2 * QEMU PC System Emulator
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
42 #include <sys/ioctl.h>
43 #include <sys/socket.h>
45 #include <linux/if_tun.h>
53 #define DEBUG_LOGFILE "/tmp/vl.log"
54 #define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
56 //#define DEBUG_UNUSED_IOPORT
57 //#define DEBUG_IRQ_LATENCY
59 #define PHYS_RAM_BASE 0xa8000000
60 #define KERNEL_LOAD_ADDR 0x00100000
61 #define INITRD_LOAD_ADDR 0x00400000
62 #define KERNEL_PARAMS_ADDR 0x00090000
64 /* from plex86 (BSD license) */
65 struct __attribute__ ((packed)) linux_params {
66 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
67 // I just padded out the VESA parts, rather than define them.
69 /* 0x000 */ uint8_t orig_x;
70 /* 0x001 */ uint8_t orig_y;
71 /* 0x002 */ uint16_t ext_mem_k;
72 /* 0x004 */ uint16_t orig_video_page;
73 /* 0x006 */ uint8_t orig_video_mode;
74 /* 0x007 */ uint8_t orig_video_cols;
75 /* 0x008 */ uint16_t unused1;
76 /* 0x00a */ uint16_t orig_video_ega_bx;
77 /* 0x00c */ uint16_t unused2;
78 /* 0x00e */ uint8_t orig_video_lines;
79 /* 0x00f */ uint8_t orig_video_isVGA;
80 /* 0x010 */ uint16_t orig_video_points;
81 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
82 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
83 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
84 // is calculated as 0x90000 + cl_offset, bu
85 // only if cl_magic == 0xA33F.
86 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
88 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
89 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
91 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
92 // Might be truncated?
93 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
94 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
96 // System description table truncated to 16 bytes
97 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
98 /* 0x0a0 */ uint16_t sys_description_len;
99 /* 0x0a2 */ uint8_t sys_description_table[14];
101 // [1] machine submodel id
105 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
106 /* 0x1e0 */ uint32_t alt_mem_k;
107 /* 0x1e4 */ uint8_t pad4[4];
108 /* 0x1e8 */ uint8_t e820map_entries;
109 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
110 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
111 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
112 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
113 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
114 // (b)zImage-file (in 16 byte units, rounded up)
115 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
116 /* 0x1f8 */ uint16_t ramdisk_flags;
117 /* 0x1fa */ uint16_t vga_mode; // (old one)
118 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
119 /* 0x1fe */ uint8_t pad6[1];
120 /* 0x1ff */ uint8_t aux_device_info;
121 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
122 // aka "reserved" field.
123 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
124 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
125 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
126 // boot loaders, look there.
127 /* 0x210 */ uint8_t loader_type;
132 // T=2: bootsect-loader
136 /* 0x211 */ uint8_t loadflags;
137 // bit0 = 1: kernel is loaded high (bzImage)
138 // bit7 = 1: Heap and pointer (see below) set by boot
140 /* 0x212 */ uint16_t setup_S_temp1;
141 /* 0x214 */ uint32_t kernel_start;
142 /* 0x218 */ uint32_t initrd_start;
143 /* 0x21c */ uint32_t initrd_size;
144 /* 0x220 */ uint8_t setup_S_temp2[4];
145 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
146 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
148 /* 0x2d0 : Int 15, ax=e820 memory map. */
149 // (linux/include/asm-i386/e820.h, 'struct e820entry')
152 #define E820_RESERVED 2
153 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
161 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
163 // BIOS Enhanced Disk Drive Services.
164 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
165 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
166 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
168 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
169 /* 0x800 */ uint8_t commandline[0x800];
172 uint64_t gdt_table[256];
173 uint64_t idt_table[48];
176 #define KERNEL_CS 0x10
177 #define KERNEL_DS 0x18
179 typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
180 typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
182 #define MAX_IOPORTS 4096
184 char phys_ram_file[1024];
185 CPUX86State *global_env;
186 CPUX86State *cpu_single_env;
187 FILE *logfile = NULL;
189 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
190 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
192 /***********************************************************/
195 uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
197 #ifdef DEBUG_UNUSED_IOPORT
198 fprintf(stderr, "inb: port=0x%04x\n", address);
203 void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
205 #ifdef DEBUG_UNUSED_IOPORT
206 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
210 /* default is to make two byte accesses */
211 uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
214 data = ioport_read_table[0][address](env, address);
215 data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
219 void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
221 ioport_write_table[0][address](env, address, data & 0xff);
222 ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
225 uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
227 #ifdef DEBUG_UNUSED_IOPORT
228 fprintf(stderr, "inl: port=0x%04x\n", address);
233 void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
235 #ifdef DEBUG_UNUSED_IOPORT
236 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
240 void init_ioports(void)
244 for(i = 0; i < MAX_IOPORTS; i++) {
245 ioport_read_table[0][i] = default_ioport_readb;
246 ioport_write_table[0][i] = default_ioport_writeb;
247 ioport_read_table[1][i] = default_ioport_readw;
248 ioport_write_table[1][i] = default_ioport_writew;
249 ioport_read_table[2][i] = default_ioport_readl;
250 ioport_write_table[2][i] = default_ioport_writel;
254 /* size is the word size in byte */
255 int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
267 for(i = start; i < start + length; i += size)
268 ioport_read_table[bsize][i] = func;
272 /* size is the word size in byte */
273 int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
285 for(i = start; i < start + length; i += size)
286 ioport_write_table[bsize][i] = func;
290 void pstrcpy(char *buf, int buf_size, const char *str)
300 if (c == 0 || q >= buf + buf_size - 1)
307 /* strcat and truncate. */
308 char *pstrcat(char *buf, int buf_size, const char *s)
313 pstrcpy(buf + len, buf_size - len, s);
317 int load_kernel(const char *filename, uint8_t *addr)
319 int fd, size, setup_sects;
320 uint8_t bootsect[512];
322 fd = open(filename, O_RDONLY);
325 if (read(fd, bootsect, 512) != 512)
327 setup_sects = bootsect[0x1F1];
330 /* skip 16 bit setup code */
331 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
332 size = read(fd, addr, 16 * 1024 * 1024);
342 /* return the size or -1 if error */
343 int load_image(const char *filename, uint8_t *addr)
346 fd = open(filename, O_RDONLY);
349 size = lseek(fd, 0, SEEK_END);
350 lseek(fd, 0, SEEK_SET);
351 if (read(fd, addr, size) != size) {
359 void cpu_x86_outb(CPUX86State *env, int addr, int val)
361 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
364 void cpu_x86_outw(CPUX86State *env, int addr, int val)
366 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
369 void cpu_x86_outl(CPUX86State *env, int addr, int val)
371 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
374 int cpu_x86_inb(CPUX86State *env, int addr)
376 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
379 int cpu_x86_inw(CPUX86State *env, int addr)
381 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
384 int cpu_x86_inl(CPUX86State *env, int addr)
386 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
389 /***********************************************************/
390 void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
394 void hw_error(const char *fmt, ...)
399 fprintf(stderr, "qemu: hardware error: ");
400 vfprintf(stderr, fmt, ap);
401 fprintf(stderr, "\n");
403 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
409 /***********************************************************/
411 static uint8_t vga_index;
412 static uint8_t vga_regs[256];
413 static int last_cursor_pos;
415 void update_console_messages(void)
417 int c, i, cursor_pos, eol;
419 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
421 for(i = last_cursor_pos; i < cursor_pos; i++) {
422 c = phys_ram_base[0xb8000 + (i) * 2];
433 last_cursor_pos = cursor_pos;
436 /* just to see first Linux console messages, we intercept cursor position */
437 void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
444 vga_regs[vga_index] = data;
445 if (vga_index == 0x0f)
446 update_console_messages();
452 /***********************************************************/
455 #define RTC_SECONDS 0
456 #define RTC_SECONDS_ALARM 1
457 #define RTC_MINUTES 2
458 #define RTC_MINUTES_ALARM 3
460 #define RTC_HOURS_ALARM 5
461 #define RTC_ALARM_DONT_CARE 0xC0
463 #define RTC_DAY_OF_WEEK 6
464 #define RTC_DAY_OF_MONTH 7
473 /* PC cmos mappings */
474 #define REG_EQUIPMENT_BYTE 0x14
476 uint8_t cmos_data[128];
479 void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
482 cmos_index = data & 0x7f;
486 uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
493 /* toggle update-in-progress bit for Linux (same hack as
495 ret = cmos_data[cmos_index];
496 if (cmos_index == RTC_REG_A)
497 cmos_data[RTC_REG_A] ^= 0x80;
498 else if (cmos_index == RTC_REG_C)
499 cmos_data[RTC_REG_C] = 0x00;
505 static inline int to_bcd(int a)
507 return ((a / 10) << 4) | (a % 10);
517 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
518 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
519 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
520 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
521 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
522 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
523 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
525 cmos_data[RTC_REG_A] = 0x26;
526 cmos_data[RTC_REG_B] = 0x02;
527 cmos_data[RTC_REG_C] = 0x00;
528 cmos_data[RTC_REG_D] = 0x80;
530 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
532 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
533 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
536 /***********************************************************/
537 /* 8259 pic emulation */
541 typedef struct PicState {
542 uint8_t last_irr; /* edge detection */
543 uint8_t irr; /* interrupt request register */
544 uint8_t imr; /* interrupt mask register */
545 uint8_t isr; /* interrupt service register */
546 uint8_t priority_add; /* used to compute irq priority */
548 uint8_t read_reg_select;
549 uint8_t special_mask;
552 uint8_t rotate_on_autoeoi;
553 uint8_t init4; /* true if 4 byte init */
556 /* 0 is master pic, 1 is slave pic */
558 int pic_irq_requested;
560 /* set irq level. If an edge is detected, then the IRR is set to 1 */
561 static inline void pic_set_irq1(PicState *s, int irq, int level)
566 if ((s->last_irr & mask) == 0)
570 s->last_irr &= ~mask;
574 static inline int get_priority(PicState *s, int mask)
580 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
585 /* return the pic wanted interrupt. return -1 if none */
586 static int pic_get_irq(PicState *s)
588 int mask, cur_priority, priority;
590 mask = s->irr & ~s->imr;
591 priority = get_priority(s, mask);
594 /* compute current priority */
595 cur_priority = get_priority(s, s->isr);
596 if (priority > cur_priority) {
597 /* higher priority found: an irq should be generated */
604 /* raise irq to CPU if necessary. must be called every time the active
606 static void pic_update_irq(void)
610 /* first look at slave pic */
611 irq2 = pic_get_irq(&pics[1]);
613 /* if irq request by slave pic, signal master PIC */
614 pic_set_irq1(&pics[0], 2, 1);
615 pic_set_irq1(&pics[0], 2, 0);
617 /* look at requested irq */
618 irq = pic_get_irq(&pics[0]);
622 pic_irq_requested = 8 + irq2;
624 /* from master pic */
625 pic_irq_requested = irq;
627 cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
631 #ifdef DEBUG_IRQ_LATENCY
632 int64_t irq_time[16];
633 int64_t cpu_get_ticks(void);
639 void pic_set_irq(int irq, int level)
642 if (level != irq_level[irq]) {
643 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
644 irq_level[irq] = level;
647 #ifdef DEBUG_IRQ_LATENCY
649 irq_time[irq] = cpu_get_ticks();
652 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
656 int cpu_x86_get_pic_interrupt(CPUX86State *env)
658 int irq, irq2, intno;
660 /* signal the pic that the irq was acked by the CPU */
661 irq = pic_irq_requested;
662 #ifdef DEBUG_IRQ_LATENCY
663 printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
666 printf("pic_interrupt: irq=%d\n", irq);
671 pics[1].isr |= (1 << irq2);
672 pics[1].irr &= ~(1 << irq2);
674 intno = pics[1].irq_base + irq2;
676 intno = pics[0].irq_base + irq;
678 pics[0].isr |= (1 << irq);
679 pics[0].irr &= ~(1 << irq);
683 void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
689 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
691 s = &pics[addr >> 7];
696 memset(s, 0, sizeof(PicState));
700 hw_error("single mode not supported");
702 hw_error("level sensitive irq not supported");
703 } else if (val & 0x08) {
705 s->read_reg_select = val & 1;
707 s->special_mask = (val >> 5) & 1;
712 s->rotate_on_autoeoi = val >> 7;
714 case 0x20: /* end of interrupt */
716 priority = get_priority(s, s->isr);
718 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
721 s->priority_add = (s->priority_add + 1) & 7;
725 s->isr &= ~(1 << priority);
728 s->priority_add = (val + 1) & 7;
732 s->isr &= ~(1 << priority);
733 s->priority_add = (priority + 1) & 7;
738 switch(s->init_state) {
745 s->irq_base = val & 0xf8;
756 s->auto_eoi = (val >> 1) & 1;
763 uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
770 s = &pics[addr >> 7];
773 if (s->read_reg_select)
781 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
788 register_ioport_write(0x20, 2, pic_ioport_write, 1);
789 register_ioport_read(0x20, 2, pic_ioport_read, 1);
790 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
791 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
794 /***********************************************************/
795 /* 8253 PIT emulation */
797 #define PIT_FREQ 1193182
799 #define RW_STATE_LSB 0
800 #define RW_STATE_MSB 1
801 #define RW_STATE_WORD0 2
802 #define RW_STATE_WORD1 3
803 #define RW_STATE_LATCHED_WORD0 4
804 #define RW_STATE_LATCHED_WORD1 5
806 typedef struct PITChannelState {
807 int count; /* can be 65536 */
808 uint16_t latched_count;
811 uint8_t bcd; /* not supported */
812 uint8_t gate; /* timer start */
813 int64_t count_load_time;
814 int64_t count_last_edge_check_time;
817 PITChannelState pit_channels[3];
819 int pit_min_timer_count = 0;
821 int64_t ticks_per_sec;
823 int64_t get_clock(void)
826 gettimeofday(&tv, NULL);
827 return tv.tv_sec * 1000000LL + tv.tv_usec;
830 int64_t cpu_get_ticks(void)
833 asm("rdtsc" : "=A" (val));
837 void cpu_calibrate_ticks(void)
842 ticks = cpu_get_ticks();
844 usec = get_clock() - usec;
845 ticks = cpu_get_ticks() - ticks;
846 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
849 /* compute with 96 bit intermediate result: (a*b)/c */
850 static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
855 #ifdef WORDS_BIGENDIAN
865 rl = (uint64_t)u.l.low * (uint64_t)b;
866 rh = (uint64_t)u.l.high * (uint64_t)b;
869 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
873 static int pit_get_count(PITChannelState *s)
878 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
884 counter = (s->count - d) & 0xffff;
887 counter = s->count - (d % s->count);
893 /* get pit output bit */
894 static int pit_get_out(PITChannelState *s)
899 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
903 out = (d >= s->count);
906 out = (d < s->count);
909 if ((d % s->count) == 0 && d != 0)
915 out = (d % s->count) < (s->count >> 1);
919 out = (d == s->count);
925 /* get the number of 0 to 1 transitions we had since we call this
927 /* XXX: maybe better to use ticks precision to avoid getting edges
928 twice if checks are done at very small intervals */
929 static int pit_get_out_edges(PITChannelState *s)
935 ticks = cpu_get_ticks();
936 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
937 PIT_FREQ, ticks_per_sec);
938 d2 = muldiv64(ticks - s->count_load_time,
939 PIT_FREQ, ticks_per_sec);
940 s->count_last_edge_check_time = ticks;
944 if (d1 < s->count && d2 >= s->count)
958 v = s->count - (s->count >> 1);
959 d1 = (d1 + v) / s->count;
960 d2 = (d2 + v) / s->count;
965 if (d1 < s->count && d2 >= s->count)
974 static inline void pit_load_count(PITChannelState *s, int val)
978 s->count_load_time = cpu_get_ticks();
979 s->count_last_edge_check_time = s->count_load_time;
981 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
983 "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
984 PIT_FREQ / pit_min_timer_count);
988 void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
998 s = &pit_channels[channel];
999 access = (val >> 4) & 3;
1002 s->latched_count = pit_get_count(s);
1003 s->rw_state = RW_STATE_LATCHED_WORD0;
1006 s->mode = (val >> 1) & 7;
1008 s->rw_state = access - 1 + RW_STATE_LSB;
1012 s = &pit_channels[addr];
1013 switch(s->rw_state) {
1015 pit_load_count(s, val);
1018 pit_load_count(s, val << 8);
1020 case RW_STATE_WORD0:
1021 case RW_STATE_WORD1:
1022 if (s->rw_state & 1) {
1023 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1025 s->latched_count = val;
1033 uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1039 s = &pit_channels[addr];
1040 switch(s->rw_state) {
1043 case RW_STATE_WORD0:
1044 case RW_STATE_WORD1:
1045 count = pit_get_count(s);
1046 if (s->rw_state & 1)
1047 ret = (count >> 8) & 0xff;
1050 if (s->rw_state & 2)
1054 case RW_STATE_LATCHED_WORD0:
1055 case RW_STATE_LATCHED_WORD1:
1056 if (s->rw_state & 1)
1057 ret = s->latched_count >> 8;
1059 ret = s->latched_count & 0xff;
1066 void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1068 speaker_data_on = (val >> 1) & 1;
1069 pit_channels[2].gate = val & 1;
1072 uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1075 out = pit_get_out(&pit_channels[2]);
1076 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1084 cpu_calibrate_ticks();
1086 for(i = 0;i < 3; i++) {
1087 s = &pit_channels[i];
1090 pit_load_count(s, 0);
1093 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1094 register_ioport_read(0x40, 3, pit_ioport_read, 1);
1096 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1097 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1100 /***********************************************************/
1101 /* serial port emulation */
1105 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1107 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1108 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1109 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1110 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1112 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1113 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1115 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
1116 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1117 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1118 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1120 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
1121 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1122 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
1123 #define UART_LSR_FE 0x08 /* Frame error indicator */
1124 #define UART_LSR_PE 0x04 /* Parity error indicator */
1125 #define UART_LSR_OE 0x02 /* Overrun error indicator */
1126 #define UART_LSR_DR 0x01 /* Receiver data ready */
1128 typedef struct SerialState {
1130 uint8_t rbr; /* receive register */
1132 uint8_t iir; /* read only */
1135 uint8_t lsr; /* read only */
1140 SerialState serial_ports[1];
1142 void serial_update_irq(void)
1144 SerialState *s = &serial_ports[0];
1146 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1147 s->iir = UART_IIR_RDI;
1148 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1149 s->iir = UART_IIR_THRI;
1151 s->iir = UART_IIR_NO_INT;
1153 if (s->iir != UART_IIR_NO_INT) {
1154 pic_set_irq(UART_IRQ, 1);
1156 pic_set_irq(UART_IRQ, 0);
1160 void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1162 SerialState *s = &serial_ports[0];
1170 if (s->lcr & UART_LCR_DLAB) {
1171 s->divider = (s->divider & 0xff00) | val;
1173 s->lsr &= ~UART_LSR_THRE;
1174 serial_update_irq();
1178 ret = write(1, &ch, 1);
1180 s->lsr |= UART_LSR_THRE;
1181 s->lsr |= UART_LSR_TEMT;
1182 serial_update_irq();
1186 if (s->lcr & UART_LCR_DLAB) {
1187 s->divider = (s->divider & 0x00ff) | (val << 8);
1190 serial_update_irq();
1212 uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1214 SerialState *s = &serial_ports[0];
1221 if (s->lcr & UART_LCR_DLAB) {
1222 ret = s->divider & 0xff;
1225 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1226 serial_update_irq();
1230 if (s->lcr & UART_LCR_DLAB) {
1231 ret = (s->divider >> 8) & 0xff;
1258 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1259 static int term_got_escape;
1261 void term_print_help(void)
1264 "C-a h print this help\n"
1265 "C-a x exit emulatior\n"
1266 "C-a b send break (magic sysrq)\n"
1267 "C-a C-a send C-a\n"
1271 /* called when a char is received */
1272 void serial_received_byte(SerialState *s, int ch)
1274 if (term_got_escape) {
1275 term_got_escape = 0;
1286 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1287 serial_update_irq();
1292 } else if (ch == TERM_ESCAPE) {
1293 term_got_escape = 1;
1297 s->lsr |= UART_LSR_DR;
1298 serial_update_irq();
1302 /* init terminal so that we can grab keys */
1303 static struct termios oldtty;
1305 static void term_exit(void)
1307 tcsetattr (0, TCSANOW, &oldtty);
1310 static void term_init(void)
1314 tcgetattr (0, &tty);
1317 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1318 |INLCR|IGNCR|ICRNL|IXON);
1319 tty.c_oflag |= OPOST;
1320 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1321 tty.c_cflag &= ~(CSIZE|PARENB);
1324 tty.c_cc[VTIME] = 0;
1326 tcsetattr (0, TCSANOW, &tty);
1330 fcntl(0, F_SETFL, O_NONBLOCK);
1333 void serial_init(void)
1335 SerialState *s = &serial_ports[0];
1337 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1339 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1340 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1345 /***********************************************************/
1346 /* ne2000 emulation */
1348 //#define DEBUG_NE2000
1350 #define NE2000_IOPORT 0x300
1351 #define NE2000_IRQ 9
1353 #define MAX_ETH_FRAME_SIZE 1514
1355 #define E8390_CMD 0x00 /* The command register (for all pages) */
1356 /* Page 0 register offsets. */
1357 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1358 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1359 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1360 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1361 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1362 #define EN0_TSR 0x04 /* Transmit status reg RD */
1363 #define EN0_TPSR 0x04 /* Transmit starting page WR */
1364 #define EN0_NCR 0x05 /* Number of collision reg RD */
1365 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1366 #define EN0_FIFO 0x06 /* FIFO RD */
1367 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1368 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1369 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1370 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1371 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1372 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1373 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1374 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1375 #define EN0_RSR 0x0c /* rx status reg RD */
1376 #define EN0_RXCR 0x0c /* RX configuration reg WR */
1377 #define EN0_TXCR 0x0d /* TX configuration reg WR */
1378 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1379 #define EN0_DCFG 0x0e /* Data configuration reg WR */
1380 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1381 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
1382 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1384 #define EN1_PHYS 0x11
1385 #define EN1_CURPAG 0x17
1386 #define EN1_MULT 0x18
1388 /* Register accessed at EN_CMD, the 8390 base addr. */
1389 #define E8390_STOP 0x01 /* Stop and reset the chip */
1390 #define E8390_START 0x02 /* Start the chip, clear reset */
1391 #define E8390_TRANS 0x04 /* Transmit a frame */
1392 #define E8390_RREAD 0x08 /* Remote read */
1393 #define E8390_RWRITE 0x10 /* Remote write */
1394 #define E8390_NODMA 0x20 /* Remote DMA */
1395 #define E8390_PAGE0 0x00 /* Select page chip registers */
1396 #define E8390_PAGE1 0x40 /* using the two high-order bits */
1397 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1399 /* Bits in EN0_ISR - Interrupt status register */
1400 #define ENISR_RX 0x01 /* Receiver, no error */
1401 #define ENISR_TX 0x02 /* Transmitter, no error */
1402 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
1403 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1404 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1405 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
1406 #define ENISR_RDC 0x40 /* remote dma complete */
1407 #define ENISR_RESET 0x80 /* Reset completed */
1408 #define ENISR_ALL 0x3f /* Interrupts we will enable */
1410 /* Bits in received packet status byte and EN0_RSR*/
1411 #define ENRSR_RXOK 0x01 /* Received a good packet */
1412 #define ENRSR_CRC 0x02 /* CRC error */
1413 #define ENRSR_FAE 0x04 /* frame alignment error */
1414 #define ENRSR_FO 0x08 /* FIFO overrun */
1415 #define ENRSR_MPA 0x10 /* missed pkt */
1416 #define ENRSR_PHY 0x20 /* physical/multicast address */
1417 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1418 #define ENRSR_DEF 0x80 /* deferring */
1420 /* Transmitted packet status, EN0_TSR. */
1421 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
1422 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1423 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
1424 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1425 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1426 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1427 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1428 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1430 #define NE2000_MEM_SIZE 32768
1432 typedef struct NE2000State {
1445 uint8_t phys[6]; /* mac address */
1447 uint8_t mult[8]; /* multicast mask array */
1448 uint8_t mem[NE2000_MEM_SIZE];
1451 NE2000State ne2000_state;
1453 char network_script[1024];
1455 void ne2000_reset(void)
1457 NE2000State *s = &ne2000_state;
1460 s->isr = ENISR_RESET;
1470 /* duplicate prom data */
1471 for(i = 15;i >= 0; i--) {
1472 s->mem[2 * i] = s->mem[i];
1473 s->mem[2 * i + 1] = s->mem[i];
1477 void ne2000_update_irq(NE2000State *s)
1480 isr = s->isr & s->imr;
1482 pic_set_irq(NE2000_IRQ, 1);
1484 pic_set_irq(NE2000_IRQ, 0);
1490 int fd, ret, pid, status;
1492 fd = open("/dev/net/tun", O_RDWR);
1494 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1497 memset(&ifr, 0, sizeof(ifr));
1498 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1499 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1500 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1502 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1506 printf("Connected to host network interface: %s\n", ifr.ifr_name);
1507 fcntl(fd, F_SETFL, O_NONBLOCK);
1510 /* try to launch network init script */
1514 execl(network_script, network_script, ifr.ifr_name, NULL);
1517 while (waitpid(pid, &status, 0) != pid);
1518 if (!WIFEXITED(status) ||
1519 WEXITSTATUS(status) != 0) {
1520 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1521 network_script, ifr.ifr_name);
1527 void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1530 printf("NE2000: sending packet size=%d\n", size);
1532 write(net_fd, buf, size);
1535 /* return true if the NE2000 can receive more data */
1536 int ne2000_can_receive(NE2000State *s)
1538 int avail, index, boundary;
1540 if (s->cmd & E8390_STOP)
1542 index = s->curpag << 8;
1543 boundary = s->boundary << 8;
1544 if (index < boundary)
1545 avail = boundary - index;
1547 avail = (s->stop - s->start) - (index - boundary);
1548 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1553 void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1556 int total_len, next, avail, len, index;
1558 #if defined(DEBUG_NE2000)
1559 printf("NE2000: received len=%d\n", size);
1562 index = s->curpag << 8;
1563 /* 4 bytes for header */
1564 total_len = size + 4;
1565 /* address for next packet (4 bytes for CRC) */
1566 next = index + ((total_len + 4 + 255) & ~0xff);
1567 if (next >= s->stop)
1568 next -= (s->stop - s->start);
1569 /* prepare packet header */
1571 p[0] = ENRSR_RXOK; /* receive status */
1574 p[3] = total_len >> 8;
1577 /* write packet data */
1579 avail = s->stop - index;
1583 memcpy(s->mem + index, buf, len);
1586 if (index == s->stop)
1590 s->curpag = next >> 8;
1592 /* now we can signal we have receive something */
1594 ne2000_update_irq(s);
1597 void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1599 NE2000State *s = &ne2000_state;
1604 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1606 if (addr == E8390_CMD) {
1607 /* control register */
1609 if (val & E8390_START) {
1610 /* test specific case: zero length transfert */
1611 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1613 s->isr |= ENISR_RDC;
1614 ne2000_update_irq(s);
1616 if (val & E8390_TRANS) {
1617 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1618 /* signal end of transfert */
1621 ne2000_update_irq(s);
1626 offset = addr | (page << 4);
1629 s->start = val << 8;
1639 ne2000_update_irq(s);
1645 s->tcnt = (s->tcnt & 0xff00) | val;
1648 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1651 s->rsar = (s->rsar & 0xff00) | val;
1654 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1657 s->rcnt = (s->rcnt & 0xff00) | val;
1660 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1667 ne2000_update_irq(s);
1669 case EN1_PHYS ... EN1_PHYS + 5:
1670 s->phys[offset - EN1_PHYS] = val;
1675 case EN1_MULT ... EN1_MULT + 7:
1676 s->mult[offset - EN1_MULT] = val;
1682 uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1684 NE2000State *s = &ne2000_state;
1685 int offset, page, ret;
1688 if (addr == E8390_CMD) {
1692 offset = addr | (page << 4);
1703 case EN1_PHYS ... EN1_PHYS + 5:
1704 ret = s->phys[offset - EN1_PHYS];
1709 case EN1_MULT ... EN1_MULT + 7:
1710 ret = s->mult[offset - EN1_MULT];
1718 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1723 void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1725 NE2000State *s = &ne2000_state;
1729 printf("NE2000: asic write val=0x%04x\n", val);
1731 p = s->mem + s->rsar;
1732 if (s->dcfg & 0x01) {
1745 if (s->rsar == s->stop)
1748 /* signal end of transfert */
1749 s->isr |= ENISR_RDC;
1750 ne2000_update_irq(s);
1754 uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1756 NE2000State *s = &ne2000_state;
1760 p = s->mem + s->rsar;
1761 if (s->dcfg & 0x01) {
1763 ret = p[0] | (p[1] << 8);
1773 if (s->rsar == s->stop)
1776 /* signal end of transfert */
1777 s->isr |= ENISR_RDC;
1778 ne2000_update_irq(s);
1781 printf("NE2000: asic read val=0x%04x\n", ret);
1786 void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1788 /* nothing to do (end of reset pulse) */
1791 uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1797 void ne2000_init(void)
1799 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1800 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1802 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1803 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1804 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1805 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1807 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1808 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1812 /***********************************************************/
1817 /* Bits of HD_STATUS */
1818 #define ERR_STAT 0x01
1819 #define INDEX_STAT 0x02
1820 #define ECC_STAT 0x04 /* Corrected error */
1821 #define DRQ_STAT 0x08
1822 #define SEEK_STAT 0x10
1823 #define SRV_STAT 0x10
1824 #define WRERR_STAT 0x20
1825 #define READY_STAT 0x40
1826 #define BUSY_STAT 0x80
1828 /* Bits for HD_ERROR */
1829 #define MARK_ERR 0x01 /* Bad address mark */
1830 #define TRK0_ERR 0x02 /* couldn't find track 0 */
1831 #define ABRT_ERR 0x04 /* Command aborted */
1832 #define MCR_ERR 0x08 /* media change request */
1833 #define ID_ERR 0x10 /* ID field not found */
1834 #define MC_ERR 0x20 /* media changed */
1835 #define ECC_ERR 0x40 /* Uncorrectable ECC error */
1836 #define BBD_ERR 0x80 /* pre-EIDE meaning: block marked bad */
1837 #define ICRC_ERR 0x80 /* new meaning: CRC error during transfer */
1839 /* Bits of HD_NSECTOR */
1843 #define TAG_MASK 0xf8
1845 #define IDE_CMD_RESET 0x04
1846 #define IDE_CMD_DISABLE_IRQ 0x02
1848 /* ATA/ATAPI Commands pre T13 Spec */
1849 #define WIN_NOP 0x00
1851 * 0x01->0x02 Reserved
1853 #define CFA_REQ_EXT_ERROR_CODE 0x03 /* CFA Request Extended Error Code */
1855 * 0x04->0x07 Reserved
1857 #define WIN_SRST 0x08 /* ATAPI soft reset command */
1858 #define WIN_DEVICE_RESET 0x08
1860 * 0x09->0x0F Reserved
1862 #define WIN_RECAL 0x10
1863 #define WIN_RESTORE WIN_RECAL
1865 * 0x10->0x1F Reserved
1867 #define WIN_READ 0x20 /* 28-Bit */
1868 #define WIN_READ_ONCE 0x21 /* 28-Bit without retries */
1869 #define WIN_READ_LONG 0x22 /* 28-Bit */
1870 #define WIN_READ_LONG_ONCE 0x23 /* 28-Bit without retries */
1871 #define WIN_READ_EXT 0x24 /* 48-Bit */
1872 #define WIN_READDMA_EXT 0x25 /* 48-Bit */
1873 #define WIN_READDMA_QUEUED_EXT 0x26 /* 48-Bit */
1874 #define WIN_READ_NATIVE_MAX_EXT 0x27 /* 48-Bit */
1878 #define WIN_MULTREAD_EXT 0x29 /* 48-Bit */
1880 * 0x2A->0x2F Reserved
1882 #define WIN_WRITE 0x30 /* 28-Bit */
1883 #define WIN_WRITE_ONCE 0x31 /* 28-Bit without retries */
1884 #define WIN_WRITE_LONG 0x32 /* 28-Bit */
1885 #define WIN_WRITE_LONG_ONCE 0x33 /* 28-Bit without retries */
1886 #define WIN_WRITE_EXT 0x34 /* 48-Bit */
1887 #define WIN_WRITEDMA_EXT 0x35 /* 48-Bit */
1888 #define WIN_WRITEDMA_QUEUED_EXT 0x36 /* 48-Bit */
1889 #define WIN_SET_MAX_EXT 0x37 /* 48-Bit */
1890 #define CFA_WRITE_SECT_WO_ERASE 0x38 /* CFA Write Sectors without erase */
1891 #define WIN_MULTWRITE_EXT 0x39 /* 48-Bit */
1893 * 0x3A->0x3B Reserved
1895 #define WIN_WRITE_VERIFY 0x3C /* 28-Bit */
1897 * 0x3D->0x3F Reserved
1899 #define WIN_VERIFY 0x40 /* 28-Bit - Read Verify Sectors */
1900 #define WIN_VERIFY_ONCE 0x41 /* 28-Bit - without retries */
1901 #define WIN_VERIFY_EXT 0x42 /* 48-Bit */
1903 * 0x43->0x4F Reserved
1905 #define WIN_FORMAT 0x50
1907 * 0x51->0x5F Reserved
1909 #define WIN_INIT 0x60
1911 * 0x61->0x5F Reserved
1913 #define WIN_SEEK 0x70 /* 0x70-0x7F Reserved */
1914 #define CFA_TRANSLATE_SECTOR 0x87 /* CFA Translate Sector */
1915 #define WIN_DIAGNOSE 0x90
1916 #define WIN_SPECIFY 0x91 /* set drive geometry translation */
1917 #define WIN_DOWNLOAD_MICROCODE 0x92
1918 #define WIN_STANDBYNOW2 0x94
1919 #define WIN_STANDBY2 0x96
1920 #define WIN_SETIDLE2 0x97
1921 #define WIN_CHECKPOWERMODE2 0x98
1922 #define WIN_SLEEPNOW2 0x99
1926 #define WIN_PACKETCMD 0xA0 /* Send a packet command. */
1927 #define WIN_PIDENTIFY 0xA1 /* identify ATAPI device */
1928 #define WIN_QUEUED_SERVICE 0xA2
1929 #define WIN_SMART 0xB0 /* self-monitoring and reporting */
1930 #define CFA_ERASE_SECTORS 0xC0
1931 #define WIN_MULTREAD 0xC4 /* read sectors using multiple mode*/
1932 #define WIN_MULTWRITE 0xC5 /* write sectors using multiple mode */
1933 #define WIN_SETMULT 0xC6 /* enable/disable multiple mode */
1934 #define WIN_READDMA_QUEUED 0xC7 /* read sectors using Queued DMA transfers */
1935 #define WIN_READDMA 0xC8 /* read sectors using DMA transfers */
1936 #define WIN_READDMA_ONCE 0xC9 /* 28-Bit - without retries */
1937 #define WIN_WRITEDMA 0xCA /* write sectors using DMA transfers */
1938 #define WIN_WRITEDMA_ONCE 0xCB /* 28-Bit - without retries */
1939 #define WIN_WRITEDMA_QUEUED 0xCC /* write sectors using Queued DMA transfers */
1940 #define CFA_WRITE_MULTI_WO_ERASE 0xCD /* CFA Write multiple without erase */
1941 #define WIN_GETMEDIASTATUS 0xDA
1942 #define WIN_ACKMEDIACHANGE 0xDB /* ATA-1, ATA-2 vendor */
1943 #define WIN_POSTBOOT 0xDC
1944 #define WIN_PREBOOT 0xDD
1945 #define WIN_DOORLOCK 0xDE /* lock door on removable drives */
1946 #define WIN_DOORUNLOCK 0xDF /* unlock door on removable drives */
1947 #define WIN_STANDBYNOW1 0xE0
1948 #define WIN_IDLEIMMEDIATE 0xE1 /* force drive to become "ready" */
1949 #define WIN_STANDBY 0xE2 /* Set device in Standby Mode */
1950 #define WIN_SETIDLE1 0xE3
1951 #define WIN_READ_BUFFER 0xE4 /* force read only 1 sector */
1952 #define WIN_CHECKPOWERMODE1 0xE5
1953 #define WIN_SLEEPNOW1 0xE6
1954 #define WIN_FLUSH_CACHE 0xE7
1955 #define WIN_WRITE_BUFFER 0xE8 /* force write only 1 sector */
1956 #define WIN_WRITE_SAME 0xE9 /* read ata-2 to use */
1957 /* SET_FEATURES 0x22 or 0xDD */
1958 #define WIN_FLUSH_CACHE_EXT 0xEA /* 48-Bit */
1959 #define WIN_IDENTIFY 0xEC /* ask drive to identify itself */
1960 #define WIN_MEDIAEJECT 0xED
1961 #define WIN_IDENTIFY_DMA 0xEE /* same as WIN_IDENTIFY, but DMA */
1962 #define WIN_SETFEATURES 0xEF /* set special drive features */
1963 #define EXABYTE_ENABLE_NEST 0xF0
1964 #define WIN_SECURITY_SET_PASS 0xF1
1965 #define WIN_SECURITY_UNLOCK 0xF2
1966 #define WIN_SECURITY_ERASE_PREPARE 0xF3
1967 #define WIN_SECURITY_ERASE_UNIT 0xF4
1968 #define WIN_SECURITY_FREEZE_LOCK 0xF5
1969 #define WIN_SECURITY_DISABLE 0xF6
1970 #define WIN_READ_NATIVE_MAX 0xF8 /* return the native maximum address */
1971 #define WIN_SET_MAX 0xF9
1972 #define DISABLE_SEAGATE 0xFB
1974 /* set to 1 set disable mult support */
1975 #define MAX_MULT_SECTORS 8
1981 typedef void EndTransferFunc(struct IDEState *);
1983 typedef struct IDEState {
1985 int cylinders, heads, sectors;
1992 uint16_t nsector; /* 0 is 256 to ease computations */
1998 /* 0x3f6 command, only meaningful for drive 0 */
2000 /* depends on bit 4 in select, only meaningful for drive 0 */
2001 struct IDEState *cur_drive;
2002 BlockDriverState *bs;
2003 int req_nb_sectors; /* number of sectors per interrupt */
2004 EndTransferFunc *end_transfer_func;
2007 uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2010 BlockDriverState *bs_table[MAX_DISKS];
2011 IDEState ide_state[MAX_DISKS];
2013 static void padstr(char *str, const char *src, int len)
2016 for(i = 0; i < len; i++) {
2021 *(char *)((long)str ^ 1) = v;
2026 static void ide_identify(IDEState *s)
2029 unsigned int oldsize;
2031 memset(s->io_buffer, 0, 512);
2032 p = (uint16_t *)s->io_buffer;
2034 stw(p + 1, s->cylinders);
2035 stw(p + 3, s->heads);
2036 stw(p + 4, 512 * s->sectors); /* sectors */
2037 stw(p + 5, 512); /* sector size */
2038 stw(p + 6, s->sectors);
2039 stw(p + 20, 3); /* buffer type */
2040 stw(p + 21, 512); /* cache size in sectors */
2041 stw(p + 22, 4); /* ecc bytes */
2042 padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2043 #if MAX_MULT_SECTORS > 1
2044 stw(p + 47, MAX_MULT_SECTORS);
2046 stw(p + 48, 1); /* dword I/O */
2047 stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2048 stw(p + 51, 0x200); /* PIO transfer cycle */
2049 stw(p + 52, 0x200); /* DMA transfer cycle */
2050 stw(p + 54, s->cylinders);
2051 stw(p + 55, s->heads);
2052 stw(p + 56, s->sectors);
2053 oldsize = s->cylinders * s->heads * s->sectors;
2054 stw(p + 57, oldsize);
2055 stw(p + 58, oldsize >> 16);
2056 if (s->mult_sectors)
2057 stw(p + 59, 0x100 | s->mult_sectors);
2058 stw(p + 60, s->nb_sectors);
2059 stw(p + 61, s->nb_sectors >> 16);
2060 stw(p + 80, (1 << 1) | (1 << 2));
2061 stw(p + 82, (1 << 14));
2062 stw(p + 83, (1 << 14));
2063 stw(p + 84, (1 << 14));
2064 stw(p + 85, (1 << 14));
2066 stw(p + 87, (1 << 14));
2069 static inline void ide_abort_command(IDEState *s)
2071 s->status = READY_STAT | ERR_STAT;
2072 s->error = ABRT_ERR;
2075 static inline void ide_set_irq(IDEState *s)
2077 if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2078 pic_set_irq(s->irq, 1);
2082 /* prepare data transfer and tell what to do after */
2083 static void ide_transfer_start(IDEState *s, int size,
2084 EndTransferFunc *end_transfer_func)
2086 s->end_transfer_func = end_transfer_func;
2087 s->data_ptr = s->io_buffer;
2088 s->data_end = s->io_buffer + size;
2089 s->status |= DRQ_STAT;
2092 static void ide_transfer_stop(IDEState *s)
2094 s->end_transfer_func = ide_transfer_stop;
2095 s->data_ptr = s->io_buffer;
2096 s->data_end = s->io_buffer;
2097 s->status &= ~DRQ_STAT;
2100 static int64_t ide_get_sector(IDEState *s)
2103 if (s->select & 0x40) {
2105 sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) |
2106 (s->lcyl << 8) | s->sector;
2108 sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2109 (s->select & 0x0f) * s->sectors +
2115 static void ide_set_sector(IDEState *s, int64_t sector_num)
2117 unsigned int cyl, r;
2118 if (s->select & 0x40) {
2119 s->select = (s->select & 0xf0) | (sector_num >> 24);
2120 s->hcyl = (sector_num >> 16);
2121 s->lcyl = (sector_num >> 8);
2122 s->sector = (sector_num);
2124 cyl = sector_num / (s->heads * s->sectors);
2125 r = sector_num % (s->heads * s->sectors);
2128 s->select = (s->select & 0xf0) | (r / s->sectors);
2129 s->sector = (r % s->sectors) + 1;
2133 static void ide_sector_read(IDEState *s)
2138 s->status = READY_STAT | SEEK_STAT;
2139 sector_num = ide_get_sector(s);
2142 /* no more sector to read from disk */
2143 ide_transfer_stop(s);
2145 #if defined(DEBUG_IDE)
2146 printf("read sector=%Ld\n", sector_num);
2148 if (n > s->req_nb_sectors)
2149 n = s->req_nb_sectors;
2150 ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2151 ide_transfer_start(s, 512 * n, ide_sector_read);
2153 ide_set_sector(s, sector_num + n);
2158 static void ide_sector_write(IDEState *s)
2163 s->status = READY_STAT | SEEK_STAT;
2164 sector_num = ide_get_sector(s);
2165 #if defined(DEBUG_IDE)
2166 printf("write sector=%Ld\n", sector_num);
2169 if (n > s->req_nb_sectors)
2170 n = s->req_nb_sectors;
2171 ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2173 if (s->nsector == 0) {
2174 /* no more sector to write */
2175 ide_transfer_stop(s);
2178 if (n1 > s->req_nb_sectors)
2179 n1 = s->req_nb_sectors;
2180 ide_transfer_start(s, 512 * n1, ide_sector_write);
2182 ide_set_sector(s, sector_num + n);
2186 void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2188 IDEState *s = ide_state[0].cur_drive;
2193 printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2217 unit = (val >> 4) & 1;
2218 s = &ide_state[unit];
2219 ide_state[0].cur_drive = s;
2225 #if defined(DEBUG_IDE)
2226 printf("ide: CMD=%02x\n", val);
2233 s->status = READY_STAT;
2234 ide_transfer_start(s, 512, ide_transfer_stop);
2236 ide_abort_command(s);
2242 s->status = READY_STAT;
2246 if (s->nsector > MAX_MULT_SECTORS ||
2248 (s->nsector & (s->nsector - 1)) != 0) {
2249 ide_abort_command(s);
2251 s->mult_sectors = s->nsector;
2252 s->status = READY_STAT;
2258 s->req_nb_sectors = 1;
2262 case WIN_WRITE_ONCE:
2263 s->status = SEEK_STAT;
2264 s->req_nb_sectors = 1;
2265 ide_transfer_start(s, 512, ide_sector_write);
2268 if (!s->mult_sectors)
2270 s->req_nb_sectors = s->mult_sectors;
2274 if (!s->mult_sectors)
2276 s->status = SEEK_STAT;
2277 s->req_nb_sectors = s->mult_sectors;
2279 if (n > s->req_nb_sectors)
2280 n = s->req_nb_sectors;
2281 ide_transfer_start(s, 512 * n, ide_sector_write);
2285 ide_abort_command(s);
2292 uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2294 IDEState *s = ide_state[0].cur_drive;
2306 ret = s->nsector & 0xff;
2323 pic_set_irq(s->irq, 0);
2327 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2332 uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2334 IDEState *s = ide_state[0].cur_drive;
2338 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2343 void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2345 IDEState *s = &ide_state[0];
2346 /* common for both drives */
2350 void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2352 IDEState *s = ide_state[0].cur_drive;
2356 *(uint16_t *)p = tswap16(val);
2359 if (p >= s->data_end)
2360 s->end_transfer_func(s);
2363 uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2365 IDEState *s = ide_state[0].cur_drive;
2370 ret = tswap16(*(uint16_t *)p);
2373 if (p >= s->data_end)
2374 s->end_transfer_func(s);
2378 void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2380 IDEState *s = ide_state[0].cur_drive;
2384 *(uint32_t *)p = tswap32(val);
2387 if (p >= s->data_end)
2388 s->end_transfer_func(s);
2391 uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2393 IDEState *s = ide_state[0].cur_drive;
2398 ret = tswap32(*(uint32_t *)p);
2401 if (p >= s->data_end)
2402 s->end_transfer_func(s);
2406 void ide_reset(IDEState *s)
2408 s->mult_sectors = MAX_MULT_SECTORS;
2409 s->status = READY_STAT;
2420 for(i = 0; i < MAX_DISKS; i++) {
2422 s->bs = bs_table[i];
2424 bdrv_get_geometry(s->bs, &nb_sectors);
2425 cylinders = nb_sectors / (16 * 63);
2426 if (cylinders > 16383)
2428 else if (cylinders < 2)
2430 s->cylinders = cylinders;
2433 s->nb_sectors = nb_sectors;
2438 register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2439 register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2440 register_ioport_read(0x3f6, 1, ide_status_read, 1);
2441 register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2444 register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2445 register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2446 register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2447 register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2450 /***********************************************************/
2451 /* cpu signal handler */
2452 static void host_segv_handler(int host_signum, siginfo_t *info,
2455 if (cpu_signal_handler(host_signum, info, puc))
2461 static int timer_irq_pending;
2462 static int timer_irq_count;
2464 static void host_alarm_handler(int host_signum, siginfo_t *info,
2467 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2468 some drift between cpu_get_ticks() and the interrupt time. So
2469 we queue some interrupts to avoid missing some */
2470 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2471 if (timer_irq_count) {
2472 if (timer_irq_count > 2)
2473 timer_irq_count = 2;
2475 /* just exit from the cpu to have a chance to handle timers */
2476 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2477 timer_irq_pending = 1;
2481 /* main execution loop */
2483 CPUState *cpu_gdbstub_get_env(void *opaque)
2488 void main_loop(void *opaque)
2490 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2491 int ret, n, timeout;
2493 CPUState *env = global_env;
2497 ret = cpu_x86_exec(env);
2499 /* if hlt instruction, we wait until the next IRQ */
2500 if (ret == EXCP_HLT)
2504 /* poll any events */
2507 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
2510 pf->events = POLLIN;
2514 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2517 pf->events = POLLIN;
2521 if (gdbstub_fd > 0) {
2523 pf->fd = gdbstub_fd;
2524 pf->events = POLLIN;
2528 ret = poll(ufds, pf - ufds, timeout);
2530 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2531 n = read(0, &ch, 1);
2533 serial_received_byte(&serial_ports[0], ch);
2536 if (net_ufd && (net_ufd->revents & POLLIN)) {
2537 uint8_t buf[MAX_ETH_FRAME_SIZE];
2539 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2542 memset(buf + n, 0, 60 - n);
2545 ne2000_receive(&ne2000_state, buf, n);
2548 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2550 /* stop emulation if requested by gdb */
2551 n = read(gdbstub_fd, buf, 1);
2558 if (timer_irq_pending) {
2561 timer_irq_pending = 0;
2568 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2569 "usage: vl [options] bzImage [kernel parameters...]\n"
2571 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
2572 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
2574 "General options:\n"
2575 "-initrd file use 'file' as initial ram disk\n"
2576 "-hda file use 'file' as hard disk 0 image\n"
2577 "-hdb file use 'file' as hard disk 1 image\n"
2578 "-m megs set virtual RAM size to megs MB\n"
2579 "-n script set network init script [default=%s]\n"
2582 "-s wait gdb connection to port %d\n"
2583 "-p port change gdb connection port\n"
2584 "-d output log in /tmp/vl.log\n"
2586 "During emulation, use C-a h to get terminal commands:\n",
2587 DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
2592 struct option long_options[] = {
2593 { "initrd", 1, NULL, 0, },
2594 { "hda", 1, NULL, 0, },
2595 { "hdb", 1, NULL, 0, },
2596 { NULL, 0, NULL, 0 },
2599 int main(int argc, char **argv)
2601 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2602 struct linux_params *params;
2603 struct sigaction act;
2604 struct itimerval itv;
2606 const char *tmpdir, *initrd_filename;
2607 const char *hd_filename[MAX_DISKS];
2609 /* we never want that malloc() uses mmap() */
2610 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2611 initrd_filename = NULL;
2612 for(i = 0; i < MAX_DISKS; i++)
2613 hd_filename[i] = NULL;
2614 phys_ram_size = 32 * 1024 * 1024;
2615 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2617 gdbstub_port = DEFAULT_GDBSTUB_PORT;
2619 c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
2624 switch(long_index) {
2626 initrd_filename = optarg;
2629 hd_filename[0] = optarg;
2632 hd_filename[1] = optarg;
2640 phys_ram_size = atoi(optarg) * 1024 * 1024;
2641 if (phys_ram_size <= 0)
2648 pstrcpy(network_script, sizeof(network_script), optarg);
2654 gdbstub_port = atoi(optarg);
2662 setvbuf(stdout, NULL, _IOLBF, 0);
2664 logfile = fopen(DEBUG_LOGFILE, "w");
2666 perror(DEBUG_LOGFILE);
2669 setvbuf(logfile, NULL, _IOLBF, 0);
2672 /* open the virtual block devices */
2673 for(i = 0; i < MAX_DISKS; i++) {
2674 if (hd_filename[i]) {
2675 bs_table[i] = bdrv_open(hd_filename[i]);
2677 fprintf(stderr, "vl: could not open hard disk image '%s\n",
2684 /* init network tun interface */
2687 /* init the memory */
2688 tmpdir = getenv("VLTMPDIR");
2691 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2692 if (mkstemp(phys_ram_file) < 0) {
2693 fprintf(stderr, "Could not create temporary memory file '%s'\n",
2697 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2698 if (phys_ram_fd < 0) {
2699 fprintf(stderr, "Could not open temporary memory file '%s'\n",
2703 ftruncate(phys_ram_fd, phys_ram_size);
2704 unlink(phys_ram_file);
2705 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
2706 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
2708 if (phys_ram_base == MAP_FAILED) {
2709 fprintf(stderr, "Could not map physical memory\n");
2713 /* now we can load the kernel */
2714 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
2716 fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
2722 if (initrd_filename) {
2723 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
2724 if (initrd_size < 0) {
2725 fprintf(stderr, "vl: could not load initial ram disk '%s'\n",
2731 /* init kernel params */
2732 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
2733 memset(params, 0, sizeof(struct linux_params));
2734 params->mount_root_rdonly = 0;
2735 params->cl_magic = 0xA33F;
2736 params->cl_offset = params->commandline - (uint8_t *)params;
2737 params->ext_mem_k = (phys_ram_size / 1024) - 1024;
2738 for(i = optind + 1; i < argc; i++) {
2739 if (i != optind + 1)
2740 pstrcat(params->commandline, sizeof(params->commandline), " ");
2741 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
2743 params->loader_type = 0x01;
2744 if (initrd_size > 0) {
2745 params->initrd_start = INITRD_LOAD_ADDR;
2746 params->initrd_size = initrd_size;
2748 params->orig_video_lines = 25;
2749 params->orig_video_cols = 80;
2751 /* init basic PC hardware */
2753 register_ioport_write(0x80, 1, ioport80_write, 1);
2755 register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
2764 /* setup cpu signal handlers for MMU / self modifying code handling */
2765 sigfillset(&act.sa_mask);
2766 act.sa_flags = SA_SIGINFO;
2767 act.sa_sigaction = host_segv_handler;
2768 sigaction(SIGSEGV, &act, NULL);
2769 sigaction(SIGBUS, &act, NULL);
2771 act.sa_sigaction = host_alarm_handler;
2772 sigaction(SIGALRM, &act, NULL);
2774 /* init CPU state */
2777 cpu_single_env = env;
2779 /* setup basic memory access */
2780 env->cr[0] = 0x00000033;
2781 cpu_x86_init_mmu(env);
2783 memset(params->idt_table, 0, sizeof(params->idt_table));
2785 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
2786 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
2788 env->idt.base = (void *)params->idt_table;
2789 env->idt.limit = sizeof(params->idt_table) - 1;
2790 env->gdt.base = (void *)params->gdt_table;
2791 env->gdt.limit = sizeof(params->gdt_table) - 1;
2793 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
2794 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
2795 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
2796 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
2797 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
2798 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
2800 env->eip = KERNEL_LOAD_ADDR;
2801 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
2804 itv.it_interval.tv_sec = 0;
2805 itv.it_interval.tv_usec = 1000;
2806 itv.it_value.tv_sec = 0;
2807 itv.it_value.tv_usec = 10 * 1000;
2808 setitimer(ITIMER_REAL, &itv, NULL);
2809 /* we probe the tick duration of the kernel to inform the user if
2810 the emulated kernel requested a too high timer frequency */
2811 getitimer(ITIMER_REAL, &itv);
2812 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
2816 cpu_gdbstub(NULL, main_loop, gdbstub_port);