A profile short-descriptor format.
8840 switch (env->exception.fsr & 0xf) {
8841 case M_FAKE_FSR_NSC_EXEC:
8842 /* Exception generated when we try to execute code at an address
8843 * which is marked as Secure & Non-Secure Callable and the CPU
8844 * is in the Non-Secure state. The only instruction which can
8845 * be executed like this is SG (and that only if both halves of
8846 * the SG instruction have the same security attributes.)
8847 * Everything else must generate an INVEP SecureFault, so we
8848 * emulate the SG instruction here.
8850 if (v7m_handle_execute_nsc(cpu)) {
8854 case M_FAKE_FSR_SFAULT:
8855 /* Various flavours of SecureFault for attempts to execute or
8856 * access data in the wrong security state.
8858 switch (cs->exception_index) {
8859 case EXCP_PREFETCH_ABORT:
8860 if (env->v7m.secure) {
8861 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8862 qemu_log_mask(CPU_LOG_INT,
8863 "...really SecureFault with SFSR.INVTRAN\n");
8865 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8866 qemu_log_mask(CPU_LOG_INT,
8867 "...really SecureFault with SFSR.INVEP\n");
8870 case EXCP_DATA_ABORT:
8871 /* This must be an NS access to S memory */
8872 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8873 qemu_log_mask(CPU_LOG_INT,
8874 "...really SecureFault with SFSR.AUVIOL\n");
8877 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8879 case 0x8: /* External Abort */
8880 switch (cs->exception_index) {
8881 case EXCP_PREFETCH_ABORT:
8882 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8883 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8885 case EXCP_DATA_ABORT:
8886 env->v7m.cfsr[M_REG_NS] |=
8887 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8888 env->v7m.bfar = env->exception.vaddress;
8889 qemu_log_mask(CPU_LOG_INT,
8890 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8894 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8897 /* All other FSR values are either MPU faults or "can't happen
8898 * for M profile" cases.
8900 switch (cs->exception_index) {
8901 case EXCP_PREFETCH_ABORT:
8902 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8903 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8905 case EXCP_DATA_ABORT:
8906 env->v7m.cfsr[env->v7m.secure] |=
8907 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8908 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8909 qemu_log_mask(CPU_LOG_INT,
8910 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8911 env->v7m.mmfar[env->v7m.secure]);
8914 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8920 if (semihosting_enabled()) {
8922 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8925 qemu_log_mask(CPU_LOG_INT,
8926 "...handling as semihosting call 0x%x\n",
8928 env->regs[0] = do_arm_semihosting(env);
8932 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8936 case EXCP_EXCEPTION_EXIT:
8937 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8938 /* Must be v8M security extension function return */
8939 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8940 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8941 if (do_v7m_function_return(cpu)) {
8945 do_v7m_exception_exit(cpu);
8950 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8951 return; /* Never happens. Keep compiler happy. */
8954 if (arm_feature(env, ARM_FEATURE_V8)) {
8955 lr = R_V7M_EXCRET_RES1_MASK |
8956 R_V7M_EXCRET_DCRS_MASK |
8957 R_V7M_EXCRET_FTYPE_MASK;
8958 /* The S bit indicates whether we should return to Secure
8959 * or NonSecure (ie our current state).
8960 * The ES bit indicates whether we're taking this exception
8961 * to Secure or NonSecure (ie our target state). We set it
8962 * later, in v7m_exception_taken().
8963 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8964 * This corresponds to the ARM ARM pseudocode for v8M setting
8965 * some LR bits in PushStack() and some in ExceptionTaken();
8966 * the distinction matters for the tailchain cases where we
8967 * can take an exception without pushing the stack.
8969 if (env->v7m.secure) {
8970 lr |= R_V7M_EXCRET_S_MASK;
8973 lr = R_V7M_EXCRET_RES1_MASK |
8974 R_V7M_EXCRET_S_MASK |
8975 R_V7M_EXCRET_DCRS_MASK |
8976 R_V7M_EXCRET_FTYPE_MASK |
8977 R_V7M_EXCRET_ES_MASK;
8978 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8979 lr |= R_V7M_EXCRET_SPSEL_MASK;
8982 if (!arm_v7m_is_handler_mode(env)) {
8983 lr |= R_V7M_EXCRET_MODE_MASK;
8986 ignore_stackfaults = v7m_push_stack(cpu);
8987 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8990 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8991 * register set. This is necessary when switching between AArch32 and AArch64
8994 void aarch64_sync_32_to_64(CPUARMState *env)
8997 uint32_t mode = env->uncached_cpsr & CPSR_M;
8999 /* We can blanket copy R[0:7] to X[0:7] */
9000 for (i = 0; i < 8; i++) {
9001 env->xregs[i] = env->regs[i];
9004 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9005 * Otherwise, they come from the banked user regs.
9007 if (mode == ARM_CPU_MODE_FIQ) {
9008 for (i = 8; i < 13; i++) {
9009 env->xregs[i] = env->usr_regs[i - 8];
9012 for (i = 8; i < 13; i++) {
9013 env->xregs[i] = env->regs[i];
9017 /* Registers x13-x23 are the various mode SP and FP registers. Registers
9018 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9019 * from the mode banked register.
9021 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9022 env->xregs[13] = env->regs[13];
9023 env->xregs[14] = env->regs[14];
9025 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9026 /* HYP is an exception in that it is copied from r14 */
9027 if (mode == ARM_CPU_MODE_HYP) {
9028 env->xregs[14] = env->regs[14];
9030 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9034 if (mode == ARM_CPU_MODE_HYP) {
9035 env->xregs[15] = env->regs[13];
9037 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9040 if (mode == ARM_CPU_MODE_IRQ) {
9041 env->xregs[16] = env->regs[14];
9042 env->xregs[17] = env->regs[13];
9044 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9045 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9048 if (mode == ARM_CPU_MODE_SVC) {
9049 env->xregs[18] = env->regs[14];
9050 env->xregs[19] = env->regs[13];
9052 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9053 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9056 if (mode == ARM_CPU_MODE_ABT) {
9057 env->xregs[20] = env->regs[14];
9058 env->xregs[21] = env->regs[13];
9060 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9061 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9064 if (mode == ARM_CPU_MODE_UND) {
9065 env->xregs[22] = env->regs[14];
9066 env->xregs[23] = env->regs[13];
9068 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9069 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9072 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9073 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9074 * FIQ bank for r8-r14.
9076 if (mode == ARM_CPU_MODE_FIQ) {
9077 for (i = 24; i < 31; i++) {
9078 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9081 for (i = 24; i < 29; i++) {
9082 env->xregs[i] = env->fiq_regs[i - 24];
9084 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9085 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9088 env->pc = env->regs[15];
9091 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9092 * register set. This is necessary when switching between AArch32 and AArch64
9095 void aarch64_sync_64_to_32(CPUARMState *env)
9098 uint32_t mode = env->uncached_cpsr & CPSR_M;
9100 /* We can blanket copy X[0:7] to R[0:7] */
9101 for (i = 0; i < 8; i++) {
9102 env->regs[i] = env->xregs[i];
9105 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9106 * Otherwise, we copy x8-x12 into the banked user regs.
9108 if (mode == ARM_CPU_MODE_FIQ) {
9109 for (i = 8; i < 13; i++) {
9110 env->usr_regs[i - 8] = env->xregs[i];
9113 for (i = 8; i < 13; i++) {
9114 env->regs[i] = env->xregs[i];
9118 /* Registers r13 & r14 depend on the current mode.
9119 * If we are in a given mode, we copy the corresponding x registers to r13
9120 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9123 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9124 env->regs[13] = env->xregs[13];
9125 env->regs[14] = env->xregs[14];
9127 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9129 /* HYP is an exception in that it does not have its own banked r14 but
9130 * shares the USR r14
9132 if (mode == ARM_CPU_MODE_HYP) {
9133 env->regs[14] = env->xregs[14];
9135 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9139 if (mode == ARM_CPU_MODE_HYP) {
9140 env->regs[13] = env->xregs[15];
9142 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9145 if (mode == ARM_CPU_MODE_IRQ) {
9146 env->regs[14] = env->xregs[16];
9147 env->regs[13] = env->xregs[17];
9149 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9150 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9153 if (mode == ARM_CPU_MODE_SVC) {
9154 env->regs[14] = env->xregs[18];
9155 env->regs[13] = env->xregs[19];
9157 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9158 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9161 if (mode == ARM_CPU_MODE_ABT) {
9162 env->regs[14] = env->xregs[20];
9163 env->regs[13] = env->xregs[21];
9165 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9166 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9169 if (mode == ARM_CPU_MODE_UND) {
9170 env->regs[14] = env->xregs[22];
9171 env->regs[13] = env->xregs[23];
9173 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9174 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9177 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9178 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9179 * FIQ bank for r8-r14.
9181 if (mode == ARM_CPU_MODE_FIQ) {
9182 for (i = 24; i < 31; i++) {
9183 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9186 for (i = 24; i < 29; i++) {
9187 env->fiq_regs[i - 24] = env->xregs[i];
9189 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9190 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9193 env->regs[15] = env->pc;
9196 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9197 uint32_t mask, uint32_t offset,
9200 /* Change the CPU state so as to actually take the exception. */
9201 switch_mode(env, new_mode);
9203 * For exceptions taken to AArch32 we must clear the SS bit in both
9204 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9206 env->uncached_cpsr &= ~PSTATE_SS;
9207 env->spsr = cpsr_read(env);
9208 /* Clear IT bits. */
9209 env->condexec_bits = 0;
9210 /* Switch to the new mode, and to the correct instruction set. */
9211 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9212 /* Set new mode endianness */
9213 env->uncached_cpsr &= ~CPSR_E;
9214 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9215 env->uncached_cpsr |= CPSR_E;
9217 /* J and IL must always be cleared for exception entry */
9218 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9221 if (new_mode == ARM_CPU_MODE_HYP) {
9222 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9223 env->elr_el[2] = env->regs[15];
9226 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9227 * and we should just guard the thumb mode on V4
9229 if (arm_feature(env, ARM_FEATURE_V4T)) {
9231 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9233 env->regs[14] = env->regs[15] + offset;
9235 env->regs[15] = newpc;
9238 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9241 * Handle exception entry to Hyp mode; this is sufficiently
9242 * different to entry to other AArch32 modes that we handle it
9245 * The vector table entry used is always the 0x14 Hyp mode entry point,
9246 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9247 * The offset applied to the preferred return address is always zero
9248 * (see DDI0487C.a section G1.12.3).
9249 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9251 uint32_t addr, mask;
9252 ARMCPU *cpu = ARM_CPU(cs);
9253 CPUARMState *env = &cpu->env;
9255 switch (cs->exception_index) {
9263 /* Fall through to prefetch abort. */
9264 case EXCP_PREFETCH_ABORT:
9265 env->cp15.ifar_s = env->exception.vaddress;
9266 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9267 (uint32_t)env->exception.vaddress);
9270 case EXCP_DATA_ABORT:
9271 env->cp15.dfar_s = env->exception.vaddress;
9272 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9273 (uint32_t)env->exception.vaddress);
9288 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9291 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9292 if (!arm_feature(env, ARM_FEATURE_V8)) {
9294 * QEMU syndrome values are v8-style. v7 has the IL bit
9295 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9296 * If this is a v7 CPU, squash the IL bit in those cases.
9298 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9299 (cs->exception_index == EXCP_DATA_ABORT &&
9300 !(env->exception.syndrome & ARM_EL_ISV)) ||
9301 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9302 env->exception.syndrome &= ~ARM_EL_IL;
9305 env->cp15.esr_el[2] = env->exception.syndrome;
9308 if (arm_current_el(env) != 2 && addr < 0x14) {
9313 if (!(env->cp15.scr_el3 & SCR_EA)) {
9316 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9319 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9323 addr += env->cp15.hvbar;
9325 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9328 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9330 ARMCPU *cpu = ARM_CPU(cs);
9331 CPUARMState *env = &cpu->env;
9338 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9339 switch (syn_get_ec(env->exception.syndrome)) {
9341 case EC_BREAKPOINT_SAME_EL:
9345 case EC_WATCHPOINT_SAME_EL:
9351 case EC_VECTORCATCH:
9360 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9363 if (env->exception.target_el == 2) {
9364 arm_cpu_do_interrupt_aarch32_hyp(cs);
9368 switch (cs->exception_index) {
9370 new_mode = ARM_CPU_MODE_UND;
9379 new_mode = ARM_CPU_MODE_SVC;
9382 /* The PC already points to the next instruction. */
9386 /* Fall through to prefetch abort. */
9387 case EXCP_PREFETCH_ABORT:
9388 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9389 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9390 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9391 env->exception.fsr, (uint32_t)env->exception.vaddress);
9392 new_mode = ARM_CPU_MODE_ABT;
9394 mask = CPSR_A | CPSR_I;
9397 case EXCP_DATA_ABORT:
9398 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9399 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9400 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9402 (uint32_t)env->exception.vaddress);
9403 new_mode = ARM_CPU_MODE_ABT;
9405 mask = CPSR_A | CPSR_I;
9409 new_mode = ARM_CPU_MODE_IRQ;
9411 /* Disable IRQ and imprecise data aborts. */
9412 mask = CPSR_A | CPSR_I;
9414 if (env->cp15.scr_el3 & SCR_IRQ) {
9415 /* IRQ routed to monitor mode */
9416 new_mode = ARM_CPU_MODE_MON;
9421 new_mode = ARM_CPU_MODE_FIQ;
9423 /* Disable FIQ, IRQ and imprecise data aborts. */
9424 mask = CPSR_A | CPSR_I | CPSR_F;
9425 if (env->cp15.scr_el3 & SCR_FIQ) {
9426 /* FIQ routed to monitor mode */
9427 new_mode = ARM_CPU_MODE_MON;
9432 new_mode = ARM_CPU_MODE_IRQ;
9434 /* Disable IRQ and imprecise data aborts. */
9435 mask = CPSR_A | CPSR_I;
9439 new_mode = ARM_CPU_MODE_FIQ;
9441 /* Disable FIQ, IRQ and imprecise data aborts. */
9442 mask = CPSR_A | CPSR_I | CPSR_F;
9446 new_mode = ARM_CPU_MODE_MON;
9448 mask = CPSR_A | CPSR_I | CPSR_F;
9452 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9453 return; /* Never happens. Keep compiler happy. */
9456 if (new_mode == ARM_CPU_MODE_MON) {
9457 addr += env->cp15.mvbar;
9458 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9459 /* High vectors. When enabled, base address cannot be remapped. */
9462 /* ARM v7 architectures provide a vector base address register to remap
9463 * the interrupt vector table.
9464 * This register is only followed in non-monitor mode, and is banked.
9465 * Note: only bits 31:5 are valid.
9467 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9470 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9471 env->cp15.scr_el3 &= ~SCR_NS;
9474 take_aarch32_exception(env, new_mode, mask, offset, addr);
9477 /* Handle exception entry to a target EL which is using AArch64 */
9478 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9480 ARMCPU *cpu = ARM_CPU(cs);
9481 CPUARMState *env = &cpu->env;
9482 unsigned int new_el = env->exception.target_el;
9483 target_ulong addr = env->cp15.vbar_el[new_el];
9484 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9485 unsigned int cur_el = arm_current_el(env);
9488 * Note that new_el can never be 0. If cur_el is 0, then
9489 * el0_a64 is is_a64(), else el0_a64 is ignored.
9491 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9493 if (cur_el < new_el) {
9494 /* Entry vector offset depends on whether the implemented EL
9495 * immediately lower than the target level is using AArch32 or AArch64
9501 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9504 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9507 is_aa64 = is_a64(env);
9510 g_assert_not_reached();
9518 } else if (pstate_read(env) & PSTATE_SP) {
9522 switch (cs->exception_index) {
9523 case EXCP_PREFETCH_ABORT:
9524 case EXCP_DATA_ABORT:
9525 env->cp15.far_el[new_el] = env->exception.vaddress;
9526 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9527 env->cp15.far_el[new_el]);
9535 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9537 * QEMU internal FP/SIMD syndromes from AArch32 include the
9538 * TA and coproc fields which are only exposed if the exception
9539 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9540 * AArch64 format syndrome.
9542 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9544 env->cp15.esr_el[new_el] = env->exception.syndrome;
9555 qemu_log_mask(CPU_LOG_INT,
9556 "...handling as semihosting call 0x%" PRIx64 "\n",
9558 env->xregs[0] = do_arm_semihosting(env);
9561 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9565 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9566 aarch64_save_sp(env, arm_current_el(env));
9567 env->elr_el[new_el] = env->pc;
9569 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9570 env->elr_el[new_el] = env->regs[15];
9572 aarch64_sync_32_to_64(env);
9574 env->condexec_bits = 0;
9576 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9577 env->elr_el[new_el]);
9579 pstate_write(env, PSTATE_DAIF | new_mode);
9581 aarch64_restore_sp(env, new_el);
9585 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9586 new_el, env->pc, pstate_read(env));
9589 static inline bool check_for_semihosting(CPUState *cs)
9591 /* Check whether this exception is a semihosting call; if so
9592 * then handle it and return true; otherwise return false.
9594 ARMCPU *cpu = ARM_CPU(cs);
9595 CPUARMState *env = &cpu->env;
9598 if (cs->exception_index == EXCP_SEMIHOST) {
9599 /* This is always the 64-bit semihosting exception.
9600 * The "is this usermode" and "is semihosting enabled"
9601 * checks have been done at translate time.
9603 qemu_log_mask(CPU_LOG_INT,
9604 "...handling as semihosting call 0x%" PRIx64 "\n",
9606 env->xregs[0] = do_arm_semihosting(env);
9613 /* Only intercept calls from privileged modes, to provide some
9614 * semblance of security.
9616 if (cs->exception_index != EXCP_SEMIHOST &&
9617 (!semihosting_enabled() ||
9618 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9622 switch (cs->exception_index) {
9624 /* This is always a semihosting call; the "is this usermode"
9625 * and "is semihosting enabled" checks have been done at
9630 /* Check for semihosting interrupt. */
9632 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9638 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9640 if (imm == 0x123456) {
9646 /* See if this is a semihosting syscall. */
9648 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9660 qemu_log_mask(CPU_LOG_INT,
9661 "...handling as semihosting call 0x%x\n",
9663 env->regs[0] = do_arm_semihosting(env);
9668 /* Handle a CPU exception for A and R profile CPUs.
9669 * Do any appropriate logging, handle PSCI calls, and then hand off
9670 * to the AArch64-entry or AArch32-entry function depending on the
9671 * target exception level's register width.
9673 void arm_cpu_do_interrupt(CPUState *cs)
9675 ARMCPU *cpu = ARM_CPU(cs);
9676 CPUARMState *env = &cpu->env;
9677 unsigned int new_el = env->exception.target_el;
9679 assert(!arm_feature(env, ARM_FEATURE_M));
9681 arm_log_exception(cs->exception_index);
9682 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9684 if (qemu_loglevel_mask(CPU_LOG_INT)
9685 && !excp_is_internal(cs->exception_index)) {
9686 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9687 syn_get_ec(env->exception.syndrome),
9688 env->exception.syndrome);
9691 if (arm_is_psci_call(cpu, cs->exception_index)) {
9692 arm_handle_psci_call(cpu);
9693 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9697 /* Semihosting semantics depend on the register width of the
9698 * code that caused the exception, not the target exception level,
9699 * so must be handled here.
9701 if (check_for_semihosting(cs)) {
9705 /* Hooks may change global state so BQL should be held, also the
9706 * BQL needs to be held for any modification of
9707 * cs->interrupt_request.
9709 g_assert(qemu_mutex_iothread_locked());
9711 arm_call_pre_el_change_hook(cpu);
9713 assert(!excp_is_internal(cs->exception_index));
9714 if (arm_el_is_aa64(env, new_el)) {
9715 arm_cpu_do_interrupt_aarch64(cs);
9717 arm_cpu_do_interrupt_aarch32(cs);
9720 arm_call_el_change_hook(cpu);
9722 if (!kvm_enabled()) {
9723 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9726 #endif /* !CONFIG_USER_ONLY */
9728 /* Return the exception level which controls this address translation regime */
9729 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9732 case ARMMMUIdx_S2NS:
9733 case ARMMMUIdx_S1E2:
9735 case ARMMMUIdx_S1E3:
9737 case ARMMMUIdx_S1SE0:
9738 return arm_el_is_aa64(env, 3) ? 1 : 3;
9739 case ARMMMUIdx_S1SE1:
9740 case ARMMMUIdx_S1NSE0:
9741 case ARMMMUIdx_S1NSE1:
9742 case ARMMMUIdx_MPrivNegPri:
9743 case ARMMMUIdx_MUserNegPri:
9744 case ARMMMUIdx_MPriv:
9745 case ARMMMUIdx_MUser:
9746 case ARMMMUIdx_MSPrivNegPri:
9747 case ARMMMUIdx_MSUserNegPri:
9748 case ARMMMUIdx_MSPriv:
9749 case ARMMMUIdx_MSUser:
9752 g_assert_not_reached();
9756 #ifndef CONFIG_USER_ONLY
9758 /* Return the SCTLR value which controls this address translation regime */
9759 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9761 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9764 /* Return true if the specified stage of address translation is disabled */
9765 static inline bool regime_translation_disabled(CPUARMState *env,
9768 if (arm_feature(env, ARM_FEATURE_M)) {
9769 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9770 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9771 case R_V7M_MPU_CTRL_ENABLE_MASK:
9772 /* Enabled, but not for HardFault and NMI */
9773 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9774 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9775 /* Enabled for all cases */
9779 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9780 * we warned about that in armv7m_nvic.c when the guest set it.
9786 if (mmu_idx == ARMMMUIdx_S2NS) {
9787 /* HCR.DC means HCR.VM behaves as 1 */
9788 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9791 if (env->cp15.hcr_el2 & HCR_TGE) {
9792 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9793 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9798 if ((env->cp15.hcr_el2 & HCR_DC) &&
9799 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9800 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9804 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9807 static inline bool regime_translation_big_endian(CPUARMState *env,
9810 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9813 /* Return the TTBR associated with this translation regime */
9814 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9817 if (mmu_idx == ARMMMUIdx_S2NS) {
9818 return env->cp15.vttbr_el2;
9821 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9823 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9827 #endif /* !CONFIG_USER_ONLY */
9829 /* Return the TCR controlling this translation regime */
9830 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9832 if (mmu_idx == ARMMMUIdx_S2NS) {
9833 return &env->cp15.vtcr_el2;
9835 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9838 /* Convert a possible stage1+2 MMU index into the appropriate
9841 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9843 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9844 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9849 /* Return true if the translation regime is using LPAE format page tables */
9850 static inline bool regime_using_lpae_format(CPUARMState *env,
9853 int el = regime_el(env, mmu_idx);
9854 if (el == 2 || arm_el_is_aa64(env, el)) {
9857 if (arm_feature(env, ARM_FEATURE_LPAE)
9858 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9864 /* Returns true if the stage 1 translation regime is using LPAE format page
9865 * tables. Used when raising alignment exceptions, whose FSR changes depending
9866 * on whether the long or short descriptor format is in use. */
9867 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9869 mmu_idx = stage_1_mmu_idx(mmu_idx);
9871 return regime_using_lpae_format(env, mmu_idx);
9874 #ifndef CONFIG_USER_ONLY
9875 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9878 case ARMMMUIdx_S1SE0:
9879 case ARMMMUIdx_S1NSE0:
9880 case ARMMMUIdx_MUser:
9881 case ARMMMUIdx_MSUser:
9882 case ARMMMUIdx_MUserNegPri:
9883 case ARMMMUIdx_MSUserNegPri:
9887 case ARMMMUIdx_S12NSE0:
9888 case ARMMMUIdx_S12NSE1:
9889 g_assert_not_reached();
9893 /* Translate section/page access permissions to page
9894 * R/W protection flags
9897 * @mmu_idx: MMU index indicating required translation regime
9898 * @ap: The 3-bit access permissions (AP[2:0])
9899 * @domain_prot: The 2-bit domain access permissions
9901 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9902 int ap, int domain_prot)
9904 bool is_user = regime_is_user(env, mmu_idx);
9906 if (domain_prot == 3) {
9907 return PAGE_READ | PAGE_WRITE;
9912 if (arm_feature(env, ARM_FEATURE_V7)) {
9915 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9917 return is_user ? 0 : PAGE_READ;
9924 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9929 return PAGE_READ | PAGE_WRITE;
9932 return PAGE_READ | PAGE_WRITE;
9933 case 4: /* Reserved. */
9936 return is_user ? 0 : PAGE_READ;
9940 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9945 g_assert_not_reached();
9949 /* Translate section/page access permissions to page
9950 * R/W protection flags.
9952 * @ap: The 2-bit simple AP (AP[2:1])
9953 * @is_user: TRUE if accessing from PL0
9955 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9959 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9961 return PAGE_READ | PAGE_WRITE;
9963 return is_user ? 0 : PAGE_READ;
9967 g_assert_not_reached();
9972 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9974 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9977 /* Translate S2 section/page access permissions to protection flags
9980 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9981 * @xn: XN (execute-never) bit
9983 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9994 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10001 /* Translate section/page access permissions to protection flags
10003 * @env: CPUARMState
10004 * @mmu_idx: MMU index indicating required translation regime
10005 * @is_aa64: TRUE if AArch64
10006 * @ap: The 2-bit simple AP (AP[2:1])
10007 * @ns: NS (non-secure) bit
10008 * @xn: XN (execute-never) bit
10009 * @pxn: PXN (privileged execute-never) bit
10011 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10012 int ap, int ns, int xn, int pxn)
10014 bool is_user = regime_is_user(env, mmu_idx);
10015 int prot_rw, user_rw;
10019 assert(mmu_idx != ARMMMUIdx_S2NS);
10021 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10025 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10028 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10032 /* TODO have_wxn should be replaced with
10033 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10034 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10035 * compatible processors have EL2, which is required for [U]WXN.
10037 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10040 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10044 switch (regime_el(env, mmu_idx)) {
10047 xn = pxn || (user_rw & PAGE_WRITE);
10054 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10055 switch (regime_el(env, mmu_idx)) {
10059 xn = xn || !(user_rw & PAGE_READ);
10063 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10065 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10066 (uwxn && (user_rw & PAGE_WRITE));
10076 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10079 return prot_rw | PAGE_EXEC;
10082 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10083 uint32_t *table, uint32_t address)
10085 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10086 TCR *tcr = regime_tcr(env, mmu_idx);
10088 if (address & tcr->mask) {
10089 if (tcr->raw_tcr & TTBCR_PD1) {
10090 /* Translation table walk disabled for TTBR1 */
10093 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10095 if (tcr->raw_tcr & TTBCR_PD0) {
10096 /* Translation table walk disabled for TTBR0 */
10099 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10101 *table |= (address >> 18) & 0x3ffc;
10105 /* Translate a S1 pagetable walk through S2 if needed. */
10106 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10107 hwaddr addr, MemTxAttrs txattrs,
10108 ARMMMUFaultInfo *fi)
10110 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10111 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10112 target_ulong s2size;
10116 ARMCacheAttrs cacheattrs = {};
10117 ARMCacheAttrs *pcacheattrs = NULL;
10119 if (env->cp15.hcr_el2 & HCR_PTW) {
10121 * PTW means we must fault if this S1 walk touches S2 Device
10122 * memory; otherwise we don't care about the attributes and can
10123 * save the S2 translation the effort of computing them.
10125 pcacheattrs = &cacheattrs;
10128 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10129 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10131 assert(fi->type != ARMFault_None);
10137 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10138 /* Access was to Device memory: generate Permission fault */
10139 fi->type = ARMFault_Permission;
10150 /* All loads done in the course of a page table walk go through here. */
10151 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10152 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10154 ARMCPU *cpu = ARM_CPU(cs);
10155 CPUARMState *env = &cpu->env;
10156 MemTxAttrs attrs = {};
10157 MemTxResult result = MEMTX_OK;
10161 attrs.secure = is_secure;
10162 as = arm_addressspace(cs, attrs);
10163 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10167 if (regime_translation_big_endian(env, mmu_idx)) {
10168 data = address_space_ldl_be(as, addr, attrs, &result);
10170 data = address_space_ldl_le(as, addr, attrs, &result);
10172 if (result == MEMTX_OK) {
10175 fi->type = ARMFault_SyncExternalOnWalk;
10176 fi->ea = arm_extabort_type(result);
10180 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10181 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10183 ARMCPU *cpu = ARM_CPU(cs);
10184 CPUARMState *env = &cpu->env;
10185 MemTxAttrs attrs = {};
10186 MemTxResult result = MEMTX_OK;
10190 attrs.secure = is_secure;
10191 as = arm_addressspace(cs, attrs);
10192 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10196 if (regime_translation_big_endian(env, mmu_idx)) {
10197 data = address_space_ldq_be(as, addr, attrs, &result);
10199 data = address_space_ldq_le(as, addr, attrs, &result);
10201 if (result == MEMTX_OK) {
10204 fi->type = ARMFault_SyncExternalOnWalk;
10205 fi->ea = arm_extabort_type(result);
10209 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10210 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10211 hwaddr *phys_ptr, int *prot,
10212 target_ulong *page_size,
10213 ARMMMUFaultInfo *fi)
10215 CPUState *cs = CPU(arm_env_get_cpu(env));
10226 /* Pagetable walk. */
10227 /* Lookup l1 descriptor. */
10228 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10229 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10230 fi->type = ARMFault_Translation;
10233 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10235 if (fi->type != ARMFault_None) {
10239 domain = (desc >> 5) & 0x0f;
10240 if (regime_el(env, mmu_idx) == 1) {
10241 dacr = env->cp15.dacr_ns;
10243 dacr = env->cp15.dacr_s;
10245 domain_prot = (dacr >> (domain * 2)) & 3;
10247 /* Section translation fault. */
10248 fi->type = ARMFault_Translation;
10254 if (domain_prot == 0 || domain_prot == 2) {
10255 fi->type = ARMFault_Domain;
10260 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10261 ap = (desc >> 10) & 3;
10262 *page_size = 1024 * 1024;
10264 /* Lookup l2 entry. */
10266 /* Coarse pagetable. */
10267 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10269 /* Fine pagetable. */
10270 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10272 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10274 if (fi->type != ARMFault_None) {
10277 switch (desc & 3) {
10278 case 0: /* Page translation fault. */
10279 fi->type = ARMFault_Translation;
10281 case 1: /* 64k page. */
10282 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10283 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10284 *page_size = 0x10000;
10286 case 2: /* 4k page. */
10287 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10288 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10289 *page_size = 0x1000;
10291 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10293 /* ARMv6/XScale extended small page format */
10294 if (arm_feature(env, ARM_FEATURE_XSCALE)
10295 || arm_feature(env, ARM_FEATURE_V6)) {
10296 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10297 *page_size = 0x1000;
10299 /* UNPREDICTABLE in ARMv5; we choose to take a
10300 * page translation fault.
10302 fi->type = ARMFault_Translation;
10306 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10307 *page_size = 0x400;
10309 ap = (desc >> 4) & 3;
10312 /* Never happens, but compiler isn't smart enough to tell. */
10316 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10317 *prot |= *prot ? PAGE_EXEC : 0;
10318 if (!(*prot & (1 << access_type))) {
10319 /* Access permission fault. */
10320 fi->type = ARMFault_Permission;
10323 *phys_ptr = phys_addr;
10326 fi->domain = domain;
10331 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10332 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10333 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10334 target_ulong *page_size, ARMMMUFaultInfo *fi)
10336 CPUState *cs = CPU(arm_env_get_cpu(env));
10350 /* Pagetable walk. */
10351 /* Lookup l1 descriptor. */
10352 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10353 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10354 fi->type = ARMFault_Translation;
10357 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10359 if (fi->type != ARMFault_None) {
10363 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10364 /* Section translation fault, or attempt to use the encoding
10365 * which is Reserved on implementations without PXN.
10367 fi->type = ARMFault_Translation;
10370 if ((type == 1) || !(desc & (1 << 18))) {
10371 /* Page or Section. */
10372 domain = (desc >> 5) & 0x0f;
10374 if (regime_el(env, mmu_idx) == 1) {
10375 dacr = env->cp15.dacr_ns;
10377 dacr = env->cp15.dacr_s;
10382 domain_prot = (dacr >> (domain * 2)) & 3;
10383 if (domain_prot == 0 || domain_prot == 2) {
10384 /* Section or Page domain fault */
10385 fi->type = ARMFault_Domain;
10389 if (desc & (1 << 18)) {
10390 /* Supersection. */
10391 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10392 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10393 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10394 *page_size = 0x1000000;
10397 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10398 *page_size = 0x100000;
10400 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10401 xn = desc & (1 << 4);
10403 ns = extract32(desc, 19, 1);
10405 if (arm_feature(env, ARM_FEATURE_PXN)) {
10406 pxn = (desc >> 2) & 1;
10408 ns = extract32(desc, 3, 1);
10409 /* Lookup l2 entry. */
10410 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10411 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10413 if (fi->type != ARMFault_None) {
10416 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10417 switch (desc & 3) {
10418 case 0: /* Page translation fault. */
10419 fi->type = ARMFault_Translation;
10421 case 1: /* 64k page. */
10422 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10423 xn = desc & (1 << 15);
10424 *page_size = 0x10000;
10426 case 2: case 3: /* 4k page. */
10427 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10429 *page_size = 0x1000;
10432 /* Never happens, but compiler isn't smart enough to tell. */
10436 if (domain_prot == 3) {
10437 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10439 if (pxn && !regime_is_user(env, mmu_idx)) {
10442 if (xn && access_type == MMU_INST_FETCH) {
10443 fi->type = ARMFault_Permission;
10447 if (arm_feature(env, ARM_FEATURE_V6K) &&
10448 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10449 /* The simplified model uses AP[0] as an access control bit. */
10450 if ((ap & 1) == 0) {
10451 /* Access flag fault. */
10452 fi->type = ARMFault_AccessFlag;
10455 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10457 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10459 if (*prot && !xn) {
10460 *prot |= PAGE_EXEC;
10462 if (!(*prot & (1 << access_type))) {
10463 /* Access permission fault. */
10464 fi->type = ARMFault_Permission;
10469 /* The NS bit will (as required by the architecture) have no effect if
10470 * the CPU doesn't support TZ or this is a non-secure translation
10471 * regime, because the attribute will already be non-secure.
10473 attrs->secure = false;
10475 *phys_ptr = phys_addr;
10478 fi->domain = domain;
10484 * check_s2_mmu_setup
10486 * @is_aa64: True if the translation regime is in AArch64 state
10487 * @startlevel: Suggested starting level
10488 * @inputsize: Bitsize of IPAs
10489 * @stride: Page-table stride (See the ARM ARM)
10491 * Returns true if the suggested S2 translation parameters are OK and
10494 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10495 int inputsize, int stride)
10497 const int grainsize = stride + 3;
10498 int startsizecheck;
10500 /* Negative levels are never allowed. */
10505 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10506 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10511 CPUARMState *env = &cpu->env;
10512 unsigned int pamax = arm_pamax(cpu);
10515 case 13: /* 64KB Pages. */
10516 if (level == 0 || (level == 1 && pamax <= 42)) {
10520 case 11: /* 16KB Pages. */
10521 if (level == 0 || (level == 1 && pamax <= 40)) {
10525 case 9: /* 4KB Pages. */
10526 if (level == 0 && pamax <= 42) {
10531 g_assert_not_reached();
10534 /* Inputsize checks. */
10535 if (inputsize > pamax &&
10536 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10537 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10541 /* AArch32 only supports 4KB pages. Assert on that. */
10542 assert(stride == 9);
10551 /* Translate from the 4-bit stage 2 representation of
10552 * memory attributes (without cache-allocation hints) to
10553 * the 8-bit representation of the stage 1 MAIR registers
10554 * (which includes allocation hints).
10556 * ref: shared/translation/attrs/S2AttrDecode()
10557 * .../S2ConvertAttrsHints()
10559 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10561 uint8_t hiattr = extract32(s2attrs, 2, 2);
10562 uint8_t loattr = extract32(s2attrs, 0, 2);
10563 uint8_t hihint = 0, lohint = 0;
10565 if (hiattr != 0) { /* normal memory */
10566 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10567 hiattr = loattr = 1; /* non-cacheable */
10569 if (hiattr != 1) { /* Write-through or write-back */
10570 hihint = 3; /* RW allocate */
10572 if (loattr != 1) { /* Write-through or write-back */
10573 lohint = 3; /* RW allocate */
10578 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10580 #endif /* !CONFIG_USER_ONLY */
10582 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10585 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10586 uint32_t el = regime_el(env, mmu_idx);
10587 bool tbi, tbid, epd, hpd, using16k, using64k;
10591 * Bit 55 is always between the two regions, and is canonical for
10592 * determining if address tagging is enabled.
10594 select = extract64(va, 55, 1);
10597 tsz = extract32(tcr, 0, 6);
10598 using64k = extract32(tcr, 14, 1);
10599 using16k = extract32(tcr, 15, 1);
10600 if (mmu_idx == ARMMMUIdx_S2NS) {
10602 tbi = tbid = hpd = false;
10604 tbi = extract32(tcr, 20, 1);
10605 hpd = extract32(tcr, 24, 1);
10606 tbid = extract32(tcr, 29, 1);
10609 } else if (!select) {
10610 tsz = extract32(tcr, 0, 6);
10611 epd = extract32(tcr, 7, 1);
10612 using64k = extract32(tcr, 14, 1);
10613 using16k = extract32(tcr, 15, 1);
10614 tbi = extract64(tcr, 37, 1);
10615 hpd = extract64(tcr, 41, 1);
10616 tbid = extract64(tcr, 51, 1);
10618 int tg = extract32(tcr, 30, 2);
10619 using16k = tg == 1;
10620 using64k = tg == 3;
10621 tsz = extract32(tcr, 16, 6);
10622 epd = extract32(tcr, 23, 1);
10623 tbi = extract64(tcr, 38, 1);
10624 hpd = extract64(tcr, 42, 1);
10625 tbid = extract64(tcr, 52, 1);
10627 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10628 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10630 return (ARMVAParameters) {
10637 .using16k = using16k,
10638 .using64k = using64k,
10642 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10643 ARMMMUIdx mmu_idx, bool data)
10645 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10647 /* Present TBI as a composite with TBID. */
10648 ret.tbi &= (data || !ret.tbid);
10652 #ifndef CONFIG_USER_ONLY
10653 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10656 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10657 uint32_t el = regime_el(env, mmu_idx);
10661 if (mmu_idx == ARMMMUIdx_S2NS) {
10663 bool sext = extract32(tcr, 4, 1);
10664 bool sign = extract32(tcr, 3, 1);
10667 * If the sign-extend bit is not the same as t0sz[3], the result
10668 * is unpredictable. Flag this as a guest error.
10670 if (sign != sext) {
10671 qemu_log_mask(LOG_GUEST_ERROR,
10672 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10674 tsz = sextract32(tcr, 0, 4) + 8;
10678 } else if (el == 2) {
10680 tsz = extract32(tcr, 0, 3);
10682 hpd = extract64(tcr, 24, 1);
10685 int t0sz = extract32(tcr, 0, 3);
10686 int t1sz = extract32(tcr, 16, 3);
10689 select = va > (0xffffffffu >> t0sz);
10691 /* Note that we will detect errors later. */
10692 select = va >= ~(0xffffffffu >> t1sz);
10696 epd = extract32(tcr, 7, 1);
10697 hpd = extract64(tcr, 41, 1);
10700 epd = extract32(tcr, 23, 1);
10701 hpd = extract64(tcr, 42, 1);
10703 /* For aarch32, hpd0 is not enabled without t2e as well. */
10704 hpd &= extract32(tcr, 6, 1);
10707 return (ARMVAParameters) {
10715 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10716 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10717 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10718 target_ulong *page_size_ptr,
10719 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10721 ARMCPU *cpu = arm_env_get_cpu(env);
10722 CPUState *cs = CPU(cpu);
10723 /* Read an LPAE long-descriptor translation table. */
10724 ARMFaultType fault_type = ARMFault_Translation;
10726 ARMVAParameters param;
10728 hwaddr descaddr, indexmask, indexmask_grainsize;
10729 uint32_t tableattrs;
10730 target_ulong page_size;
10733 int addrsize, inputsize;
10734 TCR *tcr = regime_tcr(env, mmu_idx);
10735 int ap, ns, xn, pxn;
10736 uint32_t el = regime_el(env, mmu_idx);
10738 uint64_t descaddrmask;
10739 bool aarch64 = arm_el_is_aa64(env, el);
10740 bool guarded = false;
10743 * This code does not handle the different format TCR for VTCR_EL2.
10744 * This code also does not support shareability levels.
10745 * Attribute and permission bit handling should also be checked when adding
10746 * support for those page table walks.
10749 param = aa64_va_parameters(env, address, mmu_idx,
10750 access_type != MMU_INST_FETCH);
10752 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10755 ttbr1_valid = (el < 2);
10756 addrsize = 64 - 8 * param.tbi;
10757 inputsize = 64 - param.tsz;
10759 param = aa32_va_parameters(env, address, mmu_idx);
10761 /* There is no TTBR1 for EL2 */
10762 ttbr1_valid = (el != 2);
10763 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10764 inputsize = addrsize - param.tsz;
10768 * We determined the region when collecting the parameters, but we
10769 * have not yet validated that the address is valid for the region.
10770 * Extract the top bits and verify that they all match select.
10772 * For aa32, if inputsize == addrsize, then we have selected the
10773 * region by exclusion in aa32_va_parameters and there is no more
10774 * validation to do here.
10776 if (inputsize < addrsize) {
10777 target_ulong top_bits = sextract64(address, inputsize,
10778 addrsize - inputsize);
10779 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10780 /* The gap between the two regions is a Translation fault */
10781 fault_type = ARMFault_Translation;
10786 if (param.using64k) {
10788 } else if (param.using16k) {
10794 /* Note that QEMU ignores shareability and cacheability attributes,
10795 * so we don't need to do anything with the SH, ORGN, IRGN fields
10796 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10797 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10798 * implement any ASID-like capability so we can ignore it (instead
10799 * we will always flush the TLB any time the ASID is changed).
10801 ttbr = regime_ttbr(env, mmu_idx, param.select);
10803 /* Here we should have set up all the parameters for the translation:
10804 * inputsize, ttbr, epd, stride, tbi
10808 /* Translation table walk disabled => Translation fault on TLB miss
10809 * Note: This is always 0 on 64-bit EL2 and EL3.
10814 if (mmu_idx != ARMMMUIdx_S2NS) {
10815 /* The starting level depends on the virtual address size (which can
10816 * be up to 48 bits) and the translation granule size. It indicates
10817 * the number of strides (stride bits at a time) needed to
10818 * consume the bits of the input address. In the pseudocode this is:
10819 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10820 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10821 * our 'stride + 3' and 'stride' is our 'stride'.
10822 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10823 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10824 * = 4 - (inputsize - 4) / stride;
10826 level = 4 - (inputsize - 4) / stride;
10828 /* For stage 2 translations the starting level is specified by the
10829 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10831 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10832 uint32_t startlevel;
10835 if (!aarch64 || stride == 9) {
10836 /* AArch32 or 4KB pages */
10837 startlevel = 2 - sl0;
10839 /* 16KB or 64KB pages */
10840 startlevel = 3 - sl0;
10843 /* Check that the starting level is valid. */
10844 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10845 inputsize, stride);
10847 fault_type = ARMFault_Translation;
10850 level = startlevel;
10853 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10854 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10856 /* Now we can extract the actual base address from the TTBR */
10857 descaddr = extract64(ttbr, 0, 48);
10858 descaddr &= ~indexmask;
10860 /* The address field in the descriptor goes up to bit 39 for ARMv7
10861 * but up to bit 47 for ARMv8, but we use the descaddrmask
10862 * up to bit 39 for AArch32, because we don't need other bits in that case
10863 * to construct next descriptor address (anyway they should be all zeroes).
10865 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10866 ~indexmask_grainsize;
10868 /* Secure accesses start with the page table in secure memory and
10869 * can be downgraded to non-secure at any step. Non-secure accesses
10870 * remain non-secure. We implement this by just ORing in the NSTable/NS
10871 * bits at each step.
10873 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10875 uint64_t descriptor;
10878 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10880 nstable = extract32(tableattrs, 4, 1);
10881 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10882 if (fi->type != ARMFault_None) {
10886 if (!(descriptor & 1) ||
10887 (!(descriptor & 2) && (level == 3))) {
10888 /* Invalid, or the Reserved level 3 encoding */
10891 descaddr = descriptor & descaddrmask;
10893 if ((descriptor & 2) && (level < 3)) {
10894 /* Table entry. The top five bits are attributes which may
10895 * propagate down through lower levels of the table (and
10896 * which are all arranged so that 0 means "no effect", so
10897 * we can gather them up by ORing in the bits at each level).
10899 tableattrs |= extract64(descriptor, 59, 5);
10901 indexmask = indexmask_grainsize;
10904 /* Block entry at level 1 or 2, or page entry at level 3.
10905 * These are basically the same thing, although the number
10906 * of bits we pull in from the vaddr varies.
10908 page_size = (1ULL << ((stride * (4 - level)) + 3));
10909 descaddr |= (address & (page_size - 1));
10910 /* Extract attributes from the descriptor */
10911 attrs = extract64(descriptor, 2, 10)
10912 | (extract64(descriptor, 52, 12) << 10);
10914 if (mmu_idx == ARMMMUIdx_S2NS) {
10915 /* Stage 2 table descriptors do not include any attribute fields */
10918 /* Merge in attributes from table descriptors */
10919 attrs |= nstable << 3; /* NS */
10920 guarded = extract64(descriptor, 50, 1); /* GP */
10922 /* HPD disables all the table attributes except NSTable. */
10925 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10926 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10927 * means "force PL1 access only", which means forcing AP[1] to 0.
10929 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10930 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10933 /* Here descaddr is the final physical address, and attributes
10934 * are all in attrs.
10936 fault_type = ARMFault_AccessFlag;
10937 if ((attrs & (1 << 8)) == 0) {
10942 ap = extract32(attrs, 4, 2);
10943 xn = extract32(attrs, 12, 1);
10945 if (mmu_idx == ARMMMUIdx_S2NS) {
10947 *prot = get_S2prot(env, ap, xn);
10949 ns = extract32(attrs, 3, 1);
10950 pxn = extract32(attrs, 11, 1);
10951 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10954 fault_type = ARMFault_Permission;
10955 if (!(*prot & (1 << access_type))) {
10960 /* The NS bit will (as required by the architecture) have no effect if
10961 * the CPU doesn't support TZ or this is a non-secure translation
10962 * regime, because the attribute will already be non-secure.
10964 txattrs->secure = false;
10966 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10967 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10968 txattrs->target_tlb_bit0 = true;
10971 if (cacheattrs != NULL) {
10972 if (mmu_idx == ARMMMUIdx_S2NS) {
10973 cacheattrs->attrs = convert_stage2_attrs(env,
10974 extract32(attrs, 0, 4));
10976 /* Index into MAIR registers for cache attributes */
10977 uint8_t attrindx = extract32(attrs, 0, 3);
10978 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10979 assert(attrindx <= 7);
10980 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10982 cacheattrs->shareability = extract32(attrs, 6, 2);
10985 *phys_ptr = descaddr;
10986 *page_size_ptr = page_size;
10990 fi->type = fault_type;
10992 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10993 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10997 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10999 int32_t address, int *prot)
11001 if (!arm_feature(env, ARM_FEATURE_M)) {
11002 *prot = PAGE_READ | PAGE_WRITE;
11004 case 0xF0000000 ... 0xFFFFFFFF:
11005 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11006 /* hivecs execing is ok */
11007 *prot |= PAGE_EXEC;
11010 case 0x00000000 ... 0x7FFFFFFF:
11011 *prot |= PAGE_EXEC;
11015 /* Default system address map for M profile cores.
11016 * The architecture specifies which regions are execute-never;
11017 * at the MPU level no other checks are defined.
11020 case 0x00000000 ... 0x1fffffff: /* ROM */
11021 case 0x20000000 ... 0x3fffffff: /* SRAM */
11022 case 0x60000000 ... 0x7fffffff: /* RAM */
11023 case 0x80000000 ... 0x9fffffff: /* RAM */
11024 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11026 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11027 case 0xa0000000 ... 0xbfffffff: /* Device */
11028 case 0xc0000000 ... 0xdfffffff: /* Device */
11029 case 0xe0000000 ... 0xffffffff: /* System */
11030 *prot = PAGE_READ | PAGE_WRITE;
11033 g_assert_not_reached();
11038 static bool pmsav7_use_background_region(ARMCPU *cpu,
11039 ARMMMUIdx mmu_idx, bool is_user)
11041 /* Return true if we should use the default memory map as a
11042 * "background" region if there are no hits against any MPU regions.
11044 CPUARMState *env = &cpu->env;
11050 if (arm_feature(env, ARM_FEATURE_M)) {
11051 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11052 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11054 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11058 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11060 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11061 return arm_feature(env, ARM_FEATURE_M) &&
11062 extract32(address, 20, 12) == 0xe00;
11065 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11067 /* True if address is in the M profile system region
11068 * 0xe0000000 - 0xffffffff
11070 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11073 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11074 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11075 hwaddr *phys_ptr, int *prot,
11076 target_ulong *page_size,
11077 ARMMMUFaultInfo *fi)
11079 ARMCPU *cpu = arm_env_get_cpu(env);
11081 bool is_user = regime_is_user(env, mmu_idx);
11083 *phys_ptr = address;
11084 *page_size = TARGET_PAGE_SIZE;
11087 if (regime_translation_disabled(env, mmu_idx) ||
11088 m_is_ppb_region(env, address)) {
11089 /* MPU disabled or M profile PPB access: use default memory map.
11090 * The other case which uses the default memory map in the
11091 * v7M ARM ARM pseudocode is exception vector reads from the vector
11092 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11093 * which always does a direct read using address_space_ldl(), rather
11094 * than going via this function, so we don't need to check that here.
11096 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11097 } else { /* MPU enabled */
11098 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11099 /* region search */
11100 uint32_t base = env->pmsav7.drbar[n];
11101 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11103 bool srdis = false;
11105 if (!(env->pmsav7.drsr[n] & 0x1)) {
11110 qemu_log_mask(LOG_GUEST_ERROR,
11111 "DRSR[%d]: Rsize field cannot be 0\n", n);
11115 rmask = (1ull << rsize) - 1;
11117 if (base & rmask) {
11118 qemu_log_mask(LOG_GUEST_ERROR,
11119 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11120 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11125 if (address < base || address > base + rmask) {
11127 * Address not in this region. We must check whether the
11128 * region covers addresses in the same page as our address.
11129 * In that case we must not report a size that covers the
11130 * whole page for a subsequent hit against a different MPU
11131 * region or the background region, because it would result in
11132 * incorrect TLB hits for subsequent accesses to addresses that
11133 * are in this MPU region.
11135 if (ranges_overlap(base, rmask,
11136 address & TARGET_PAGE_MASK,
11137 TARGET_PAGE_SIZE)) {
11143 /* Region matched */
11145 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11147 uint32_t srdis_mask;
11149 rsize -= 3; /* sub region size (power of 2) */
11150 snd = ((address - base) >> rsize) & 0x7;
11151 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11153 srdis_mask = srdis ? 0x3 : 0x0;
11154 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11155 /* This will check in groups of 2, 4 and then 8, whether
11156 * the subregion bits are consistent. rsize is incremented
11157 * back up to give the region size, considering consistent
11158 * adjacent subregions as one region. Stop testing if rsize
11159 * is already big enough for an entire QEMU page.
11161 int snd_rounded = snd & ~(i - 1);
11162 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11163 snd_rounded + 8, i);
11164 if (srdis_mask ^ srdis_multi) {
11167 srdis_mask = (srdis_mask << i) | srdis_mask;
11174 if (rsize < TARGET_PAGE_BITS) {
11175 *page_size = 1 << rsize;
11180 if (n == -1) { /* no hits */
11181 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11182 /* background fault */
11183 fi->type = ARMFault_Background;
11186 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11187 } else { /* a MPU hit! */
11188 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11189 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11191 if (m_is_system_region(env, address)) {
11192 /* System space is always execute never */
11196 if (is_user) { /* User mode AP bit decoding */
11201 break; /* no access */
11203 *prot |= PAGE_WRITE;
11207 *prot |= PAGE_READ | PAGE_EXEC;
11210 /* for v7M, same as 6; for R profile a reserved value */
11211 if (arm_feature(env, ARM_FEATURE_M)) {
11212 *prot |= PAGE_READ | PAGE_EXEC;
11217 qemu_log_mask(LOG_GUEST_ERROR,
11218 "DRACR[%d]: Bad value for AP bits: 0x%"
11219 PRIx32 "\n", n, ap);
11221 } else { /* Priv. mode AP bits decoding */
11224 break; /* no access */
11228 *prot |= PAGE_WRITE;
11232 *prot |= PAGE_READ | PAGE_EXEC;
11235 /* for v7M, same as 6; for R profile a reserved value */
11236 if (arm_feature(env, ARM_FEATURE_M)) {
11237 *prot |= PAGE_READ | PAGE_EXEC;
11242 qemu_log_mask(LOG_GUEST_ERROR,
11243 "DRACR[%d]: Bad value for AP bits: 0x%"
11244 PRIx32 "\n", n, ap);
11248 /* execute never */
11250 *prot &= ~PAGE_EXEC;
11255 fi->type = ARMFault_Permission;
11257 return !(*prot & (1 << access_type));
11260 static bool v8m_is_sau_exempt(CPUARMState *env,
11261 uint32_t address, MMUAccessType access_type)
11263 /* The architecture specifies that certain address ranges are
11264 * exempt from v8M SAU/IDAU checks.
11267 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11268 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11269 (address >= 0xe000e000 && address <= 0xe000efff) ||
11270 (address >= 0xe002e000 && address <= 0xe002efff) ||
11271 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11272 (address >= 0xe00ff000 && address <= 0xe00fffff);
11275 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11276 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11277 V8M_SAttributes *sattrs)
11279 /* Look up the security attributes for this address. Compare the
11280 * pseudocode SecurityCheck() function.
11281 * We assume the caller has zero-initialized *sattrs.
11283 ARMCPU *cpu = arm_env_get_cpu(env);
11285 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11286 int idau_region = IREGION_NOTVALID;
11287 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11288 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11291 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11292 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11294 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11298 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11299 /* 0xf0000000..0xffffffff is always S for insn fetches */
11303 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11304 sattrs->ns = !regime_is_secure(env, mmu_idx);
11308 if (idau_region != IREGION_NOTVALID) {
11309 sattrs->irvalid = true;
11310 sattrs->iregion = idau_region;
11313 switch (env->sau.ctrl & 3) {
11314 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11316 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11319 default: /* SAU.ENABLE == 1 */
11320 for (r = 0; r < cpu->sau_sregion; r++) {
11321 if (env->sau.rlar[r] & 1) {
11322 uint32_t base = env->sau.rbar[r] & ~0x1f;
11323 uint32_t limit = env->sau.rlar[r] | 0x1f;
11325 if (base <= address && limit >= address) {
11326 if (base > addr_page_base || limit < addr_page_limit) {
11327 sattrs->subpage = true;
11329 if (sattrs->srvalid) {
11330 /* If we hit in more than one region then we must report
11331 * as Secure, not NS-Callable, with no valid region
11334 sattrs->ns = false;
11335 sattrs->nsc = false;
11336 sattrs->sregion = 0;
11337 sattrs->srvalid = false;
11340 if (env->sau.rlar[r] & 2) {
11341 sattrs->nsc = true;
11345 sattrs->srvalid = true;
11346 sattrs->sregion = r;
11350 * Address not in this region. We must check whether the
11351 * region covers addresses in the same page as our address.
11352 * In that case we must not report a size that covers the
11353 * whole page for a subsequent hit against a different MPU
11354 * region or the background region, because it would result
11355 * in incorrect TLB hits for subsequent accesses to
11356 * addresses that are in this MPU region.
11358 if (limit >= base &&
11359 ranges_overlap(base, limit - base + 1,
11361 TARGET_PAGE_SIZE)) {
11362 sattrs->subpage = true;
11371 * The IDAU will override the SAU lookup results if it specifies
11372 * higher security than the SAU does.
11375 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11376 sattrs->ns = false;
11377 sattrs->nsc = idau_nsc;
11382 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11383 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11384 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11385 int *prot, bool *is_subpage,
11386 ARMMMUFaultInfo *fi, uint32_t *mregion)
11388 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11389 * that a full phys-to-virt translation does).
11390 * mregion is (if not NULL) set to the region number which matched,
11391 * or -1 if no region number is returned (MPU off, address did not
11392 * hit a region, address hit in multiple regions).
11393 * We set is_subpage to true if the region hit doesn't cover the
11394 * entire TARGET_PAGE the address is within.
11396 ARMCPU *cpu = arm_env_get_cpu(env);
11397 bool is_user = regime_is_user(env, mmu_idx);
11398 uint32_t secure = regime_is_secure(env, mmu_idx);
11400 int matchregion = -1;
11402 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11403 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11405 *is_subpage = false;
11406 *phys_ptr = address;
11412 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11413 * was an exception vector read from the vector table (which is always
11414 * done using the default system address map), because those accesses
11415 * are done in arm_v7m_load_vector(), which always does a direct
11416 * read using address_space_ldl(), rather than going via this function.
11418 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11420 } else if (m_is_ppb_region(env, address)) {
11423 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11427 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11428 /* region search */
11429 /* Note that the base address is bits [31:5] from the register
11430 * with bits [4:0] all zeroes, but the limit address is bits
11431 * [31:5] from the register with bits [4:0] all ones.
11433 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11434 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11436 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11437 /* Region disabled */
11441 if (address < base || address > limit) {
11443 * Address not in this region. We must check whether the
11444 * region covers addresses in the same page as our address.
11445 * In that case we must not report a size that covers the
11446 * whole page for a subsequent hit against a different MPU
11447 * region or the background region, because it would result in
11448 * incorrect TLB hits for subsequent accesses to addresses that
11449 * are in this MPU region.
11451 if (limit >= base &&
11452 ranges_overlap(base, limit - base + 1,
11454 TARGET_PAGE_SIZE)) {
11455 *is_subpage = true;
11460 if (base > addr_page_base || limit < addr_page_limit) {
11461 *is_subpage = true;
11464 if (matchregion != -1) {
11465 /* Multiple regions match -- always a failure (unlike
11466 * PMSAv7 where highest-numbered-region wins)
11468 fi->type = ARMFault_Permission;
11479 /* background fault */
11480 fi->type = ARMFault_Background;
11484 if (matchregion == -1) {
11485 /* hit using the background region */
11486 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11488 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11489 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11491 if (m_is_system_region(env, address)) {
11492 /* System space is always execute never */
11496 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11497 if (*prot && !xn) {
11498 *prot |= PAGE_EXEC;
11500 /* We don't need to look the attribute up in the MAIR0/MAIR1
11501 * registers because that only tells us about cacheability.
11504 *mregion = matchregion;
11508 fi->type = ARMFault_Permission;
11510 return !(*prot & (1 << access_type));
11514 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11515 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11516 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11517 int *prot, target_ulong *page_size,
11518 ARMMMUFaultInfo *fi)
11520 uint32_t secure = regime_is_secure(env, mmu_idx);
11521 V8M_SAttributes sattrs = {};
11523 bool mpu_is_subpage;
11525 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11526 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11527 if (access_type == MMU_INST_FETCH) {
11528 /* Instruction fetches always use the MMU bank and the
11529 * transaction attribute determined by the fetch address,
11530 * regardless of CPU state. This is painful for QEMU
11531 * to handle, because it would mean we need to encode
11532 * into the mmu_idx not just the (user, negpri) information
11533 * for the current security state but also that for the
11534 * other security state, which would balloon the number
11535 * of mmu_idx values needed alarmingly.
11536 * Fortunately we can avoid this because it's not actually
11537 * possible to arbitrarily execute code from memory with
11538 * the wrong security attribute: it will always generate
11539 * an exception of some kind or another, apart from the
11540 * special case of an NS CPU executing an SG instruction
11541 * in S&NSC memory. So we always just fail the translation
11542 * here and sort things out in the exception handler
11543 * (including possibly emulating an SG instruction).
11545 if (sattrs.ns != !secure) {
11547 fi->type = ARMFault_QEMU_NSCExec;
11549 fi->type = ARMFault_QEMU_SFault;
11551 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11552 *phys_ptr = address;
11557 /* For data accesses we always use the MMU bank indicated
11558 * by the current CPU state, but the security attributes
11559 * might downgrade a secure access to nonsecure.
11562 txattrs->secure = false;
11563 } else if (!secure) {
11564 /* NS access to S memory must fault.
11565 * Architecturally we should first check whether the
11566 * MPU information for this address indicates that we
11567 * are doing an unaligned access to Device memory, which
11568 * should generate a UsageFault instead. QEMU does not
11569 * currently check for that kind of unaligned access though.
11570 * If we added it we would need to do so as a special case
11571 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11573 fi->type = ARMFault_QEMU_SFault;
11574 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11575 *phys_ptr = address;
11582 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11583 txattrs, prot, &mpu_is_subpage, fi, NULL);
11584 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11588 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11589 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11590 hwaddr *phys_ptr, int *prot,
11591 ARMMMUFaultInfo *fi)
11596 bool is_user = regime_is_user(env, mmu_idx);
11598 if (regime_translation_disabled(env, mmu_idx)) {
11599 /* MPU disabled. */
11600 *phys_ptr = address;
11601 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11605 *phys_ptr = address;
11606 for (n = 7; n >= 0; n--) {
11607 base = env->cp15.c6_region[n];
11608 if ((base & 1) == 0) {
11611 mask = 1 << ((base >> 1) & 0x1f);
11612 /* Keep this shift separate from the above to avoid an
11613 (undefined) << 32. */
11614 mask = (mask << 1) - 1;
11615 if (((base ^ address) & ~mask) == 0) {
11620 fi->type = ARMFault_Background;
11624 if (access_type == MMU_INST_FETCH) {
11625 mask = env->cp15.pmsav5_insn_ap;
11627 mask = env->cp15.pmsav5_data_ap;
11629 mask = (mask >> (n * 4)) & 0xf;
11632 fi->type = ARMFault_Permission;
11637 fi->type = ARMFault_Permission;
11641 *prot = PAGE_READ | PAGE_WRITE;
11646 *prot |= PAGE_WRITE;
11650 *prot = PAGE_READ | PAGE_WRITE;
11654 fi->type = ARMFault_Permission;
11664 /* Bad permission. */
11665 fi->type = ARMFault_Permission;
11669 *prot |= PAGE_EXEC;
11673 /* Combine either inner or outer cacheability attributes for normal
11674 * memory, according to table D4-42 and pseudocode procedure
11675 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11677 * NB: only stage 1 includes allocation hints (RW bits), leading to
11680 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11682 if (s1 == 4 || s2 == 4) {
11683 /* non-cacheable has precedence */
11685 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11686 /* stage 1 write-through takes precedence */
11688 } else if (extract32(s2, 2, 2) == 2) {
11689 /* stage 2 write-through takes precedence, but the allocation hint
11690 * is still taken from stage 1
11692 return (2 << 2) | extract32(s1, 0, 2);
11693 } else { /* write-back */
11698 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11699 * and CombineS1S2Desc()
11701 * @s1: Attributes from stage 1 walk
11702 * @s2: Attributes from stage 2 walk
11704 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11706 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11707 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11710 /* Combine shareability attributes (table D4-43) */
11711 if (s1.shareability == 2 || s2.shareability == 2) {
11712 /* if either are outer-shareable, the result is outer-shareable */
11713 ret.shareability = 2;
11714 } else if (s1.shareability == 3 || s2.shareability == 3) {
11715 /* if either are inner-shareable, the result is inner-shareable */
11716 ret.shareability = 3;
11718 /* both non-shareable */
11719 ret.shareability = 0;
11722 /* Combine memory type and cacheability attributes */
11723 if (s1hi == 0 || s2hi == 0) {
11724 /* Device has precedence over normal */
11725 if (s1lo == 0 || s2lo == 0) {
11726 /* nGnRnE has precedence over anything */
11728 } else if (s1lo == 4 || s2lo == 4) {
11729 /* non-Reordering has precedence over Reordering */
11730 ret.attrs = 4; /* nGnRE */
11731 } else if (s1lo == 8 || s2lo == 8) {
11732 /* non-Gathering has precedence over Gathering */
11733 ret.attrs = 8; /* nGRE */
11735 ret.attrs = 0xc; /* GRE */
11738 /* Any location for which the resultant memory type is any
11739 * type of Device memory is always treated as Outer Shareable.
11741 ret.shareability = 2;
11742 } else { /* Normal memory */
11743 /* Outer/inner cacheability combine independently */
11744 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11745 | combine_cacheattr_nibble(s1lo, s2lo);
11747 if (ret.attrs == 0x44) {
11748 /* Any location for which the resultant memory type is Normal
11749 * Inner Non-cacheable, Outer Non-cacheable is always treated
11750 * as Outer Shareable.
11752 ret.shareability = 2;
11760 /* get_phys_addr - get the physical address for this virtual address
11762 * Find the physical address corresponding to the given virtual address,
11763 * by doing a translation table walk on MMU based systems or using the
11764 * MPU state on MPU based systems.
11766 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11767 * prot and page_size may not be filled in, and the populated fsr value provides
11768 * information on why the translation aborted, in the format of a
11769 * DFSR/IFSR fault register, with the following caveats:
11770 * * we honour the short vs long DFSR format differences.
11771 * * the WnR bit is never set (the caller must do this).
11772 * * for PSMAv5 based systems we don't bother to return a full FSR format
11775 * @env: CPUARMState
11776 * @address: virtual address to get physical address for
11777 * @access_type: 0 for read, 1 for write, 2 for execute
11778 * @mmu_idx: MMU index indicating required translation regime
11779 * @phys_ptr: set to the physical address corresponding to the virtual address
11780 * @attrs: set to the memory transaction attributes to use
11781 * @prot: set to the permissions for the page containing phys_ptr
11782 * @page_size: set to the size of the page containing phys_ptr
11783 * @fi: set to fault info if the translation fails
11784 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11786 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11787 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11788 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11789 target_ulong *page_size,
11790 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11792 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11793 /* Call ourselves recursively to do the stage 1 and then stage 2
11796 if (arm_feature(env, ARM_FEATURE_EL2)) {
11800 ARMCacheAttrs cacheattrs2 = {};
11802 ret = get_phys_addr(env, address, access_type,
11803 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11804 prot, page_size, fi, cacheattrs);
11806 /* If S1 fails or S2 is disabled, return early. */
11807 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11812 /* S1 is done. Now do S2 translation. */
11813 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11814 phys_ptr, attrs, &s2_prot,
11816 cacheattrs != NULL ? &cacheattrs2 : NULL);
11818 /* Combine the S1 and S2 perms. */
11821 /* Combine the S1 and S2 cache attributes, if needed */
11822 if (!ret && cacheattrs != NULL) {
11823 if (env->cp15.hcr_el2 & HCR_DC) {
11825 * HCR.DC forces the first stage attributes to
11826 * Normal Non-Shareable,
11827 * Inner Write-Back Read-Allocate Write-Allocate,
11828 * Outer Write-Back Read-Allocate Write-Allocate.
11830 cacheattrs->attrs = 0xff;
11831 cacheattrs->shareability = 0;
11833 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11839 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11841 mmu_idx = stage_1_mmu_idx(mmu_idx);
11845 /* The page table entries may downgrade secure to non-secure, but
11846 * cannot upgrade an non-secure translation regime's attributes
11849 attrs->secure = regime_is_secure(env, mmu_idx);
11850 attrs->user = regime_is_user(env, mmu_idx);
11852 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11853 * In v7 and earlier it affects all stage 1 translations.
11855 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11856 && !arm_feature(env, ARM_FEATURE_V8)) {
11857 if (regime_el(env, mmu_idx) == 3) {
11858 address += env->cp15.fcseidr_s;
11860 address += env->cp15.fcseidr_ns;
11864 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11866 *page_size = TARGET_PAGE_SIZE;
11868 if (arm_feature(env, ARM_FEATURE_V8)) {
11870 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11871 phys_ptr, attrs, prot, page_size, fi);
11872 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11874 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11875 phys_ptr, prot, page_size, fi);
11878 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11879 phys_ptr, prot, fi);
11881 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11882 " mmu_idx %u -> %s (prot %c%c%c)\n",
11883 access_type == MMU_DATA_LOAD ? "reading" :
11884 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11885 (uint32_t)address, mmu_idx,
11886 ret ? "Miss" : "Hit",
11887 *prot & PAGE_READ ? 'r' : '-',
11888 *prot & PAGE_WRITE ? 'w' : '-',
11889 *prot & PAGE_EXEC ? 'x' : '-');
11894 /* Definitely a real MMU, not an MPU */
11896 if (regime_translation_disabled(env, mmu_idx)) {
11897 /* MMU disabled. */
11898 *phys_ptr = address;
11899 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11900 *page_size = TARGET_PAGE_SIZE;
11904 if (regime_using_lpae_format(env, mmu_idx)) {
11905 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11906 phys_ptr, attrs, prot, page_size,
11908 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11909 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11910 phys_ptr, attrs, prot, page_size, fi);
11912 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11913 phys_ptr, prot, page_size, fi);
11917 /* Walk the page table and (if the mapping exists) add the page
11918 * to the TLB. Return false on success, or true on failure. Populate
11919 * fsr with ARM DFSR/IFSR fault register format value on failure.
11921 bool arm_tlb_fill(CPUState *cs, vaddr address,
11922 MMUAccessType access_type, int mmu_idx,
11923 ARMMMUFaultInfo *fi)
11925 ARMCPU *cpu = ARM_CPU(cs);
11926 CPUARMState *env = &cpu->env;
11928 target_ulong page_size;
11931 MemTxAttrs attrs = {};
11933 ret = get_phys_addr(env, address, access_type,
11934 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11935 &attrs, &prot, &page_size, fi, NULL);
11938 * Map a single [sub]page. Regions smaller than our declared
11939 * target page size are handled specially, so for those we
11940 * pass in the exact addresses.
11942 if (page_size >= TARGET_PAGE_SIZE) {
11943 phys_addr &= TARGET_PAGE_MASK;
11944 address &= TARGET_PAGE_MASK;
11946 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11947 prot, mmu_idx, page_size);
11954 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11957 ARMCPU *cpu = ARM_CPU(cs);
11958 CPUARMState *env = &cpu->env;
11960 target_ulong page_size;
11963 ARMMMUFaultInfo fi = {};
11964 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11966 *attrs = (MemTxAttrs) {};
11968 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11969 attrs, &prot, &page_size, &fi, NULL);
11977 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11980 unsigned el = arm_current_el(env);
11982 /* First handle registers which unprivileged can read */
11985 case 0 ... 7: /* xPSR sub-fields */
11987 if ((reg & 1) && el) {
11988 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11991 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11993 /* EPSR reads as zero */
11994 return xpsr_read(env) & mask;
11996 case 20: /* CONTROL */
11997 return env->v7m.control[env->v7m.secure];
11998 case 0x94: /* CONTROL_NS */
11999 /* We have to handle this here because unprivileged Secure code
12000 * can read the NS CONTROL register.
12002 if (!env->v7m.secure) {
12005 return env->v7m.control[M_REG_NS];
12009 return 0; /* unprivileged reads others as zero */
12012 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12014 case 0x88: /* MSP_NS */
12015 if (!env->v7m.secure) {
12018 return env->v7m.other_ss_msp;
12019 case 0x89: /* PSP_NS */
12020 if (!env->v7m.secure) {
12023 return env->v7m.other_ss_psp;
12024 case 0x8a: /* MSPLIM_NS */
12025 if (!env->v7m.secure) {
12028 return env->v7m.msplim[M_REG_NS];
12029 case 0x8b: /* PSPLIM_NS */
12030 if (!env->v7m.secure) {
12033 return env->v7m.psplim[M_REG_NS];
12034 case 0x90: /* PRIMASK_NS */
12035 if (!env->v7m.secure) {
12038 return env->v7m.primask[M_REG_NS];
12039 case 0x91: /* BASEPRI_NS */
12040 if (!env->v7m.secure) {
12043 return env->v7m.basepri[M_REG_NS];
12044 case 0x93: /* FAULTMASK_NS */
12045 if (!env->v7m.secure) {
12048 return env->v7m.faultmask[M_REG_NS];
12049 case 0x98: /* SP_NS */
12051 /* This gives the non-secure SP selected based on whether we're
12052 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12054 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12056 if (!env->v7m.secure) {
12059 if (!arm_v7m_is_handler_mode(env) && spsel) {
12060 return env->v7m.other_ss_psp;
12062 return env->v7m.other_ss_msp;
12072 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12074 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12075 case 10: /* MSPLIM */
12076 if (!arm_feature(env, ARM_FEATURE_V8)) {
12079 return env->v7m.msplim[env->v7m.secure];
12080 case 11: /* PSPLIM */
12081 if (!arm_feature(env, ARM_FEATURE_V8)) {
12084 return env->v7m.psplim[env->v7m.secure];
12085 case 16: /* PRIMASK */
12086 return env->v7m.primask[env->v7m.secure];
12087 case 17: /* BASEPRI */
12088 case 18: /* BASEPRI_MAX */
12089 return env->v7m.basepri[env->v7m.secure];
12090 case 19: /* FAULTMASK */
12091 return env->v7m.faultmask[env->v7m.secure];
12094 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12095 " register %d\n", reg);
12100 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12102 /* We're passed bits [11..0] of the instruction; extract
12103 * SYSm and the mask bits.
12104 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12105 * we choose to treat them as if the mask bits were valid.
12106 * NB that the pseudocode 'mask' variable is bits [11..10],
12107 * whereas ours is [11..8].
12109 uint32_t mask = extract32(maskreg, 8, 4);
12110 uint32_t reg = extract32(maskreg, 0, 8);
12112 if (arm_current_el(env) == 0 && reg > 7) {
12113 /* only xPSR sub-fields may be written by unprivileged */
12117 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12119 case 0x88: /* MSP_NS */
12120 if (!env->v7m.secure) {
12123 env->v7m.other_ss_msp = val;
12125 case 0x89: /* PSP_NS */
12126 if (!env->v7m.secure) {
12129 env->v7m.other_ss_psp = val;
12131 case 0x8a: /* MSPLIM_NS */
12132 if (!env->v7m.secure) {
12135 env->v7m.msplim[M_REG_NS] = val & ~7;
12137 case 0x8b: /* PSPLIM_NS */
12138 if (!env->v7m.secure) {
12141 env->v7m.psplim[M_REG_NS] = val & ~7;
12143 case 0x90: /* PRIMASK_NS */
12144 if (!env->v7m.secure) {
12147 env->v7m.primask[M_REG_NS] = val & 1;
12149 case 0x91: /* BASEPRI_NS */
12150 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12153 env->v7m.basepri[M_REG_NS] = val & 0xff;
12155 case 0x93: /* FAULTMASK_NS */
12156 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12159 env->v7m.faultmask[M_REG_NS] = val & 1;
12161 case 0x94: /* CONTROL_NS */
12162 if (!env->v7m.secure) {
12165 write_v7m_control_spsel_for_secstate(env,
12166 val & R_V7M_CONTROL_SPSEL_MASK,
12168 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12169 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12170 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12173 case 0x98: /* SP_NS */
12175 /* This gives the non-secure SP selected based on whether we're
12176 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12178 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12179 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12182 if (!env->v7m.secure) {
12186 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12189 CPUState *cs = CPU(arm_env_get_cpu(env));
12191 cpu_restore_state(cs, GETPC(), true);
12192 raise_exception(env, EXCP_STKOF, 0, 1);
12196 env->v7m.other_ss_psp = val;
12198 env->v7m.other_ss_msp = val;
12208 case 0 ... 7: /* xPSR sub-fields */
12209 /* only APSR is actually writable */
12211 uint32_t apsrmask = 0;
12214 apsrmask |= XPSR_NZCV | XPSR_Q;
12216 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12217 apsrmask |= XPSR_GE;
12219 xpsr_write(env, val, apsrmask);
12223 if (v7m_using_psp(env)) {
12224 env->v7m.other_sp = val;
12226 env->regs[13] = val;
12230 if (v7m_using_psp(env)) {
12231 env->regs[13] = val;
12233 env->v7m.other_sp = val;
12236 case 10: /* MSPLIM */
12237 if (!arm_feature(env, ARM_FEATURE_V8)) {
12240 env->v7m.msplim[env->v7m.secure] = val & ~7;
12242 case 11: /* PSPLIM */
12243 if (!arm_feature(env, ARM_FEATURE_V8)) {
12246 env->v7m.psplim[env->v7m.secure] = val & ~7;
12248 case 16: /* PRIMASK */
12249 env->v7m.primask[env->v7m.secure] = val & 1;
12251 case 17: /* BASEPRI */
12252 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12255 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12257 case 18: /* BASEPRI_MAX */
12258 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12262 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12263 || env->v7m.basepri[env->v7m.secure] == 0)) {
12264 env->v7m.basepri[env->v7m.secure] = val;
12267 case 19: /* FAULTMASK */
12268 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12271 env->v7m.faultmask[env->v7m.secure] = val & 1;
12273 case 20: /* CONTROL */
12274 /* Writing to the SPSEL bit only has an effect if we are in
12275 * thread mode; other bits can be updated by any privileged code.
12276 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12277 * env->v7m.control, so we only need update the others.
12278 * For v7M, we must just ignore explicit writes to SPSEL in handler
12279 * mode; for v8M the write is permitted but will have no effect.
12281 if (arm_feature(env, ARM_FEATURE_V8) ||
12282 !arm_v7m_is_handler_mode(env)) {
12283 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12285 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12286 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12287 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12292 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12293 " register %d\n", reg);
12298 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12300 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12301 bool forceunpriv = op & 1;
12303 V8M_SAttributes sattrs = {};
12305 bool r, rw, nsr, nsrw, mrvalid;
12307 ARMMMUFaultInfo fi = {};
12308 MemTxAttrs attrs = {};
12313 bool targetsec = env->v7m.secure;
12316 /* Work out what the security state and privilege level we're
12317 * interested in is...
12320 targetsec = !targetsec;
12324 targetpriv = false;
12326 targetpriv = arm_v7m_is_handler_mode(env) ||
12327 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12330 /* ...and then figure out which MMU index this is */
12331 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12333 /* We know that the MPU and SAU don't care about the access type
12334 * for our purposes beyond that we don't want to claim to be
12335 * an insn fetch, so we arbitrarily call this a read.
12338 /* MPU region info only available for privileged or if
12339 * inspecting the other MPU state.
12341 if (arm_current_el(env) != 0 || alt) {
12342 /* We can ignore the return value as prot is always set */
12343 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12344 &phys_addr, &attrs, &prot, &is_subpage,
12346 if (mregion == -1) {
12352 r = prot & PAGE_READ;
12353 rw = prot & PAGE_WRITE;
12361 if (env->v7m.secure) {
12362 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12363 nsr = sattrs.ns && r;
12364 nsrw = sattrs.ns && rw;
12371 tt_resp = (sattrs.iregion << 24) |
12372 (sattrs.irvalid << 23) |
12373 ((!sattrs.ns) << 22) |
12378 (sattrs.srvalid << 17) |
12380 (sattrs.sregion << 8) |
12388 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12390 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12391 * Note that we do not implement the (architecturally mandated)
12392 * alignment fault for attempts to use this on Device memory
12393 * (which matches the usual QEMU behaviour of not implementing either
12394 * alignment faults or any memory attribute handling).
12397 ARMCPU *cpu = arm_env_get_cpu(env);
12398 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12399 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12401 #ifndef CONFIG_USER_ONLY
12403 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12404 * the block size so we might have to do more than one TLB lookup.
12405 * We know that in fact for any v8 CPU the page size is at least 4K
12406 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12407 * 1K as an artefact of legacy v5 subpage support being present in the
12408 * same QEMU executable.
12410 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12411 void *hostaddr[maxidx];
12413 unsigned mmu_idx = cpu_mmu_index(env, false);
12414 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12416 for (try = 0; try < 2; try++) {
12418 for (i = 0; i < maxidx; i++) {
12419 hostaddr[i] = tlb_vaddr_to_host(env,
12420 vaddr + TARGET_PAGE_SIZE * i,
12422 if (!hostaddr[i]) {
12427 /* If it's all in the TLB it's fair game for just writing to;
12428 * we know we don't need to update dirty status, etc.
12430 for (i = 0; i < maxidx - 1; i++) {
12431 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12433 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12436 /* OK, try a store and see if we can populate the tlb. This
12437 * might cause an exception if the memory isn't writable,
12438 * in which case we will longjmp out of here. We must for
12439 * this purpose use the actual register value passed to us
12440 * so that we get the fault address right.
12442 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12443 /* Now we can populate the other TLB entries, if any */
12444 for (i = 0; i < maxidx; i++) {
12445 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12446 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12447 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12452 /* Slow path (probably attempt to do this to an I/O device or
12453 * similar, or clearing of a block of code we have translations
12454 * cached for). Just do a series of byte writes as the architecture
12455 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12456 * memset(), unmap() sequence here because:
12457 * + we'd need to account for the blocksize being larger than a page
12458 * + the direct-RAM access case is almost always going to be dealt
12459 * with in the fastpath code above, so there's no speed benefit
12460 * + we would have to deal with the map returning NULL because the
12461 * bounce buffer was in use
12463 for (i = 0; i < blocklen; i++) {
12464 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12468 memset(g2h(vaddr), 0, blocklen);
12472 /* Note that signed overflow is undefined in C. The following routines are
12473 careful to use unsigned types where modulo arithmetic is required.
12474 Failure to do so _will_ break on newer gcc. */
12476 /* Signed saturating arithmetic. */
12478 /* Perform 16-bit signed saturating addition. */
12479 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12484 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12493 /* Perform 8-bit signed saturating addition. */
12494 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12499 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12508 /* Perform 16-bit signed saturating subtraction. */
12509 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12514 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12523 /* Perform 8-bit signed saturating subtraction. */
12524 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12529 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12538 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12539 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12540 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12541 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12544 #include "op_addsub.h"
12546 /* Unsigned saturating arithmetic. */
12547 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12556 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12564 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12573 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12581 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12582 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12583 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12584 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12587 #include "op_addsub.h"
12589 /* Signed modulo arithmetic. */
12590 #define SARITH16(a, b, n, op) do { \
12592 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12593 RESULT(sum, n, 16); \
12595 ge |= 3 << (n * 2); \
12598 #define SARITH8(a, b, n, op) do { \
12600 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12601 RESULT(sum, n, 8); \
12607 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12608 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12609 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12610 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12614 #include "op_addsub.h"
12616 /* Unsigned modulo arithmetic. */
12617 #define ADD16(a, b, n) do { \
12619 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12620 RESULT(sum, n, 16); \
12621 if ((sum >> 16) == 1) \
12622 ge |= 3 << (n * 2); \
12625 #define ADD8(a, b, n) do { \
12627 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12628 RESULT(sum, n, 8); \
12629 if ((sum >> 8) == 1) \
12633 #define SUB16(a, b, n) do { \
12635 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12636 RESULT(sum, n, 16); \
12637 if ((sum >> 16) == 0) \
12638 ge |= 3 << (n * 2); \
12641 #define SUB8(a, b, n) do { \
12643 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12644 RESULT(sum, n, 8); \
12645 if ((sum >> 8) == 0) \
12652 #include "op_addsub.h"
12654 /* Halved signed arithmetic. */
12655 #define ADD16(a, b, n) \
12656 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12657 #define SUB16(a, b, n) \
12658 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12659 #define ADD8(a, b, n) \
12660 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12661 #define SUB8(a, b, n) \
12662 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12665 #include "op_addsub.h"
12667 /* Halved unsigned arithmetic. */
12668 #define ADD16(a, b, n) \
12669 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12670 #define SUB16(a, b, n) \
12671 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12672 #define ADD8(a, b, n) \
12673 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12674 #define SUB8(a, b, n) \
12675 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12678 #include "op_addsub.h"
12680 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12688 /* Unsigned sum of absolute byte differences. */
12689 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12692 sum = do_usad(a, b);
12693 sum += do_usad(a >> 8, b >> 8);
12694 sum += do_usad(a >> 16, b >>16);
12695 sum += do_usad(a >> 24, b >> 24);
12699 /* For ARMv6 SEL instruction. */
12700 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12712 mask |= 0xff000000;
12713 return (a & mask) | (b & ~mask);
12717 * The upper bytes of val (above the number specified by 'bytes') must have
12718 * been zeroed out by the caller.
12720 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12724 stl_le_p(buf, val);
12726 /* zlib crc32 converts the accumulator and output to one's complement. */
12727 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12730 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12734 stl_le_p(buf, val);
12736 /* Linux crc32c converts the output to one's complement. */
12737 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12740 /* Return the exception level to which FP-disabled exceptions should
12741 * be taken, or 0 if FP is enabled.
12743 int fp_exception_el(CPUARMState *env, int cur_el)
12745 #ifndef CONFIG_USER_ONLY
12748 /* CPACR and the CPTR registers don't exist before v6, so FP is
12749 * always accessible
12751 if (!arm_feature(env, ARM_FEATURE_V6)) {
12755 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12756 * 0, 2 : trap EL0 and EL1/PL1 accesses
12757 * 1 : trap only EL0 accesses
12758 * 3 : trap no accesses
12760 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12764 if (cur_el == 0 || cur_el == 1) {
12765 /* Trap to PL1, which might be EL1 or EL3 */
12766 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12771 if (cur_el == 3 && !is_a64(env)) {
12772 /* Secure PL1 running at EL3 */
12785 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12786 * check because zero bits in the registers mean "don't trap".
12789 /* CPTR_EL2 : present in v7VE or v8 */
12790 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12791 && !arm_is_secure_below_el3(env)) {
12792 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12796 /* CPTR_EL3 : present in v8 */
12797 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12798 /* Trap all FP ops to EL3 */
12805 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
12806 bool secstate, bool priv)
12808 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
12811 mmu_idx |= ARM_MMU_IDX_M_PRIV;
12814 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
12815 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
12819 mmu_idx |= ARM_MMU_IDX_M_S;
12825 /* Return the MMU index for a v7M CPU in the specified security state */
12826 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12828 bool priv = arm_current_el(env) != 0;
12830 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
12833 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12837 if (arm_feature(env, ARM_FEATURE_M)) {
12838 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12841 el = arm_current_el(env);
12842 if (el < 2 && arm_is_secure_below_el3(env)) {
12843 return ARMMMUIdx_S1SE0 + el;
12845 return ARMMMUIdx_S12NSE0 + el;
12849 int cpu_mmu_index(CPUARMState *env, bool ifetch)
12851 return arm_to_core_mmu_idx(arm_mmu_idx(env));
12854 #ifndef CONFIG_USER_ONLY
12855 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12857 return stage_1_mmu_idx(arm_mmu_idx(env));
12861 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12862 target_ulong *cs_base, uint32_t *pflags)
12864 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12865 int current_el = arm_current_el(env);
12866 int fp_el = fp_exception_el(env, current_el);
12867 uint32_t flags = 0;
12870 ARMCPU *cpu = arm_env_get_cpu(env);
12874 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12876 /* Get control bits for tagged addresses. */
12878 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12879 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
12882 /* FIXME: ARMv8.1-VHE S2 translation regime. */
12883 if (regime_el(env, stage1) < 2) {
12884 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
12885 tbid = (p1.tbi << 1) | p0.tbi;
12886 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
12889 tbii = tbid & !p0.tbid;
12892 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12893 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12896 if (cpu_isar_feature(aa64_sve, cpu)) {
12897 int sve_el = sve_exception_el(env, current_el);
12900 /* If SVE is disabled, but FP is enabled,
12901 * then the effective len is 0.
12903 if (sve_el != 0 && fp_el == 0) {
12906 zcr_len = sve_zcr_len_for_el(env, current_el);
12908 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12909 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12912 sctlr = arm_sctlr(env, current_el);
12914 if (cpu_isar_feature(aa64_pauth, cpu)) {
12916 * In order to save space in flags, we record only whether
12917 * pauth is "inactive", meaning all insns are implemented as
12918 * a nop, or "active" when some action must be performed.
12919 * The decision of which action to take is left to a helper.
12921 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12922 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12926 if (cpu_isar_feature(aa64_bti, cpu)) {
12927 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12928 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12929 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12931 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12934 *pc = env->regs[15];
12935 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
12936 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
12937 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
12938 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
12939 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
12940 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12941 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12942 || arm_el_is_aa64(env, 1)) {
12943 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12945 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
12948 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
12950 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12951 * states defined in the ARM ARM for software singlestep:
12952 * SS_ACTIVE PSTATE.SS State
12953 * 0 x Inactive (the TB flag for SS is always 0)
12954 * 1 0 Active-pending
12955 * 1 1 Active-not-pending
12957 if (arm_singlestep_active(env)) {
12958 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12960 if (env->pstate & PSTATE_SS) {
12961 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12964 if (env->uncached_cpsr & PSTATE_SS) {
12965 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12969 if (arm_cpu_data_is_big_endian(env)) {
12970 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12972 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12974 if (arm_v7m_is_handler_mode(env)) {
12975 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
12978 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12979 * suppressing them because the requested execution priority is less than 0.
12981 if (arm_feature(env, ARM_FEATURE_V8) &&
12982 arm_feature(env, ARM_FEATURE_M) &&
12983 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12984 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12985 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
12992 #ifdef TARGET_AARCH64
12994 * The manual says that when SVE is enabled and VQ is widened the
12995 * implementation is allowed to zero the previously inaccessible
12996 * portion of the registers. The corollary to that is that when
12997 * SVE is enabled and VQ is narrowed we are also allowed to zero
12998 * the now inaccessible portion of the registers.
13000 * The intent of this is that no predicate bit beyond VQ is ever set.
13001 * Which means that some operations on predicate registers themselves
13002 * may operate on full uint64_t or even unrolled across the maximum
13003 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13004 * may well be cheaper than conditionals to restrict the operation
13005 * to the relevant portion of a uint16_t[16].
13007 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13012 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13013 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13015 /* Zap the high bits of the zregs. */
13016 for (i = 0; i < 32; i++) {
13017 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13020 /* Zap the high bits of the pregs and ffr. */
13023 pmask = ~(-1ULL << (16 * (vq & 3)));
13025 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13026 for (i = 0; i < 17; ++i) {
13027 env->vfp.pregs[i].p[j] &= pmask;
13034 * Notice a change in SVE vector size when changing EL.
13036 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13037 int new_el, bool el0_a64)
13039 ARMCPU *cpu = arm_env_get_cpu(env);
13040 int old_len, new_len;
13041 bool old_a64, new_a64;
13043 /* Nothing to do if no SVE. */
13044 if (!cpu_isar_feature(aa64_sve, cpu)) {
13048 /* Nothing to do if FP is disabled in either EL. */
13049 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13054 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13055 * at ELx, or not available because the EL is in AArch32 state, then
13056 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13057 * has an effective value of 0".
13059 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13060 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13061 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13062 * we already have the correct register contents when encountering the
13063 * vq0->vq0 transition between EL0->EL1.
13065 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13066 old_len = (old_a64 && !sve_exception_el(env, old_el)
13067 ? sve_zcr_len_for_el(env, old_el) : 0);
13068 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13069 new_len = (new_a64 && !sve_exception_el(env, new_el)
13070 ? sve_zcr_len_for_el(env, new_el) : 0);
13072 /* When changing vector length, clear inaccessible state. */
13073 if (new_len < old_len) {
13074 aarch64_sve_narrow_vq(env, new_len + 1);