4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
58 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
70 int robust_singlestep;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75 int irqchip_in_kernel;
81 static KVMState *kvm_state;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 /* KVM private memory slots */
95 if (i >= 8 && i < 12) {
98 if (s->slots[i].memory_size == 0) {
103 fprintf(stderr, "%s: no free slot available\n", __func__);
107 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
126 * Find overlapping slot with lowest start address
128 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
132 KVMSlot *found = NULL;
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
152 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
170 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
172 struct kvm_userspace_memory_region mem;
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
178 mem.flags = slot->flags;
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
185 static void kvm_reset_vcpu(void *opaque)
187 CPUState *env = opaque;
189 kvm_arch_reset_vcpu(env);
192 int kvm_irqchip_in_kernel(void)
194 return kvm_state->irqchip_in_kernel;
197 int kvm_pit_in_kernel(void)
199 return kvm_state->pit_in_kernel;
202 int kvm_init_vcpu(CPUState *env)
204 KVMState *s = kvm_state;
208 DPRINTF("kvm_init_vcpu\n");
210 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212 DPRINTF("kvm_create_vcpu failed\n");
219 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
228 if (env->kvm_run == MAP_FAILED) {
230 DPRINTF("mmap'ing vcpu state failed\n");
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
239 ret = kvm_arch_init_vcpu(env);
241 qemu_register_reset(kvm_reset_vcpu, env);
242 kvm_arch_reset_vcpu(env);
249 * dirty pages logging control
251 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
252 ram_addr_t size, int flags, int mask)
254 KVMState *s = kvm_state;
255 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
259 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
260 TARGET_FMT_plx "\n", __func__, phys_addr,
261 (target_phys_addr_t)(phys_addr + size - 1));
265 old_flags = mem->flags;
267 flags = (mem->flags & ~mask) | flags;
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
274 if (flags == old_flags) {
278 return kvm_set_user_memory_region(s, mem);
281 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
283 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
284 KVM_MEM_LOG_DIRTY_PAGES);
287 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
289 return kvm_dirty_pages_log_change(phys_addr, size, 0,
290 KVM_MEM_LOG_DIRTY_PAGES);
293 static int kvm_set_migration_log(int enable)
295 KVMState *s = kvm_state;
299 s->migration_log = enable;
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
304 if (!mem->memory_size) {
307 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
310 err = kvm_set_user_memory_region(s, mem);
318 /* get kvm's dirty pages bitmap and update qemu's */
319 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
320 unsigned long *bitmap,
321 unsigned long offset,
322 unsigned long mem_size)
325 unsigned long page_number, addr, addr1, c;
327 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
331 * bitmap-traveling is faster than memory-traveling (for addr...)
332 * especially when most of the memory is not dirty.
334 for (i = 0; i < len; i++) {
335 if (bitmap[i] != 0) {
336 c = leul_to_cpu(bitmap[i]);
340 page_number = i * HOST_LONG_BITS + j;
341 addr1 = page_number * TARGET_PAGE_SIZE;
342 addr = offset + addr1;
343 ram_addr = cpu_get_physical_page_desc(addr);
344 cpu_physical_memory_set_dirty(ram_addr);
351 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
354 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
355 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
356 * This means all bits are set to dirty.
358 * @start_add: start of logged region.
359 * @end_addr: end of logged region.
361 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
362 target_phys_addr_t end_addr)
364 KVMState *s = kvm_state;
365 unsigned long size, allocated_size = 0;
370 d.dirty_bitmap = NULL;
371 while (start_addr < end_addr) {
372 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
377 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
378 if (!d.dirty_bitmap) {
379 d.dirty_bitmap = qemu_malloc(size);
380 } else if (size > allocated_size) {
381 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
383 allocated_size = size;
384 memset(d.dirty_bitmap, 0, allocated_size);
388 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
389 DPRINTF("ioctl failed %d\n", errno);
394 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
395 mem->start_addr, mem->memory_size);
396 start_addr = mem->start_addr + mem->memory_size;
398 qemu_free(d.dirty_bitmap);
403 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
406 KVMState *s = kvm_state;
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
423 KVMState *s = kvm_state;
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
437 int kvm_check_extension(KVMState *s, unsigned int extension)
441 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
449 static int kvm_check_many_ioeventfds(void)
451 /* Userspace can use ioeventfd for io notification. This requires a host
452 * that supports eventfd(2) and an I/O thread; since eventfd does not
453 * support SIGIO it cannot interrupt the vcpu.
455 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
456 * can avoid creating too many ioeventfds.
458 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
461 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
462 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
463 if (ioeventfds[i] < 0) {
466 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
468 close(ioeventfds[i]);
473 /* Decide whether many devices are supported or not */
474 ret = i == ARRAY_SIZE(ioeventfds);
477 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
478 close(ioeventfds[i]);
486 static const KVMCapabilityInfo *
487 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
490 if (!kvm_check_extension(s, list->value)) {
498 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
499 ram_addr_t phys_offset)
501 KVMState *s = kvm_state;
502 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
506 /* kvm works in page size chunks, but the function may be called
507 with sub-page size and unaligned start address. */
508 size = TARGET_PAGE_ALIGN(size);
509 start_addr = TARGET_PAGE_ALIGN(start_addr);
511 /* KVM does not support read-only slots */
512 phys_offset &= ~IO_MEM_ROM;
515 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
520 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
521 (start_addr + size <= mem->start_addr + mem->memory_size) &&
522 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
523 /* The new slot fits into the existing one and comes with
524 * identical parameters - nothing to be done. */
530 /* unregister the overlapping slot */
531 mem->memory_size = 0;
532 err = kvm_set_user_memory_region(s, mem);
534 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
535 __func__, strerror(-err));
539 /* Workaround for older KVM versions: we can't join slots, even not by
540 * unregistering the previous ones and then registering the larger
541 * slot. We have to maintain the existing fragmentation. Sigh.
543 * This workaround assumes that the new slot starts at the same
544 * address as the first existing one. If not or if some overlapping
545 * slot comes around later, we will fail (not seen in practice so far)
546 * - and actually require a recent KVM version. */
547 if (s->broken_set_mem_region &&
548 old.start_addr == start_addr && old.memory_size < size &&
549 flags < IO_MEM_UNASSIGNED) {
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = old.memory_size;
552 mem->start_addr = old.start_addr;
553 mem->phys_offset = old.phys_offset;
556 err = kvm_set_user_memory_region(s, mem);
558 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
563 start_addr += old.memory_size;
564 phys_offset += old.memory_size;
565 size -= old.memory_size;
569 /* register prefix slot */
570 if (old.start_addr < start_addr) {
571 mem = kvm_alloc_slot(s);
572 mem->memory_size = start_addr - old.start_addr;
573 mem->start_addr = old.start_addr;
574 mem->phys_offset = old.phys_offset;
577 err = kvm_set_user_memory_region(s, mem);
579 fprintf(stderr, "%s: error registering prefix slot: %s\n",
580 __func__, strerror(-err));
585 /* register suffix slot */
586 if (old.start_addr + old.memory_size > start_addr + size) {
587 ram_addr_t size_delta;
589 mem = kvm_alloc_slot(s);
590 mem->start_addr = start_addr + size;
591 size_delta = mem->start_addr - old.start_addr;
592 mem->memory_size = old.memory_size - size_delta;
593 mem->phys_offset = old.phys_offset + size_delta;
596 err = kvm_set_user_memory_region(s, mem);
598 fprintf(stderr, "%s: error registering suffix slot: %s\n",
599 __func__, strerror(-err));
605 /* in case the KVM bug workaround already "consumed" the new slot */
609 /* KVM does not need to know about this memory */
610 if (flags >= IO_MEM_UNASSIGNED) {
613 mem = kvm_alloc_slot(s);
614 mem->memory_size = size;
615 mem->start_addr = start_addr;
616 mem->phys_offset = phys_offset;
619 err = kvm_set_user_memory_region(s, mem);
621 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
627 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
628 target_phys_addr_t start_addr,
629 ram_addr_t size, ram_addr_t phys_offset)
631 kvm_set_phys_mem(start_addr, size, phys_offset);
634 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
635 target_phys_addr_t start_addr,
636 target_phys_addr_t end_addr)
638 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
641 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
644 return kvm_set_migration_log(enable);
647 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
648 .set_memory = kvm_client_set_memory,
649 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
650 .migration_log = kvm_client_migration_log,
655 static const char upgrade_note[] =
656 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
657 "(see http://sourceforge.net/projects/kvm).\n";
659 const KVMCapabilityInfo *missing_cap;
663 s = qemu_mallocz(sizeof(KVMState));
665 #ifdef KVM_CAP_SET_GUEST_DEBUG
666 QTAILQ_INIT(&s->kvm_sw_breakpoints);
668 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
669 s->slots[i].slot = i;
672 s->fd = qemu_open("/dev/kvm", O_RDWR);
674 fprintf(stderr, "Could not access KVM kernel module: %m\n");
679 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
680 if (ret < KVM_API_VERSION) {
684 fprintf(stderr, "kvm version too old\n");
688 if (ret > KVM_API_VERSION) {
690 fprintf(stderr, "kvm version not supported\n");
694 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
697 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
698 "your host kernel command line\n");
703 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
706 kvm_check_extension_list(s, kvm_arch_required_capabilities);
710 fprintf(stderr, "kvm does not support %s\n%s",
711 missing_cap->name, upgrade_note);
715 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
717 s->broken_set_mem_region = 1;
718 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
719 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
721 s->broken_set_mem_region = 0;
726 #ifdef KVM_CAP_VCPU_EVENTS
727 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
730 s->robust_singlestep = 0;
731 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
732 s->robust_singlestep =
733 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
737 #ifdef KVM_CAP_DEBUGREGS
738 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
743 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
748 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
751 ret = kvm_arch_init(s);
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
777 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
783 for (i = 0; i < count; i++) {
784 if (direction == KVM_EXIT_IO_IN) {
787 stb_p(ptr, cpu_inb(port));
790 stw_p(ptr, cpu_inw(port));
793 stl_p(ptr, cpu_inl(port));
799 cpu_outb(port, ldub_p(ptr));
802 cpu_outw(port, lduw_p(ptr));
805 cpu_outl(port, ldl_p(ptr));
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
817 fprintf(stderr, "KVM internal error.");
818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
821 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
822 for (i = 0; i < run->internal.ndata; ++i) {
823 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
824 i, (uint64_t)run->internal.data[i]);
827 fprintf(stderr, "\n");
829 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
830 fprintf(stderr, "emulation failure\n");
831 if (!kvm_arch_stop_on_emulation_error(env)) {
832 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
836 /* FIXME: Should trigger a qmp message to let management know
837 * something went wrong.
843 void kvm_flush_coalesced_mmio_buffer(void)
845 KVMState *s = kvm_state;
846 if (s->coalesced_mmio_ring) {
847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
848 while (ring->first != ring->last) {
849 struct kvm_coalesced_mmio *ent;
851 ent = &ring->coalesced_mmio[ring->first];
853 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
855 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
860 static void do_kvm_cpu_synchronize_state(void *_env)
862 CPUState *env = _env;
864 if (!env->kvm_vcpu_dirty) {
865 kvm_arch_get_registers(env);
866 env->kvm_vcpu_dirty = 1;
870 void kvm_cpu_synchronize_state(CPUState *env)
872 if (!env->kvm_vcpu_dirty) {
873 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
877 void kvm_cpu_synchronize_post_reset(CPUState *env)
879 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
880 env->kvm_vcpu_dirty = 0;
883 void kvm_cpu_synchronize_post_init(CPUState *env)
885 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
886 env->kvm_vcpu_dirty = 0;
889 int kvm_cpu_exec(CPUState *env)
891 struct kvm_run *run = env->kvm_run;
894 DPRINTF("kvm_cpu_exec()\n");
896 if (kvm_arch_process_irqchip_events(env)) {
897 env->exit_request = 0;
898 env->exception_index = EXCP_HLT;
903 if (env->kvm_vcpu_dirty) {
904 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
905 env->kvm_vcpu_dirty = 0;
908 kvm_arch_pre_run(env, run);
909 if (env->exit_request) {
910 DPRINTF("interrupt exit requested\n");
912 * KVM requires us to reenter the kernel after IO exits to complete
913 * instruction emulation. This self-signal will ensure that we
916 qemu_cpu_kick_self();
918 cpu_single_env = NULL;
919 qemu_mutex_unlock_iothread();
921 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
923 qemu_mutex_lock_iothread();
924 cpu_single_env = env;
925 kvm_arch_post_run(env, run);
927 kvm_flush_coalesced_mmio_buffer();
929 if (ret == -EINTR || ret == -EAGAIN) {
931 DPRINTF("io window exit\n");
937 DPRINTF("kvm run failed %s\n", strerror(-ret));
941 ret = 0; /* exit loop */
942 switch (run->exit_reason) {
944 DPRINTF("handle_io\n");
945 kvm_handle_io(run->io.port,
946 (uint8_t *)run + run->io.data_offset,
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
968 case KVM_EXIT_UNKNOWN:
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
973 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
975 ret = kvm_handle_internal_error(env, run);
979 DPRINTF("kvm_exit_debug\n");
980 #ifdef KVM_CAP_SET_GUEST_DEBUG
981 if (kvm_arch_debug(&run->debug.arch)) {
982 env->exception_index = EXCP_DEBUG;
985 /* re-enter, this exception was guest-internal */
987 #endif /* KVM_CAP_SET_GUEST_DEBUG */
990 DPRINTF("kvm_arch_handle_exit\n");
991 ret = kvm_arch_handle_exit(env, run);
997 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
999 env->exit_request = 1;
1001 if (env->exit_request) {
1002 env->exit_request = 0;
1003 env->exception_index = EXCP_INTERRUPT;
1009 int kvm_ioctl(KVMState *s, int type, ...)
1016 arg = va_arg(ap, void *);
1019 ret = ioctl(s->fd, type, arg);
1026 int kvm_vm_ioctl(KVMState *s, int type, ...)
1033 arg = va_arg(ap, void *);
1036 ret = ioctl(s->vmfd, type, arg);
1043 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1050 arg = va_arg(ap, void *);
1053 ret = ioctl(env->kvm_fd, type, arg);
1060 int kvm_has_sync_mmu(void)
1062 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1065 int kvm_has_vcpu_events(void)
1067 return kvm_state->vcpu_events;
1070 int kvm_has_robust_singlestep(void)
1072 return kvm_state->robust_singlestep;
1075 int kvm_has_debugregs(void)
1077 return kvm_state->debugregs;
1080 int kvm_has_xsave(void)
1082 return kvm_state->xsave;
1085 int kvm_has_xcrs(void)
1087 return kvm_state->xcrs;
1090 int kvm_has_many_ioeventfds(void)
1092 if (!kvm_enabled()) {
1095 return kvm_state->many_ioeventfds;
1098 void kvm_setup_guest_memory(void *start, size_t size)
1100 if (!kvm_has_sync_mmu()) {
1101 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1104 perror("qemu_madvise");
1106 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1112 #ifdef KVM_CAP_SET_GUEST_DEBUG
1113 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1116 struct kvm_sw_breakpoint *bp;
1118 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1126 int kvm_sw_breakpoints_active(CPUState *env)
1128 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1131 struct kvm_set_guest_debug_data {
1132 struct kvm_guest_debug dbg;
1137 static void kvm_invoke_set_guest_debug(void *data)
1139 struct kvm_set_guest_debug_data *dbg_data = data;
1140 CPUState *env = dbg_data->env;
1142 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1145 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1147 struct kvm_set_guest_debug_data data;
1149 data.dbg.control = reinject_trap;
1151 if (env->singlestep_enabled) {
1152 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1154 kvm_arch_update_guest_debug(env, &data.dbg);
1157 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1161 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1162 target_ulong len, int type)
1164 struct kvm_sw_breakpoint *bp;
1168 if (type == GDB_BREAKPOINT_SW) {
1169 bp = kvm_find_sw_breakpoint(current_env, addr);
1175 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1182 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1188 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1191 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1197 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1198 err = kvm_update_guest_debug(env, 0);
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1209 struct kvm_sw_breakpoint *bp;
1213 if (type == GDB_BREAKPOINT_SW) {
1214 bp = kvm_find_sw_breakpoint(current_env, addr);
1219 if (bp->use_count > 1) {
1224 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1229 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1232 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1238 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1239 err = kvm_update_guest_debug(env, 0);
1247 void kvm_remove_all_breakpoints(CPUState *current_env)
1249 struct kvm_sw_breakpoint *bp, *next;
1250 KVMState *s = current_env->kvm_state;
1253 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1254 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1255 /* Try harder to find a CPU that currently sees the breakpoint. */
1256 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1257 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1263 kvm_arch_remove_all_hw_breakpoints();
1265 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1266 kvm_update_guest_debug(env, 0);
1270 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1272 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1277 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1283 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1284 target_ulong len, int type)
1289 void kvm_remove_all_breakpoints(CPUState *current_env)
1292 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1294 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1296 struct kvm_signal_mask *sigmask;
1300 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1303 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1306 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1307 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1313 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1315 #ifdef KVM_IOEVENTFD
1317 struct kvm_ioeventfd iofd;
1319 iofd.datamatch = val;
1322 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1325 if (!kvm_enabled()) {
1330 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1333 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1345 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1347 #ifdef KVM_IOEVENTFD
1348 struct kvm_ioeventfd kick = {
1352 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1356 if (!kvm_enabled()) {
1360 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1362 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1372 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1374 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1377 int kvm_on_sigbus(int code, void *addr)
1379 return kvm_arch_on_sigbus(code, addr);