4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
53 #include "qemu/cache-utils.h"
55 #include "qemu/range.h"
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 static bool in_migration;
62 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
64 static MemoryRegion *system_memory;
65 static MemoryRegion *system_io;
67 AddressSpace address_space_io;
68 AddressSpace address_space_memory;
70 MemoryRegion io_mem_rom, io_mem_notdirty;
71 static MemoryRegion io_mem_unassigned;
75 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
76 /* current CPU in the current thread. It is only valid inside
78 DEFINE_TLS(CPUState *, current_cpu);
79 /* 0 = Do not count executed instructions.
80 1 = Precise instruction counting.
81 2 = Adaptive rate instruction counting. */
84 #if !defined(CONFIG_USER_ONLY)
86 typedef struct PhysPageEntry PhysPageEntry;
88 struct PhysPageEntry {
89 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
91 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
95 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97 /* Size of the L2 (and L3, etc) page tables. */
98 #define ADDR_SPACE_BITS 64
101 #define P_L2_SIZE (1 << P_L2_BITS)
103 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105 typedef PhysPageEntry Node[P_L2_SIZE];
107 typedef struct PhysPageMap {
108 unsigned sections_nb;
109 unsigned sections_nb_alloc;
111 unsigned nodes_nb_alloc;
113 MemoryRegionSection *sections;
116 struct AddressSpaceDispatch {
117 /* This is a multi-level map on the physical address space.
118 * The bottom level has pointers to MemoryRegionSections.
120 PhysPageEntry phys_map;
125 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
126 typedef struct subpage_t {
130 uint16_t sub_section[TARGET_PAGE_SIZE];
133 #define PHYS_SECTION_UNASSIGNED 0
134 #define PHYS_SECTION_NOTDIRTY 1
135 #define PHYS_SECTION_ROM 2
136 #define PHYS_SECTION_WATCH 3
138 static void io_mem_init(void);
139 static void memory_map_init(void);
140 static void tcg_commit(MemoryListener *listener);
142 static MemoryRegion io_mem_watch;
145 #if !defined(CONFIG_USER_ONLY)
147 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
149 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
152 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
156 static uint32_t phys_map_node_alloc(PhysPageMap *map)
161 ret = map->nodes_nb++;
162 assert(ret != PHYS_MAP_NODE_NIL);
163 assert(ret != map->nodes_nb_alloc);
164 for (i = 0; i < P_L2_SIZE; ++i) {
165 map->nodes[ret][i].skip = 1;
166 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
171 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
172 hwaddr *index, hwaddr *nb, uint16_t leaf,
177 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
179 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
180 lp->ptr = phys_map_node_alloc(map);
181 p = map->nodes[lp->ptr];
183 for (i = 0; i < P_L2_SIZE; i++) {
185 p[i].ptr = PHYS_SECTION_UNASSIGNED;
189 p = map->nodes[lp->ptr];
191 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
193 while (*nb && lp < &p[P_L2_SIZE]) {
194 if ((*index & (step - 1)) == 0 && *nb >= step) {
200 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
206 static void phys_page_set(AddressSpaceDispatch *d,
207 hwaddr index, hwaddr nb,
210 /* Wildly overreserve - it doesn't matter much. */
211 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
213 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
216 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
217 * and update our entry so we can skip it and go directly to the destination.
219 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
221 unsigned valid_ptr = P_L2_SIZE;
226 if (lp->ptr == PHYS_MAP_NODE_NIL) {
231 for (i = 0; i < P_L2_SIZE; i++) {
232 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
239 phys_page_compact(&p[i], nodes, compacted);
243 /* We can only compress if there's only one child. */
248 assert(valid_ptr < P_L2_SIZE);
250 /* Don't compress if it won't fit in the # of bits we have. */
251 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
255 lp->ptr = p[valid_ptr].ptr;
256 if (!p[valid_ptr].skip) {
257 /* If our only child is a leaf, make this a leaf. */
258 /* By design, we should have made this node a leaf to begin with so we
259 * should never reach here.
260 * But since it's so simple to handle this, let's do it just in case we
265 lp->skip += p[valid_ptr].skip;
269 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
271 DECLARE_BITMAP(compacted, nodes_nb);
273 if (d->phys_map.skip) {
274 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
278 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
279 Node *nodes, MemoryRegionSection *sections)
282 hwaddr index = addr >> TARGET_PAGE_BITS;
285 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
286 if (lp.ptr == PHYS_MAP_NODE_NIL) {
287 return §ions[PHYS_SECTION_UNASSIGNED];
290 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
293 if (sections[lp.ptr].size.hi ||
294 range_covers_byte(sections[lp.ptr].offset_within_address_space,
295 sections[lp.ptr].size.lo, addr)) {
296 return §ions[lp.ptr];
298 return §ions[PHYS_SECTION_UNASSIGNED];
302 bool memory_region_is_unassigned(MemoryRegion *mr)
304 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
305 && mr != &io_mem_watch;
308 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
310 bool resolve_subpage)
312 MemoryRegionSection *section;
315 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
316 if (resolve_subpage && section->mr->subpage) {
317 subpage = container_of(section->mr, subpage_t, iomem);
318 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
323 static MemoryRegionSection *
324 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
325 hwaddr *plen, bool resolve_subpage)
327 MemoryRegionSection *section;
330 section = address_space_lookup_region(d, addr, resolve_subpage);
331 /* Compute offset within MemoryRegionSection */
332 addr -= section->offset_within_address_space;
334 /* Compute offset within MemoryRegion */
335 *xlat = addr + section->offset_within_region;
337 diff = int128_sub(section->mr->size, int128_make64(addr));
338 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
342 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
344 if (memory_region_is_ram(mr)) {
345 return !(is_write && mr->readonly);
347 if (memory_region_is_romd(mr)) {
354 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
355 hwaddr *xlat, hwaddr *plen,
359 MemoryRegionSection *section;
364 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
367 if (!mr->iommu_ops) {
371 iotlb = mr->iommu_ops->translate(mr, addr);
372 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
373 | (addr & iotlb.addr_mask));
374 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
375 if (!(iotlb.perm & (1 << is_write))) {
376 mr = &io_mem_unassigned;
380 as = iotlb.target_as;
383 if (memory_access_is_direct(mr, is_write)) {
384 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
385 len = MIN(page, len);
393 MemoryRegionSection *
394 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
397 MemoryRegionSection *section;
398 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
400 assert(!section->mr->iommu_ops);
405 void cpu_exec_init_all(void)
407 #if !defined(CONFIG_USER_ONLY)
408 qemu_mutex_init(&ram_list.mutex);
414 #if !defined(CONFIG_USER_ONLY)
416 static int cpu_common_post_load(void *opaque, int version_id)
418 CPUState *cpu = opaque;
420 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
421 version_id is increased. */
422 cpu->interrupt_request &= ~0x01;
423 tlb_flush(cpu->env_ptr, 1);
428 const VMStateDescription vmstate_cpu_common = {
429 .name = "cpu_common",
431 .minimum_version_id = 1,
432 .minimum_version_id_old = 1,
433 .post_load = cpu_common_post_load,
434 .fields = (VMStateField []) {
435 VMSTATE_UINT32(halted, CPUState),
436 VMSTATE_UINT32(interrupt_request, CPUState),
437 VMSTATE_END_OF_LIST()
443 CPUState *qemu_get_cpu(int index)
448 if (cpu->cpu_index == index) {
456 #if !defined(CONFIG_USER_ONLY)
457 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
459 /* We only support one address space per cpu at the moment. */
460 assert(cpu->as == as);
462 if (cpu->tcg_as_listener) {
463 memory_listener_unregister(cpu->tcg_as_listener);
465 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
467 cpu->tcg_as_listener->commit = tcg_commit;
468 memory_listener_register(cpu->tcg_as_listener, as);
472 void cpu_exec_init(CPUArchState *env)
474 CPUState *cpu = ENV_GET_CPU(env);
475 CPUClass *cc = CPU_GET_CLASS(cpu);
479 #if defined(CONFIG_USER_ONLY)
483 CPU_FOREACH(some_cpu) {
486 cpu->cpu_index = cpu_index;
488 QTAILQ_INIT(&cpu->breakpoints);
489 QTAILQ_INIT(&cpu->watchpoints);
490 #ifndef CONFIG_USER_ONLY
491 cpu->as = &address_space_memory;
492 cpu->thread_id = qemu_get_thread_id();
494 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
495 #if defined(CONFIG_USER_ONLY)
498 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
499 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
501 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
503 cpu_save, cpu_load, env);
504 assert(cc->vmsd == NULL);
505 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
507 if (cc->vmsd != NULL) {
508 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
512 #if defined(TARGET_HAS_ICE)
513 #if defined(CONFIG_USER_ONLY)
514 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
516 tb_invalidate_phys_page_range(pc, pc + 1, 0);
519 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
521 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
523 tb_invalidate_phys_addr(cpu->as,
524 phys | (pc & ~TARGET_PAGE_MASK));
528 #endif /* TARGET_HAS_ICE */
530 #if defined(CONFIG_USER_ONLY)
531 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
536 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
537 int flags, CPUWatchpoint **watchpoint)
542 /* Add a watchpoint. */
543 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
544 int flags, CPUWatchpoint **watchpoint)
546 CPUArchState *env = cpu->env_ptr;
547 vaddr len_mask = ~(len - 1);
550 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
551 if ((len & (len - 1)) || (addr & ~len_mask) ||
552 len == 0 || len > TARGET_PAGE_SIZE) {
553 error_report("tried to set invalid watchpoint at %"
554 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
557 wp = g_malloc(sizeof(*wp));
560 wp->len_mask = len_mask;
563 /* keep all GDB-injected watchpoints in front */
564 if (flags & BP_GDB) {
565 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
567 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
570 tlb_flush_page(env, addr);
577 /* Remove a specific watchpoint. */
578 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
581 vaddr len_mask = ~(len - 1);
584 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
585 if (addr == wp->vaddr && len_mask == wp->len_mask
586 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
587 cpu_watchpoint_remove_by_ref(cpu, wp);
594 /* Remove a specific watchpoint by reference. */
595 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
597 CPUArchState *env = cpu->env_ptr;
599 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
601 tlb_flush_page(env, watchpoint->vaddr);
606 /* Remove all matching watchpoints. */
607 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
609 CPUWatchpoint *wp, *next;
611 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
612 if (wp->flags & mask) {
613 cpu_watchpoint_remove_by_ref(cpu, wp);
619 /* Add a breakpoint. */
620 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
621 CPUBreakpoint **breakpoint)
623 #if defined(TARGET_HAS_ICE)
626 bp = g_malloc(sizeof(*bp));
631 /* keep all GDB-injected breakpoints in front */
632 if (flags & BP_GDB) {
633 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
635 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
638 breakpoint_invalidate(cpu, pc);
649 /* Remove a specific breakpoint. */
650 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
652 #if defined(TARGET_HAS_ICE)
655 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
656 if (bp->pc == pc && bp->flags == flags) {
657 cpu_breakpoint_remove_by_ref(cpu, bp);
667 /* Remove a specific breakpoint by reference. */
668 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
670 #if defined(TARGET_HAS_ICE)
671 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
673 breakpoint_invalidate(cpu, breakpoint->pc);
679 /* Remove all matching breakpoints. */
680 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
682 #if defined(TARGET_HAS_ICE)
683 CPUBreakpoint *bp, *next;
685 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
686 if (bp->flags & mask) {
687 cpu_breakpoint_remove_by_ref(cpu, bp);
693 /* enable or disable single step mode. EXCP_DEBUG is returned by the
694 CPU loop after each instruction */
695 void cpu_single_step(CPUState *cpu, int enabled)
697 #if defined(TARGET_HAS_ICE)
698 if (cpu->singlestep_enabled != enabled) {
699 cpu->singlestep_enabled = enabled;
701 kvm_update_guest_debug(cpu, 0);
703 /* must flush all the translated code to avoid inconsistencies */
704 /* XXX: only flush what is necessary */
705 CPUArchState *env = cpu->env_ptr;
712 void cpu_abort(CPUArchState *env, const char *fmt, ...)
714 CPUState *cpu = ENV_GET_CPU(env);
720 fprintf(stderr, "qemu: fatal: ");
721 vfprintf(stderr, fmt, ap);
722 fprintf(stderr, "\n");
723 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
724 if (qemu_log_enabled()) {
725 qemu_log("qemu: fatal: ");
726 qemu_log_vprintf(fmt, ap2);
728 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
734 #if defined(CONFIG_USER_ONLY)
736 struct sigaction act;
737 sigfillset(&act.sa_mask);
738 act.sa_handler = SIG_DFL;
739 sigaction(SIGABRT, &act, NULL);
745 #if !defined(CONFIG_USER_ONLY)
746 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
750 /* The list is protected by the iothread lock here. */
751 block = ram_list.mru_block;
752 if (block && addr - block->offset < block->length) {
755 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
756 if (addr - block->offset < block->length) {
761 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
765 ram_list.mru_block = block;
769 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
775 end = TARGET_PAGE_ALIGN(start + length);
776 start &= TARGET_PAGE_MASK;
778 block = qemu_get_ram_block(start);
779 assert(block == qemu_get_ram_block(end - 1));
780 start1 = (uintptr_t)block->host + (start - block->offset);
781 cpu_tlb_reset_dirty_all(start1, length);
784 /* Note: start and end must be within the same ram block. */
785 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
790 cpu_physical_memory_clear_dirty_range(start, length, client);
793 tlb_reset_dirty_range_all(start, length);
797 static void cpu_physical_memory_set_dirty_tracking(bool enable)
799 in_migration = enable;
802 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
803 MemoryRegionSection *section,
805 hwaddr paddr, hwaddr xlat,
807 target_ulong *address)
809 CPUState *cpu = ENV_GET_CPU(env);
813 if (memory_region_is_ram(section->mr)) {
815 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
817 if (!section->readonly) {
818 iotlb |= PHYS_SECTION_NOTDIRTY;
820 iotlb |= PHYS_SECTION_ROM;
823 iotlb = section - section->address_space->dispatch->map.sections;
827 /* Make accesses to pages with watchpoints go via the
828 watchpoint trap routines. */
829 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
830 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
831 /* Avoid trapping reads of pages with a write breakpoint. */
832 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
833 iotlb = PHYS_SECTION_WATCH + paddr;
834 *address |= TLB_MMIO;
842 #endif /* defined(CONFIG_USER_ONLY) */
844 #if !defined(CONFIG_USER_ONLY)
846 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
848 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
850 static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
853 * Set a custom physical guest memory alloator.
854 * Accelerators with unusual needs may need this. Hopefully, we can
855 * get rid of it eventually.
857 void phys_mem_set_alloc(void *(*alloc)(size_t))
859 phys_mem_alloc = alloc;
862 static uint16_t phys_section_add(PhysPageMap *map,
863 MemoryRegionSection *section)
865 /* The physical section number is ORed with a page-aligned
866 * pointer to produce the iotlb entries. Thus it should
867 * never overflow into the page-aligned value.
869 assert(map->sections_nb < TARGET_PAGE_SIZE);
871 if (map->sections_nb == map->sections_nb_alloc) {
872 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
873 map->sections = g_renew(MemoryRegionSection, map->sections,
874 map->sections_nb_alloc);
876 map->sections[map->sections_nb] = *section;
877 memory_region_ref(section->mr);
878 return map->sections_nb++;
881 static void phys_section_destroy(MemoryRegion *mr)
883 memory_region_unref(mr);
886 subpage_t *subpage = container_of(mr, subpage_t, iomem);
887 memory_region_destroy(&subpage->iomem);
892 static void phys_sections_free(PhysPageMap *map)
894 while (map->sections_nb > 0) {
895 MemoryRegionSection *section = &map->sections[--map->sections_nb];
896 phys_section_destroy(section->mr);
898 g_free(map->sections);
902 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
905 hwaddr base = section->offset_within_address_space
907 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
908 d->map.nodes, d->map.sections);
909 MemoryRegionSection subsection = {
910 .offset_within_address_space = base,
911 .size = int128_make64(TARGET_PAGE_SIZE),
915 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
917 if (!(existing->mr->subpage)) {
918 subpage = subpage_init(d->as, base);
919 subsection.address_space = d->as;
920 subsection.mr = &subpage->iomem;
921 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
922 phys_section_add(&d->map, &subsection));
924 subpage = container_of(existing->mr, subpage_t, iomem);
926 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
927 end = start + int128_get64(section->size) - 1;
928 subpage_register(subpage, start, end,
929 phys_section_add(&d->map, section));
933 static void register_multipage(AddressSpaceDispatch *d,
934 MemoryRegionSection *section)
936 hwaddr start_addr = section->offset_within_address_space;
937 uint16_t section_index = phys_section_add(&d->map, section);
938 uint64_t num_pages = int128_get64(int128_rshift(section->size,
942 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
945 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
947 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
948 AddressSpaceDispatch *d = as->next_dispatch;
949 MemoryRegionSection now = *section, remain = *section;
950 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
952 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
953 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
954 - now.offset_within_address_space;
956 now.size = int128_min(int128_make64(left), now.size);
957 register_subpage(d, &now);
959 now.size = int128_zero();
961 while (int128_ne(remain.size, now.size)) {
962 remain.size = int128_sub(remain.size, now.size);
963 remain.offset_within_address_space += int128_get64(now.size);
964 remain.offset_within_region += int128_get64(now.size);
966 if (int128_lt(remain.size, page_size)) {
967 register_subpage(d, &now);
968 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
969 now.size = page_size;
970 register_subpage(d, &now);
972 now.size = int128_and(now.size, int128_neg(page_size));
973 register_multipage(d, &now);
978 void qemu_flush_coalesced_mmio_buffer(void)
981 kvm_flush_coalesced_mmio_buffer();
984 void qemu_mutex_lock_ramlist(void)
986 qemu_mutex_lock(&ram_list.mutex);
989 void qemu_mutex_unlock_ramlist(void)
991 qemu_mutex_unlock(&ram_list.mutex);
998 #define HUGETLBFS_MAGIC 0x958458f6
1000 static long gethugepagesize(const char *path)
1006 ret = statfs(path, &fs);
1007 } while (ret != 0 && errno == EINTR);
1014 if (fs.f_type != HUGETLBFS_MAGIC)
1015 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
1020 static sigjmp_buf sigjump;
1022 static void sigbus_handler(int signal)
1024 siglongjmp(sigjump, 1);
1027 static void *file_ram_alloc(RAMBlock *block,
1032 char *sanitized_name;
1036 unsigned long hpagesize;
1038 hpagesize = gethugepagesize(path);
1043 if (memory < hpagesize) {
1047 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1048 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1052 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1053 sanitized_name = g_strdup(block->mr->name);
1054 for (c = sanitized_name; *c != '\0'; c++) {
1059 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1061 g_free(sanitized_name);
1063 fd = mkstemp(filename);
1065 perror("unable to create backing store for hugepages");
1072 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1075 * ftruncate is not supported by hugetlbfs in older
1076 * hosts, so don't bother bailing out on errors.
1077 * If anything goes wrong with it under other filesystems,
1080 if (ftruncate(fd, memory))
1081 perror("ftruncate");
1083 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1084 if (area == MAP_FAILED) {
1085 perror("file_ram_alloc: can't mmap RAM pages");
1092 struct sigaction act, oldact;
1093 sigset_t set, oldset;
1095 memset(&act, 0, sizeof(act));
1096 act.sa_handler = &sigbus_handler;
1099 ret = sigaction(SIGBUS, &act, &oldact);
1101 perror("file_ram_alloc: failed to install signal handler");
1105 /* unblock SIGBUS */
1107 sigaddset(&set, SIGBUS);
1108 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1110 if (sigsetjmp(sigjump, 1)) {
1111 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1115 /* MAP_POPULATE silently ignores failures */
1116 for (i = 0; i < (memory/hpagesize); i++) {
1117 memset(area + (hpagesize*i), 0, 1);
1120 ret = sigaction(SIGBUS, &oldact, NULL);
1122 perror("file_ram_alloc: failed to reinstall signal handler");
1126 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1139 static void *file_ram_alloc(RAMBlock *block,
1143 fprintf(stderr, "-mem-path not supported on this host\n");
1148 static ram_addr_t find_ram_offset(ram_addr_t size)
1150 RAMBlock *block, *next_block;
1151 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1153 assert(size != 0); /* it would hand out same offset multiple times */
1155 if (QTAILQ_EMPTY(&ram_list.blocks))
1158 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1159 ram_addr_t end, next = RAM_ADDR_MAX;
1161 end = block->offset + block->length;
1163 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1164 if (next_block->offset >= end) {
1165 next = MIN(next, next_block->offset);
1168 if (next - end >= size && next - end < mingap) {
1170 mingap = next - end;
1174 if (offset == RAM_ADDR_MAX) {
1175 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1183 ram_addr_t last_ram_offset(void)
1186 ram_addr_t last = 0;
1188 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1189 last = MAX(last, block->offset + block->length);
1194 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1198 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1199 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1200 "dump-guest-core", true)) {
1201 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1203 perror("qemu_madvise");
1204 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1205 "but dump_guest_core=off specified\n");
1210 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1212 RAMBlock *new_block, *block;
1215 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1216 if (block->offset == addr) {
1222 assert(!new_block->idstr[0]);
1225 char *id = qdev_get_dev_path(dev);
1227 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1231 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1233 /* This assumes the iothread lock is taken here too. */
1234 qemu_mutex_lock_ramlist();
1235 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1236 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1237 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1242 qemu_mutex_unlock_ramlist();
1245 static int memory_try_enable_merging(void *addr, size_t len)
1247 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1248 /* disabled by the user */
1252 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1255 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1258 RAMBlock *block, *new_block;
1259 ram_addr_t old_ram_size, new_ram_size;
1261 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1263 size = TARGET_PAGE_ALIGN(size);
1264 new_block = g_malloc0(sizeof(*new_block));
1267 /* This assumes the iothread lock is taken here too. */
1268 qemu_mutex_lock_ramlist();
1270 new_block->offset = find_ram_offset(size);
1272 new_block->host = host;
1273 new_block->flags |= RAM_PREALLOC_MASK;
1274 } else if (xen_enabled()) {
1276 fprintf(stderr, "-mem-path not supported with Xen\n");
1279 xen_ram_alloc(new_block->offset, size, mr);
1282 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1284 * file_ram_alloc() needs to allocate just like
1285 * phys_mem_alloc, but we haven't bothered to provide
1289 "-mem-path not supported with this accelerator\n");
1292 new_block->host = file_ram_alloc(new_block, size, mem_path);
1294 if (!new_block->host) {
1295 new_block->host = phys_mem_alloc(size);
1296 if (!new_block->host) {
1297 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1298 new_block->mr->name, strerror(errno));
1301 memory_try_enable_merging(new_block->host, size);
1304 new_block->length = size;
1306 /* Keep the list sorted from biggest to smallest block. */
1307 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1308 if (block->length < new_block->length) {
1313 QTAILQ_INSERT_BEFORE(block, new_block, next);
1315 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1317 ram_list.mru_block = NULL;
1320 qemu_mutex_unlock_ramlist();
1322 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1324 if (new_ram_size > old_ram_size) {
1326 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1327 ram_list.dirty_memory[i] =
1328 bitmap_zero_extend(ram_list.dirty_memory[i],
1329 old_ram_size, new_ram_size);
1332 cpu_physical_memory_set_dirty_range(new_block->offset, size);
1334 qemu_ram_setup_dump(new_block->host, size);
1335 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1336 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
1339 kvm_setup_guest_memory(new_block->host, size);
1341 return new_block->offset;
1344 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1346 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1349 void qemu_ram_free_from_ptr(ram_addr_t addr)
1353 /* This assumes the iothread lock is taken here too. */
1354 qemu_mutex_lock_ramlist();
1355 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1356 if (addr == block->offset) {
1357 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1358 ram_list.mru_block = NULL;
1364 qemu_mutex_unlock_ramlist();
1367 void qemu_ram_free(ram_addr_t addr)
1371 /* This assumes the iothread lock is taken here too. */
1372 qemu_mutex_lock_ramlist();
1373 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1374 if (addr == block->offset) {
1375 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1376 ram_list.mru_block = NULL;
1378 if (block->flags & RAM_PREALLOC_MASK) {
1380 } else if (xen_enabled()) {
1381 xen_invalidate_map_cache_entry(block->host);
1383 } else if (block->fd >= 0) {
1384 munmap(block->host, block->length);
1388 qemu_anon_ram_free(block->host, block->length);
1394 qemu_mutex_unlock_ramlist();
1399 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1406 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1407 offset = addr - block->offset;
1408 if (offset < block->length) {
1409 vaddr = block->host + offset;
1410 if (block->flags & RAM_PREALLOC_MASK) {
1412 } else if (xen_enabled()) {
1416 munmap(vaddr, length);
1417 if (block->fd >= 0) {
1419 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1422 flags |= MAP_PRIVATE;
1424 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1425 flags, block->fd, offset);
1428 * Remap needs to match alloc. Accelerators that
1429 * set phys_mem_alloc never remap. If they did,
1430 * we'd need a remap hook here.
1432 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1434 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1435 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1438 if (area != vaddr) {
1439 fprintf(stderr, "Could not remap addr: "
1440 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1444 memory_try_enable_merging(vaddr, length);
1445 qemu_ram_setup_dump(vaddr, length);
1451 #endif /* !_WIN32 */
1453 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1454 With the exception of the softmmu code in this file, this should
1455 only be used for local memory (e.g. video ram) that the device owns,
1456 and knows it isn't going to access beyond the end of the block.
1458 It should not be used for general purpose DMA.
1459 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1461 void *qemu_get_ram_ptr(ram_addr_t addr)
1463 RAMBlock *block = qemu_get_ram_block(addr);
1465 if (xen_enabled()) {
1466 /* We need to check if the requested address is in the RAM
1467 * because we don't want to map the entire memory in QEMU.
1468 * In that case just map until the end of the page.
1470 if (block->offset == 0) {
1471 return xen_map_cache(addr, 0, 0);
1472 } else if (block->host == NULL) {
1474 xen_map_cache(block->offset, block->length, 1);
1477 return block->host + (addr - block->offset);
1480 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1481 * but takes a size argument */
1482 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1487 if (xen_enabled()) {
1488 return xen_map_cache(addr, *size, 1);
1492 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1493 if (addr - block->offset < block->length) {
1494 if (addr - block->offset + *size > block->length)
1495 *size = block->length - addr + block->offset;
1496 return block->host + (addr - block->offset);
1500 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1505 /* Some of the softmmu routines need to translate from a host pointer
1506 (typically a TLB entry) back to a ram offset. */
1507 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1510 uint8_t *host = ptr;
1512 if (xen_enabled()) {
1513 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1514 return qemu_get_ram_block(*ram_addr)->mr;
1517 block = ram_list.mru_block;
1518 if (block && block->host && host - block->host < block->length) {
1522 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1523 /* This case append when the block is not mapped. */
1524 if (block->host == NULL) {
1527 if (host - block->host < block->length) {
1535 *ram_addr = block->offset + (host - block->host);
1539 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1540 uint64_t val, unsigned size)
1542 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1543 tb_invalidate_phys_page_fast(ram_addr, size);
1547 stb_p(qemu_get_ram_ptr(ram_addr), val);
1550 stw_p(qemu_get_ram_ptr(ram_addr), val);
1553 stl_p(qemu_get_ram_ptr(ram_addr), val);
1558 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1559 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
1560 /* we remove the notdirty callback only if the code has been
1562 if (!cpu_physical_memory_is_clean(ram_addr)) {
1563 CPUArchState *env = current_cpu->env_ptr;
1564 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
1568 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1569 unsigned size, bool is_write)
1574 static const MemoryRegionOps notdirty_mem_ops = {
1575 .write = notdirty_mem_write,
1576 .valid.accepts = notdirty_mem_accepts,
1577 .endianness = DEVICE_NATIVE_ENDIAN,
1580 /* Generate a debug exception if a watchpoint has been hit. */
1581 static void check_watchpoint(int offset, int len_mask, int flags)
1583 CPUState *cpu = current_cpu;
1584 CPUArchState *env = cpu->env_ptr;
1585 target_ulong pc, cs_base;
1590 if (cpu->watchpoint_hit) {
1591 /* We re-entered the check after replacing the TB. Now raise
1592 * the debug interrupt so that is will trigger after the
1593 * current instruction. */
1594 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
1597 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1598 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1599 if ((vaddr == (wp->vaddr & len_mask) ||
1600 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1601 wp->flags |= BP_WATCHPOINT_HIT;
1602 if (!cpu->watchpoint_hit) {
1603 cpu->watchpoint_hit = wp;
1604 tb_check_watchpoint(cpu);
1605 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1606 cpu->exception_index = EXCP_DEBUG;
1609 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1610 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
1611 cpu_resume_from_signal(env, NULL);
1615 wp->flags &= ~BP_WATCHPOINT_HIT;
1620 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1621 so these check for a hit then pass through to the normal out-of-line
1623 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1626 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1628 case 1: return ldub_phys(&address_space_memory, addr);
1629 case 2: return lduw_phys(&address_space_memory, addr);
1630 case 4: return ldl_phys(&address_space_memory, addr);
1635 static void watch_mem_write(void *opaque, hwaddr addr,
1636 uint64_t val, unsigned size)
1638 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1641 stb_phys(&address_space_memory, addr, val);
1644 stw_phys(&address_space_memory, addr, val);
1647 stl_phys(&address_space_memory, addr, val);
1653 static const MemoryRegionOps watch_mem_ops = {
1654 .read = watch_mem_read,
1655 .write = watch_mem_write,
1656 .endianness = DEVICE_NATIVE_ENDIAN,
1659 static uint64_t subpage_read(void *opaque, hwaddr addr,
1662 subpage_t *subpage = opaque;
1665 #if defined(DEBUG_SUBPAGE)
1666 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1667 subpage, len, addr);
1669 address_space_read(subpage->as, addr + subpage->base, buf, len);
1682 static void subpage_write(void *opaque, hwaddr addr,
1683 uint64_t value, unsigned len)
1685 subpage_t *subpage = opaque;
1688 #if defined(DEBUG_SUBPAGE)
1689 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1690 " value %"PRIx64"\n",
1691 __func__, subpage, len, addr, value);
1706 address_space_write(subpage->as, addr + subpage->base, buf, len);
1709 static bool subpage_accepts(void *opaque, hwaddr addr,
1710 unsigned len, bool is_write)
1712 subpage_t *subpage = opaque;
1713 #if defined(DEBUG_SUBPAGE)
1714 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
1715 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1718 return address_space_access_valid(subpage->as, addr + subpage->base,
1722 static const MemoryRegionOps subpage_ops = {
1723 .read = subpage_read,
1724 .write = subpage_write,
1725 .valid.accepts = subpage_accepts,
1726 .endianness = DEVICE_NATIVE_ENDIAN,
1729 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1734 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1736 idx = SUBPAGE_IDX(start);
1737 eidx = SUBPAGE_IDX(end);
1738 #if defined(DEBUG_SUBPAGE)
1739 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1740 __func__, mmio, start, end, idx, eidx, section);
1742 for (; idx <= eidx; idx++) {
1743 mmio->sub_section[idx] = section;
1749 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1753 mmio = g_malloc0(sizeof(subpage_t));
1757 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1758 "subpage", TARGET_PAGE_SIZE);
1759 mmio->iomem.subpage = true;
1760 #if defined(DEBUG_SUBPAGE)
1761 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1762 mmio, base, TARGET_PAGE_SIZE);
1764 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1769 static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
1771 MemoryRegionSection section = {
1772 .address_space = &address_space_memory,
1774 .offset_within_address_space = 0,
1775 .offset_within_region = 0,
1776 .size = int128_2_64(),
1779 return phys_section_add(map, §ion);
1782 MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
1784 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
1787 static void io_mem_init(void)
1789 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1790 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1791 "unassigned", UINT64_MAX);
1792 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1793 "notdirty", UINT64_MAX);
1794 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1795 "watch", UINT64_MAX);
1798 static void mem_begin(MemoryListener *listener)
1800 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1801 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1804 n = dummy_section(&d->map, &io_mem_unassigned);
1805 assert(n == PHYS_SECTION_UNASSIGNED);
1806 n = dummy_section(&d->map, &io_mem_notdirty);
1807 assert(n == PHYS_SECTION_NOTDIRTY);
1808 n = dummy_section(&d->map, &io_mem_rom);
1809 assert(n == PHYS_SECTION_ROM);
1810 n = dummy_section(&d->map, &io_mem_watch);
1811 assert(n == PHYS_SECTION_WATCH);
1813 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
1815 as->next_dispatch = d;
1818 static void mem_commit(MemoryListener *listener)
1820 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1821 AddressSpaceDispatch *cur = as->dispatch;
1822 AddressSpaceDispatch *next = as->next_dispatch;
1824 phys_page_compact_all(next, next->map.nodes_nb);
1826 as->dispatch = next;
1829 phys_sections_free(&cur->map);
1834 static void tcg_commit(MemoryListener *listener)
1838 /* since each CPU stores ram addresses in its TLB cache, we must
1839 reset the modified entries */
1842 CPUArchState *env = cpu->env_ptr;
1844 /* FIXME: Disentangle the cpu.h circular files deps so we can
1845 directly get the right CPU from listener. */
1846 if (cpu->tcg_as_listener != listener) {
1853 static void core_log_global_start(MemoryListener *listener)
1855 cpu_physical_memory_set_dirty_tracking(true);
1858 static void core_log_global_stop(MemoryListener *listener)
1860 cpu_physical_memory_set_dirty_tracking(false);
1863 static MemoryListener core_memory_listener = {
1864 .log_global_start = core_log_global_start,
1865 .log_global_stop = core_log_global_stop,
1869 void address_space_init_dispatch(AddressSpace *as)
1871 as->dispatch = NULL;
1872 as->dispatch_listener = (MemoryListener) {
1874 .commit = mem_commit,
1875 .region_add = mem_add,
1876 .region_nop = mem_add,
1879 memory_listener_register(&as->dispatch_listener, as);
1882 void address_space_destroy_dispatch(AddressSpace *as)
1884 AddressSpaceDispatch *d = as->dispatch;
1886 memory_listener_unregister(&as->dispatch_listener);
1888 as->dispatch = NULL;
1891 static void memory_map_init(void)
1893 system_memory = g_malloc(sizeof(*system_memory));
1895 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
1896 address_space_init(&address_space_memory, system_memory, "memory");
1898 system_io = g_malloc(sizeof(*system_io));
1899 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1901 address_space_init(&address_space_io, system_io, "I/O");
1903 memory_listener_register(&core_memory_listener, &address_space_memory);
1906 MemoryRegion *get_system_memory(void)
1908 return system_memory;
1911 MemoryRegion *get_system_io(void)
1916 #endif /* !defined(CONFIG_USER_ONLY) */
1918 /* physical memory access (slow version, mainly for debug) */
1919 #if defined(CONFIG_USER_ONLY)
1920 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1921 uint8_t *buf, int len, int is_write)
1928 page = addr & TARGET_PAGE_MASK;
1929 l = (page + TARGET_PAGE_SIZE) - addr;
1932 flags = page_get_flags(page);
1933 if (!(flags & PAGE_VALID))
1936 if (!(flags & PAGE_WRITE))
1938 /* XXX: this code should not depend on lock_user */
1939 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1942 unlock_user(p, addr, l);
1944 if (!(flags & PAGE_READ))
1946 /* XXX: this code should not depend on lock_user */
1947 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1950 unlock_user(p, addr, 0);
1961 static void invalidate_and_set_dirty(hwaddr addr,
1964 if (cpu_physical_memory_is_clean(addr)) {
1965 /* invalidate code */
1966 tb_invalidate_phys_page_range(addr, addr + length, 0);
1968 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1969 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
1971 xen_modified_memory(addr, length);
1974 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1976 unsigned access_size_max = mr->ops->valid.max_access_size;
1978 /* Regions are assumed to support 1-4 byte accesses unless
1979 otherwise specified. */
1980 if (access_size_max == 0) {
1981 access_size_max = 4;
1984 /* Bound the maximum access by the alignment of the address. */
1985 if (!mr->ops->impl.unaligned) {
1986 unsigned align_size_max = addr & -addr;
1987 if (align_size_max != 0 && align_size_max < access_size_max) {
1988 access_size_max = align_size_max;
1992 /* Don't attempt accesses larger than the maximum. */
1993 if (l > access_size_max) {
1994 l = access_size_max;
1997 l = 1 << (qemu_fls(l) - 1);
2003 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
2004 int len, bool is_write)
2015 mr = address_space_translate(as, addr, &addr1, &l, is_write);
2018 if (!memory_access_is_direct(mr, is_write)) {
2019 l = memory_access_size(mr, l, addr1);
2020 /* XXX: could force current_cpu to NULL to avoid
2024 /* 64 bit write access */
2026 error |= io_mem_write(mr, addr1, val, 8);
2029 /* 32 bit write access */
2031 error |= io_mem_write(mr, addr1, val, 4);
2034 /* 16 bit write access */
2036 error |= io_mem_write(mr, addr1, val, 2);
2039 /* 8 bit write access */
2041 error |= io_mem_write(mr, addr1, val, 1);
2047 addr1 += memory_region_get_ram_addr(mr);
2049 ptr = qemu_get_ram_ptr(addr1);
2050 memcpy(ptr, buf, l);
2051 invalidate_and_set_dirty(addr1, l);
2054 if (!memory_access_is_direct(mr, is_write)) {
2056 l = memory_access_size(mr, l, addr1);
2059 /* 64 bit read access */
2060 error |= io_mem_read(mr, addr1, &val, 8);
2064 /* 32 bit read access */
2065 error |= io_mem_read(mr, addr1, &val, 4);
2069 /* 16 bit read access */
2070 error |= io_mem_read(mr, addr1, &val, 2);
2074 /* 8 bit read access */
2075 error |= io_mem_read(mr, addr1, &val, 1);
2083 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2084 memcpy(buf, ptr, l);
2095 bool address_space_write(AddressSpace *as, hwaddr addr,
2096 const uint8_t *buf, int len)
2098 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2101 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2103 return address_space_rw(as, addr, buf, len, false);
2107 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2108 int len, int is_write)
2110 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2113 enum write_rom_type {
2118 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2119 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2128 mr = address_space_translate(as, addr, &addr1, &l, true);
2130 if (!(memory_region_is_ram(mr) ||
2131 memory_region_is_romd(mr))) {
2134 addr1 += memory_region_get_ram_addr(mr);
2136 ptr = qemu_get_ram_ptr(addr1);
2139 memcpy(ptr, buf, l);
2140 invalidate_and_set_dirty(addr1, l);
2143 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2153 /* used for ROM loading : can write in RAM and ROM */
2154 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2155 const uint8_t *buf, int len)
2157 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2160 void cpu_flush_icache_range(hwaddr start, int len)
2163 * This function should do the same thing as an icache flush that was
2164 * triggered from within the guest. For TCG we are always cache coherent,
2165 * so there is no need to flush anything. For KVM / Xen we need to flush
2166 * the host's instruction cache at least.
2168 if (tcg_enabled()) {
2172 cpu_physical_memory_write_rom_internal(&address_space_memory,
2173 start, NULL, len, FLUSH_CACHE);
2183 static BounceBuffer bounce;
2185 typedef struct MapClient {
2187 void (*callback)(void *opaque);
2188 QLIST_ENTRY(MapClient) link;
2191 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2192 = QLIST_HEAD_INITIALIZER(map_client_list);
2194 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2196 MapClient *client = g_malloc(sizeof(*client));
2198 client->opaque = opaque;
2199 client->callback = callback;
2200 QLIST_INSERT_HEAD(&map_client_list, client, link);
2204 static void cpu_unregister_map_client(void *_client)
2206 MapClient *client = (MapClient *)_client;
2208 QLIST_REMOVE(client, link);
2212 static void cpu_notify_map_clients(void)
2216 while (!QLIST_EMPTY(&map_client_list)) {
2217 client = QLIST_FIRST(&map_client_list);
2218 client->callback(client->opaque);
2219 cpu_unregister_map_client(client);
2223 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2230 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2231 if (!memory_access_is_direct(mr, is_write)) {
2232 l = memory_access_size(mr, l, addr);
2233 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2244 /* Map a physical memory region into a host virtual address.
2245 * May map a subset of the requested range, given by and returned in *plen.
2246 * May return NULL if resources needed to perform the mapping are exhausted.
2247 * Use only for reads OR writes - not for read-modify-write operations.
2248 * Use cpu_register_map_client() to know when retrying the map operation is
2249 * likely to succeed.
2251 void *address_space_map(AddressSpace *as,
2258 hwaddr l, xlat, base;
2259 MemoryRegion *mr, *this_mr;
2267 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2268 if (!memory_access_is_direct(mr, is_write)) {
2269 if (bounce.buffer) {
2272 /* Avoid unbounded allocations */
2273 l = MIN(l, TARGET_PAGE_SIZE);
2274 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2278 memory_region_ref(mr);
2281 address_space_read(as, addr, bounce.buffer, l);
2285 return bounce.buffer;
2289 raddr = memory_region_get_ram_addr(mr);
2300 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2301 if (this_mr != mr || xlat != base + done) {
2306 memory_region_ref(mr);
2308 return qemu_ram_ptr_length(raddr + base, plen);
2311 /* Unmaps a memory region previously mapped by address_space_map().
2312 * Will also mark the memory as dirty if is_write == 1. access_len gives
2313 * the amount of memory that was actually read or written by the caller.
2315 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2316 int is_write, hwaddr access_len)
2318 if (buffer != bounce.buffer) {
2322 mr = qemu_ram_addr_from_host(buffer, &addr1);
2325 while (access_len) {
2327 l = TARGET_PAGE_SIZE;
2330 invalidate_and_set_dirty(addr1, l);
2335 if (xen_enabled()) {
2336 xen_invalidate_map_cache_entry(buffer);
2338 memory_region_unref(mr);
2342 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2344 qemu_vfree(bounce.buffer);
2345 bounce.buffer = NULL;
2346 memory_region_unref(bounce.mr);
2347 cpu_notify_map_clients();
2350 void *cpu_physical_memory_map(hwaddr addr,
2354 return address_space_map(&address_space_memory, addr, plen, is_write);
2357 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2358 int is_write, hwaddr access_len)
2360 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2363 /* warning: addr must be aligned */
2364 static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
2365 enum device_endian endian)
2373 mr = address_space_translate(as, addr, &addr1, &l, false);
2374 if (l < 4 || !memory_access_is_direct(mr, false)) {
2376 io_mem_read(mr, addr1, &val, 4);
2377 #if defined(TARGET_WORDS_BIGENDIAN)
2378 if (endian == DEVICE_LITTLE_ENDIAN) {
2382 if (endian == DEVICE_BIG_ENDIAN) {
2388 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2392 case DEVICE_LITTLE_ENDIAN:
2393 val = ldl_le_p(ptr);
2395 case DEVICE_BIG_ENDIAN:
2396 val = ldl_be_p(ptr);
2406 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
2408 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2411 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
2413 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2416 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
2418 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2421 /* warning: addr must be aligned */
2422 static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
2423 enum device_endian endian)
2431 mr = address_space_translate(as, addr, &addr1, &l,
2433 if (l < 8 || !memory_access_is_direct(mr, false)) {
2435 io_mem_read(mr, addr1, &val, 8);
2436 #if defined(TARGET_WORDS_BIGENDIAN)
2437 if (endian == DEVICE_LITTLE_ENDIAN) {
2441 if (endian == DEVICE_BIG_ENDIAN) {
2447 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2451 case DEVICE_LITTLE_ENDIAN:
2452 val = ldq_le_p(ptr);
2454 case DEVICE_BIG_ENDIAN:
2455 val = ldq_be_p(ptr);
2465 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
2467 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2470 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
2472 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2475 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
2477 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2481 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
2484 address_space_rw(as, addr, &val, 1, 0);
2488 /* warning: addr must be aligned */
2489 static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
2490 enum device_endian endian)
2498 mr = address_space_translate(as, addr, &addr1, &l,
2500 if (l < 2 || !memory_access_is_direct(mr, false)) {
2502 io_mem_read(mr, addr1, &val, 2);
2503 #if defined(TARGET_WORDS_BIGENDIAN)
2504 if (endian == DEVICE_LITTLE_ENDIAN) {
2508 if (endian == DEVICE_BIG_ENDIAN) {
2514 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2518 case DEVICE_LITTLE_ENDIAN:
2519 val = lduw_le_p(ptr);
2521 case DEVICE_BIG_ENDIAN:
2522 val = lduw_be_p(ptr);
2532 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
2534 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2537 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
2539 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2542 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
2544 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2547 /* warning: addr must be aligned. The ram page is not masked as dirty
2548 and the code inside is not invalidated. It is useful if the dirty
2549 bits are used to track modified PTEs */
2550 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
2557 mr = address_space_translate(as, addr, &addr1, &l,
2559 if (l < 4 || !memory_access_is_direct(mr, true)) {
2560 io_mem_write(mr, addr1, val, 4);
2562 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2563 ptr = qemu_get_ram_ptr(addr1);
2566 if (unlikely(in_migration)) {
2567 if (cpu_physical_memory_is_clean(addr1)) {
2568 /* invalidate code */
2569 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2571 cpu_physical_memory_set_dirty_flag(addr1,
2572 DIRTY_MEMORY_MIGRATION);
2573 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
2579 /* warning: addr must be aligned */
2580 static inline void stl_phys_internal(AddressSpace *as,
2581 hwaddr addr, uint32_t val,
2582 enum device_endian endian)
2589 mr = address_space_translate(as, addr, &addr1, &l,
2591 if (l < 4 || !memory_access_is_direct(mr, true)) {
2592 #if defined(TARGET_WORDS_BIGENDIAN)
2593 if (endian == DEVICE_LITTLE_ENDIAN) {
2597 if (endian == DEVICE_BIG_ENDIAN) {
2601 io_mem_write(mr, addr1, val, 4);
2604 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2605 ptr = qemu_get_ram_ptr(addr1);
2607 case DEVICE_LITTLE_ENDIAN:
2610 case DEVICE_BIG_ENDIAN:
2617 invalidate_and_set_dirty(addr1, 4);
2621 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2623 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2626 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2628 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2631 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2633 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2637 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2640 address_space_rw(as, addr, &v, 1, 1);
2643 /* warning: addr must be aligned */
2644 static inline void stw_phys_internal(AddressSpace *as,
2645 hwaddr addr, uint32_t val,
2646 enum device_endian endian)
2653 mr = address_space_translate(as, addr, &addr1, &l, true);
2654 if (l < 2 || !memory_access_is_direct(mr, true)) {
2655 #if defined(TARGET_WORDS_BIGENDIAN)
2656 if (endian == DEVICE_LITTLE_ENDIAN) {
2660 if (endian == DEVICE_BIG_ENDIAN) {
2664 io_mem_write(mr, addr1, val, 2);
2667 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2668 ptr = qemu_get_ram_ptr(addr1);
2670 case DEVICE_LITTLE_ENDIAN:
2673 case DEVICE_BIG_ENDIAN:
2680 invalidate_and_set_dirty(addr1, 2);
2684 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2686 stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2689 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2691 stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2694 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2696 stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2700 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2703 address_space_rw(as, addr, (void *) &val, 8, 1);
2706 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2708 val = cpu_to_le64(val);
2709 address_space_rw(as, addr, (void *) &val, 8, 1);
2712 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2714 val = cpu_to_be64(val);
2715 address_space_rw(as, addr, (void *) &val, 8, 1);
2718 /* virtual memory access for debug (includes writing to ROM) */
2719 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2720 uint8_t *buf, int len, int is_write)
2727 page = addr & TARGET_PAGE_MASK;
2728 phys_addr = cpu_get_phys_page_debug(cpu, page);
2729 /* if no physical page mapped, return an error */
2730 if (phys_addr == -1)
2732 l = (page + TARGET_PAGE_SIZE) - addr;
2735 phys_addr += (addr & ~TARGET_PAGE_MASK);
2737 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
2739 address_space_rw(cpu->as, phys_addr, buf, l, 0);
2749 #if !defined(CONFIG_USER_ONLY)
2752 * A helper function for the _utterly broken_ virtio device model to find out if
2753 * it's running on a big endian machine. Don't do this at home kids!
2755 bool virtio_is_big_endian(void);
2756 bool virtio_is_big_endian(void)
2758 #if defined(TARGET_WORDS_BIGENDIAN)
2767 #ifndef CONFIG_USER_ONLY
2768 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2773 mr = address_space_translate(&address_space_memory,
2774 phys_addr, &phys_addr, &l, false);
2776 return !(memory_region_is_ram(mr) ||
2777 memory_region_is_romd(mr));
2780 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2784 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2785 func(block->host, block->offset, block->length, opaque);