]> Git Repo - qemu.git/blob - hw/spapr.c
Merge remote-tracking branch 'kraxel/usb.54' into staging
[qemu.git] / hw / spapr.c
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
48
49 #include "exec-memory.h"
50
51 #include <libfdt.h>
52
53 /* SLOF memory layout:
54  *
55  * SLOF raw image loaded at 0, copies its romfs right below the flat
56  * device-tree, then position SLOF itself 31M below that
57  *
58  * So we set FW_OVERHEAD to 40MB which should account for all of that
59  * and more
60  *
61  * We load our kernel at 4M, leaving space for SLOF initial image
62  */
63 #define FDT_MAX_SIZE            0x10000
64 #define RTAS_MAX_SIZE           0x10000
65 #define FW_MAX_SIZE             0x400000
66 #define FW_FILE_NAME            "slof.bin"
67 #define FW_OVERHEAD             0x2800000
68 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
69
70 #define MIN_RMA_SLOF            128UL
71
72 #define TIMEBASE_FREQ           512000000ULL
73
74 #define MAX_CPUS                256
75 #define XICS_IRQS               1024
76
77 #define SPAPR_PCI_BUID          0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
81
82 #define PHANDLE_XICP            0x00001111
83
84 sPAPREnvironment *spapr;
85
86 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87                             enum xics_irq_type type)
88 {
89     uint32_t irq;
90     qemu_irq qirq;
91
92     if (hint) {
93         irq = hint;
94         /* FIXME: we should probably check for collisions somehow */
95     } else {
96         irq = spapr->next_irq++;
97     }
98
99     qirq = xics_assign_irq(spapr->icp, irq, type);
100     if (!qirq) {
101         return NULL;
102     }
103
104     if (irq_num) {
105         *irq_num = irq;
106     }
107
108     return qirq;
109 }
110
111 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
112 {
113     int ret = 0, offset;
114     CPUPPCState *env;
115     char cpu_model[32];
116     int smt = kvmppc_smt_threads();
117
118     assert(spapr->cpu_model);
119
120     for (env = first_cpu; env != NULL; env = env->next_cpu) {
121         uint32_t associativity[] = {cpu_to_be32(0x5),
122                                     cpu_to_be32(0x0),
123                                     cpu_to_be32(0x0),
124                                     cpu_to_be32(0x0),
125                                     cpu_to_be32(env->numa_node),
126                                     cpu_to_be32(env->cpu_index)};
127
128         if ((env->cpu_index % smt) != 0) {
129             continue;
130         }
131
132         snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133                  env->cpu_index);
134
135         offset = fdt_path_offset(fdt, cpu_model);
136         if (offset < 0) {
137             return offset;
138         }
139
140         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141                           sizeof(associativity));
142         if (ret < 0) {
143             return ret;
144         }
145     }
146     return ret;
147 }
148
149
150 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
151                                      size_t maxsize)
152 {
153     size_t maxcells = maxsize / sizeof(uint32_t);
154     int i, j, count;
155     uint32_t *p = prop;
156
157     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
158         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
159
160         if (!sps->page_shift) {
161             break;
162         }
163         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
164             if (sps->enc[count].page_shift == 0) {
165                 break;
166             }
167         }
168         if ((p - prop) >= (maxcells - 3 - count * 2)) {
169             break;
170         }
171         *(p++) = cpu_to_be32(sps->page_shift);
172         *(p++) = cpu_to_be32(sps->slb_enc);
173         *(p++) = cpu_to_be32(count);
174         for (j = 0; j < count; j++) {
175             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
176             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
177         }
178     }
179
180     return (p - prop) * sizeof(uint32_t);
181 }
182
183 static void *spapr_create_fdt_skel(const char *cpu_model,
184                                    target_phys_addr_t rma_size,
185                                    target_phys_addr_t initrd_base,
186                                    target_phys_addr_t initrd_size,
187                                    target_phys_addr_t kernel_size,
188                                    const char *boot_device,
189                                    const char *kernel_cmdline,
190                                    long hash_shift)
191 {
192     void *fdt;
193     CPUPPCState *env;
194     uint64_t mem_reg_property[2];
195     uint32_t start_prop = cpu_to_be32(initrd_base);
196     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
197     uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
198     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
199         "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
200     char qemu_hypertas_prop[] = "hcall-memop1";
201     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
202     int i;
203     char *modelname;
204     int smt = kvmppc_smt_threads();
205     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
206     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
207     uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0), cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0)};
210     char mem_name[32];
211     target_phys_addr_t node0_size, mem_start;
212
213 #define _FDT(exp) \
214     do { \
215         int ret = (exp);                                           \
216         if (ret < 0) {                                             \
217             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
218                     #exp, fdt_strerror(ret));                      \
219             exit(1);                                               \
220         }                                                          \
221     } while (0)
222
223     fdt = g_malloc0(FDT_MAX_SIZE);
224     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
225
226     if (kernel_size) {
227         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
228     }
229     if (initrd_size) {
230         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
231     }
232     _FDT((fdt_finish_reservemap(fdt)));
233
234     /* Root node */
235     _FDT((fdt_begin_node(fdt, "")));
236     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
237     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
238
239     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
240     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
241
242     /* /chosen */
243     _FDT((fdt_begin_node(fdt, "chosen")));
244
245     /* Set Form1_affinity */
246     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
247
248     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
249     _FDT((fdt_property(fdt, "linux,initrd-start",
250                        &start_prop, sizeof(start_prop))));
251     _FDT((fdt_property(fdt, "linux,initrd-end",
252                        &end_prop, sizeof(end_prop))));
253     if (kernel_size) {
254         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
255                               cpu_to_be64(kernel_size) };
256
257         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
258     }
259     _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
260
261     _FDT((fdt_end_node(fdt)));
262
263     /* memory node(s) */
264     node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
265     if (rma_size > node0_size) {
266         rma_size = node0_size;
267     }
268
269     /* RMA */
270     mem_reg_property[0] = 0;
271     mem_reg_property[1] = cpu_to_be64(rma_size);
272     _FDT((fdt_begin_node(fdt, "memory@0")));
273     _FDT((fdt_property_string(fdt, "device_type", "memory")));
274     _FDT((fdt_property(fdt, "reg", mem_reg_property,
275         sizeof(mem_reg_property))));
276     _FDT((fdt_property(fdt, "ibm,associativity", associativity,
277         sizeof(associativity))));
278     _FDT((fdt_end_node(fdt)));
279
280     /* RAM: Node 0 */
281     if (node0_size > rma_size) {
282         mem_reg_property[0] = cpu_to_be64(rma_size);
283         mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
284
285         sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
286         _FDT((fdt_begin_node(fdt, mem_name)));
287         _FDT((fdt_property_string(fdt, "device_type", "memory")));
288         _FDT((fdt_property(fdt, "reg", mem_reg_property,
289                            sizeof(mem_reg_property))));
290         _FDT((fdt_property(fdt, "ibm,associativity", associativity,
291                            sizeof(associativity))));
292         _FDT((fdt_end_node(fdt)));
293     }
294
295     /* RAM: Node 1 and beyond */
296     mem_start = node0_size;
297     for (i = 1; i < nb_numa_nodes; i++) {
298         mem_reg_property[0] = cpu_to_be64(mem_start);
299         mem_reg_property[1] = cpu_to_be64(node_mem[i]);
300         associativity[3] = associativity[4] = cpu_to_be32(i);
301         sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
302         _FDT((fdt_begin_node(fdt, mem_name)));
303         _FDT((fdt_property_string(fdt, "device_type", "memory")));
304         _FDT((fdt_property(fdt, "reg", mem_reg_property,
305             sizeof(mem_reg_property))));
306         _FDT((fdt_property(fdt, "ibm,associativity", associativity,
307             sizeof(associativity))));
308         _FDT((fdt_end_node(fdt)));
309         mem_start += node_mem[i];
310     }
311
312     /* cpus */
313     _FDT((fdt_begin_node(fdt, "cpus")));
314
315     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
316     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
317
318     modelname = g_strdup(cpu_model);
319
320     for (i = 0; i < strlen(modelname); i++) {
321         modelname[i] = toupper(modelname[i]);
322     }
323
324     /* This is needed during FDT finalization */
325     spapr->cpu_model = g_strdup(modelname);
326
327     for (env = first_cpu; env != NULL; env = env->next_cpu) {
328         int index = env->cpu_index;
329         uint32_t servers_prop[smp_threads];
330         uint32_t gservers_prop[smp_threads * 2];
331         char *nodename;
332         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
333                            0xffffffff, 0xffffffff};
334         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
335         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
336         uint32_t page_sizes_prop[64];
337         size_t page_sizes_prop_size;
338
339         if ((index % smt) != 0) {
340             continue;
341         }
342
343         if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
344             fprintf(stderr, "Allocation failure\n");
345             exit(1);
346         }
347
348         _FDT((fdt_begin_node(fdt, nodename)));
349
350         free(nodename);
351
352         _FDT((fdt_property_cell(fdt, "reg", index)));
353         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
354
355         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
356         _FDT((fdt_property_cell(fdt, "dcache-block-size",
357                                 env->dcache_line_size)));
358         _FDT((fdt_property_cell(fdt, "icache-block-size",
359                                 env->icache_line_size)));
360         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
361         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
362         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
363         _FDT((fdt_property(fdt, "ibm,pft-size",
364                            pft_size_prop, sizeof(pft_size_prop))));
365         _FDT((fdt_property_string(fdt, "status", "okay")));
366         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
367
368         /* Build interrupt servers and gservers properties */
369         for (i = 0; i < smp_threads; i++) {
370             servers_prop[i] = cpu_to_be32(index + i);
371             /* Hack, direct the group queues back to cpu 0 */
372             gservers_prop[i*2] = cpu_to_be32(index + i);
373             gservers_prop[i*2 + 1] = 0;
374         }
375         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
376                            servers_prop, sizeof(servers_prop))));
377         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
378                            gservers_prop, sizeof(gservers_prop))));
379
380         if (env->mmu_model & POWERPC_MMU_1TSEG) {
381             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
382                                segs, sizeof(segs))));
383         }
384
385         /* Advertise VMX/VSX (vector extensions) if available
386          *   0 / no property == no vector extensions
387          *   1               == VMX / Altivec available
388          *   2               == VSX available */
389         if (env->insns_flags & PPC_ALTIVEC) {
390             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
391
392             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
393         }
394
395         /* Advertise DFP (Decimal Floating Point) if available
396          *   0 / no property == no DFP
397          *   1               == DFP available */
398         if (env->insns_flags2 & PPC2_DFP) {
399             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
400         }
401
402         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
403                                                       sizeof(page_sizes_prop));
404         if (page_sizes_prop_size) {
405             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
406                                page_sizes_prop, page_sizes_prop_size)));
407         }
408
409         _FDT((fdt_end_node(fdt)));
410     }
411
412     g_free(modelname);
413
414     _FDT((fdt_end_node(fdt)));
415
416     /* RTAS */
417     _FDT((fdt_begin_node(fdt, "rtas")));
418
419     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
420                        sizeof(hypertas_prop))));
421     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
422                        sizeof(qemu_hypertas_prop))));
423
424     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
425         refpoints, sizeof(refpoints))));
426
427     _FDT((fdt_end_node(fdt)));
428
429     /* interrupt controller */
430     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
431
432     _FDT((fdt_property_string(fdt, "device_type",
433                               "PowerPC-External-Interrupt-Presentation")));
434     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
435     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
436     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
437                        interrupt_server_ranges_prop,
438                        sizeof(interrupt_server_ranges_prop))));
439     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
440     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
441     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
442
443     _FDT((fdt_end_node(fdt)));
444
445     /* vdevice */
446     _FDT((fdt_begin_node(fdt, "vdevice")));
447
448     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
449     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
450     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
451     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
452     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
453     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
454
455     _FDT((fdt_end_node(fdt)));
456
457     _FDT((fdt_end_node(fdt))); /* close root node */
458     _FDT((fdt_finish(fdt)));
459
460     return fdt;
461 }
462
463 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
464                                target_phys_addr_t fdt_addr,
465                                target_phys_addr_t rtas_addr,
466                                target_phys_addr_t rtas_size)
467 {
468     int ret;
469     void *fdt;
470     sPAPRPHBState *phb;
471
472     fdt = g_malloc(FDT_MAX_SIZE);
473
474     /* open out the base tree into a temp buffer for the final tweaks */
475     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
476
477     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
478     if (ret < 0) {
479         fprintf(stderr, "couldn't setup vio devices in fdt\n");
480         exit(1);
481     }
482
483     QLIST_FOREACH(phb, &spapr->phbs, list) {
484         ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
485     }
486
487     if (ret < 0) {
488         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
489         exit(1);
490     }
491
492     /* RTAS */
493     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
494     if (ret < 0) {
495         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
496     }
497
498     /* Advertise NUMA via ibm,associativity */
499     if (nb_numa_nodes > 1) {
500         ret = spapr_set_associativity(fdt, spapr);
501         if (ret < 0) {
502             fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
503         }
504     }
505
506     spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
507
508     _FDT((fdt_pack(fdt)));
509
510     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
511         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
512                  fdt_totalsize(fdt), FDT_MAX_SIZE);
513         exit(1);
514     }
515
516     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
517
518     g_free(fdt);
519 }
520
521 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
522 {
523     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
524 }
525
526 static void emulate_spapr_hypercall(CPUPPCState *env)
527 {
528     env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
529 }
530
531 static void spapr_reset(void *opaque)
532 {
533     sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
534
535     fprintf(stderr, "sPAPR reset\n");
536
537     /* flush out the hash table */
538     memset(spapr->htab, 0, spapr->htab_size);
539
540     /* Load the fdt */
541     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
542                        spapr->rtas_size);
543
544     /* Set up the entry state */
545     first_cpu->gpr[3] = spapr->fdt_addr;
546     first_cpu->gpr[5] = 0;
547     first_cpu->halted = 0;
548     first_cpu->nip = spapr->entry_point;
549
550 }
551
552 static void spapr_cpu_reset(void *opaque)
553 {
554     PowerPCCPU *cpu = opaque;
555
556     cpu_reset(CPU(cpu));
557 }
558
559 /* pSeries LPAR / sPAPR hardware init */
560 static void ppc_spapr_init(ram_addr_t ram_size,
561                            const char *boot_device,
562                            const char *kernel_filename,
563                            const char *kernel_cmdline,
564                            const char *initrd_filename,
565                            const char *cpu_model)
566 {
567     PowerPCCPU *cpu;
568     CPUPPCState *env;
569     int i;
570     MemoryRegion *sysmem = get_system_memory();
571     MemoryRegion *ram = g_new(MemoryRegion, 1);
572     target_phys_addr_t rma_alloc_size, rma_size;
573     uint32_t initrd_base = 0;
574     long kernel_size = 0, initrd_size = 0;
575     long load_limit, rtas_limit, fw_size;
576     long pteg_shift = 17;
577     char *filename;
578
579     spapr = g_malloc0(sizeof(*spapr));
580     QLIST_INIT(&spapr->phbs);
581
582     cpu_ppc_hypercall = emulate_spapr_hypercall;
583
584     /* Allocate RMA if necessary */
585     rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
586
587     if (rma_alloc_size == -1) {
588         hw_error("qemu: Unable to create RMA\n");
589         exit(1);
590     }
591     if (rma_alloc_size && (rma_alloc_size < ram_size)) {
592         rma_size = rma_alloc_size;
593     } else {
594         rma_size = ram_size;
595     }
596
597     /* We place the device tree and RTAS just below either the top of the RMA,
598      * or just below 2GB, whichever is lowere, so that it can be
599      * processed with 32-bit real mode code if necessary */
600     rtas_limit = MIN(rma_size, 0x80000000);
601     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
602     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
603     load_limit = spapr->fdt_addr - FW_OVERHEAD;
604
605     /* init CPUs */
606     if (cpu_model == NULL) {
607         cpu_model = kvm_enabled() ? "host" : "POWER7";
608     }
609     for (i = 0; i < smp_cpus; i++) {
610         cpu = cpu_ppc_init(cpu_model);
611         if (cpu == NULL) {
612             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
613             exit(1);
614         }
615         env = &cpu->env;
616
617         /* Set time-base frequency to 512 MHz */
618         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
619         qemu_register_reset(spapr_cpu_reset, cpu);
620
621         env->hreset_vector = 0x60;
622         env->hreset_excp_prefix = 0;
623         env->gpr[3] = env->cpu_index;
624     }
625
626     /* allocate RAM */
627     spapr->ram_limit = ram_size;
628     if (spapr->ram_limit > rma_alloc_size) {
629         ram_addr_t nonrma_base = rma_alloc_size;
630         ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
631
632         memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
633         vmstate_register_ram_global(ram);
634         memory_region_add_subregion(sysmem, nonrma_base, ram);
635     }
636
637     /* allocate hash page table.  For now we always make this 16mb,
638      * later we should probably make it scale to the size of guest
639      * RAM */
640     spapr->htab_size = 1ULL << (pteg_shift + 7);
641     spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
642
643     for (env = first_cpu; env != NULL; env = env->next_cpu) {
644         env->external_htab = spapr->htab;
645         env->htab_base = -1;
646         env->htab_mask = spapr->htab_size - 1;
647
648         /* Tell KVM that we're in PAPR mode */
649         env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
650                              ((pteg_shift + 7) - 18);
651         env->spr[SPR_HIOR] = 0;
652
653         if (kvm_enabled()) {
654             kvmppc_set_papr(env);
655         }
656     }
657
658     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
659     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
660                                            rtas_limit - spapr->rtas_addr);
661     if (spapr->rtas_size < 0) {
662         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
663         exit(1);
664     }
665     if (spapr->rtas_size > RTAS_MAX_SIZE) {
666         hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
667                  spapr->rtas_size, RTAS_MAX_SIZE);
668         exit(1);
669     }
670     g_free(filename);
671
672
673     /* Set up Interrupt Controller */
674     spapr->icp = xics_system_init(XICS_IRQS);
675     spapr->next_irq = 16;
676
677     /* Set up VIO bus */
678     spapr->vio_bus = spapr_vio_bus_init();
679
680     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
681         if (serial_hds[i]) {
682             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
683         }
684     }
685
686     /* Set up PCI */
687     spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
688                      SPAPR_PCI_MEM_WIN_ADDR,
689                      SPAPR_PCI_MEM_WIN_SIZE,
690                      SPAPR_PCI_IO_WIN_ADDR);
691
692     for (i = 0; i < nb_nics; i++) {
693         NICInfo *nd = &nd_table[i];
694
695         if (!nd->model) {
696             nd->model = g_strdup("ibmveth");
697         }
698
699         if (strcmp(nd->model, "ibmveth") == 0) {
700             spapr_vlan_create(spapr->vio_bus, nd);
701         } else {
702             pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
703         }
704     }
705
706     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
707         spapr_vscsi_create(spapr->vio_bus);
708     }
709
710     if (rma_size < (MIN_RMA_SLOF << 20)) {
711         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
712                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
713         exit(1);
714     }
715
716     fprintf(stderr, "sPAPR memory map:\n");
717     fprintf(stderr, "RTAS                 : 0x%08lx..%08lx\n",
718             (unsigned long)spapr->rtas_addr,
719             (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
720     fprintf(stderr, "FDT                  : 0x%08lx..%08lx\n",
721             (unsigned long)spapr->fdt_addr,
722             (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
723
724     if (kernel_filename) {
725         uint64_t lowaddr = 0;
726
727         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
728                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
729         if (kernel_size < 0) {
730             kernel_size = load_image_targphys(kernel_filename,
731                                               KERNEL_LOAD_ADDR,
732                                               load_limit - KERNEL_LOAD_ADDR);
733         }
734         if (kernel_size < 0) {
735             fprintf(stderr, "qemu: could not load kernel '%s'\n",
736                     kernel_filename);
737             exit(1);
738         }
739         fprintf(stderr, "Kernel               : 0x%08x..%08lx\n",
740                 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
741
742         /* load initrd */
743         if (initrd_filename) {
744             /* Try to locate the initrd in the gap between the kernel
745              * and the firmware. Add a bit of space just in case
746              */
747             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
748             initrd_size = load_image_targphys(initrd_filename, initrd_base,
749                                               load_limit - initrd_base);
750             if (initrd_size < 0) {
751                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
752                         initrd_filename);
753                 exit(1);
754             }
755             fprintf(stderr, "Ramdisk              : 0x%08lx..%08lx\n",
756                     (long)initrd_base, (long)(initrd_base + initrd_size - 1));
757         } else {
758             initrd_base = 0;
759             initrd_size = 0;
760         }
761     }
762
763     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
764     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
765     if (fw_size < 0) {
766         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
767         exit(1);
768     }
769     g_free(filename);
770     fprintf(stderr, "Firmware load        : 0x%08x..%08lx\n",
771             0, fw_size);
772     fprintf(stderr, "Firmware runtime     : 0x%08lx..%08lx\n",
773             load_limit, (unsigned long)spapr->fdt_addr);
774
775     spapr->entry_point = 0x100;
776
777     /* SLOF will startup the secondary CPUs using RTAS */
778     for (env = first_cpu; env != NULL; env = env->next_cpu) {
779         env->halted = 1;
780     }
781
782     /* Prepare the device tree */
783     spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
784                                             initrd_base, initrd_size,
785                                             kernel_size,
786                                             boot_device, kernel_cmdline,
787                                             pteg_shift + 7);
788     assert(spapr->fdt_skel != NULL);
789
790     qemu_register_reset(spapr_reset, spapr);
791 }
792
793 static QEMUMachine spapr_machine = {
794     .name = "pseries",
795     .desc = "pSeries Logical Partition (PAPR compliant)",
796     .init = ppc_spapr_init,
797     .max_cpus = MAX_CPUS,
798     .no_parallel = 1,
799     .use_scsi = 1,
800 };
801
802 static void spapr_machine_init(void)
803 {
804     qemu_register_machine(&spapr_machine);
805 }
806
807 machine_init(spapr_machine_init);
This page took 0.072872 seconds and 4 git commands to generate.