2 #include "host-utils.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
14 //#define DEBUG_PSTATE
17 #define DPRINTF_MMU(fmt, ...) \
18 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
20 #define DPRINTF_MMU(fmt, ...) do {} while (0)
24 #define DPRINTF_MXCC(fmt, ...) \
25 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
27 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
31 #define DPRINTF_ASI(fmt, ...) \
32 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
36 #define DPRINTF_PSTATE(fmt, ...) \
37 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
39 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
44 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
46 #define AM_CHECK(env1) (1)
50 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
51 // Calculates TSB pointer value for fault page size 8k or 64k
52 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
53 uint64_t tag_access_register,
56 uint64_t tsb_base = tsb_register & ~0x1fffULL;
57 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
58 int tsb_size = tsb_register & 0xf;
60 // discard lower 13 bits which hold tag access context
61 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
64 uint64_t tsb_base_mask = ~0x1fffULL;
65 uint64_t va = tag_access_va;
67 // move va bits to correct position
68 if (page_size == 8*1024) {
70 } else if (page_size == 64*1024) {
75 tsb_base_mask <<= tsb_size;
78 // calculate tsb_base mask and adjust va if split is in use
80 if (page_size == 8*1024) {
81 va &= ~(1ULL << (13 + tsb_size));
82 } else if (page_size == 64*1024) {
83 va |= (1ULL << (13 + tsb_size));
88 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
91 // Calculates tag target register value by reordering bits
92 // in tag access register
93 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
95 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
98 static void replace_tlb_entry(SparcTLBEntry *tlb,
99 uint64_t tlb_tag, uint64_t tlb_tte,
102 target_ulong mask, size, va, offset;
104 // flush page range if translation is valid
105 if (TTE_IS_VALID(tlb->tte)) {
107 mask = 0xffffffffffffe000ULL;
108 mask <<= 3 * ((tlb->tte >> 61) & 3);
111 va = tlb->tag & mask;
113 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
114 tlb_flush_page(env1, va + offset);
122 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
123 const char* strmmu, CPUState *env1)
128 for (i = 0; i < 64; i++) {
129 if (TTE_IS_VALID(tlb[i].tte)) {
131 mask = 0xffffffffffffe000ULL;
132 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
134 if ((demap_addr & mask) == (tlb[i].tag & mask)) {
135 replace_tlb_entry(&tlb[i], 0, 0, env1);
137 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
147 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
148 uint64_t tlb_tag, uint64_t tlb_tte,
149 const char* strmmu, CPUState *env1)
151 unsigned int i, replace_used;
153 // Try replacing invalid entry
154 for (i = 0; i < 64; i++) {
155 if (!TTE_IS_VALID(tlb[i].tte)) {
156 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
158 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
165 // All entries are valid, try replacing unlocked entry
167 for (replace_used = 0; replace_used < 2; ++replace_used) {
169 // Used entries are not replaced on first pass
171 for (i = 0; i < 64; i++) {
172 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
174 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
176 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
177 strmmu, (replace_used?"used":"unused"), i);
184 // Now reset used bit and search for unused entries again
186 for (i = 0; i < 64; i++) {
187 TTE_SET_UNUSED(tlb[i].tte);
192 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
199 static inline void address_mask(CPUState *env1, target_ulong *addr)
201 #ifdef TARGET_SPARC64
203 *addr &= 0xffffffffULL;
207 static void raise_exception(int tt)
209 env->exception_index = tt;
213 void HELPER(raise_exception)(int tt)
218 static inline void set_cwp(int new_cwp)
220 cpu_set_cwp(env, new_cwp);
223 void helper_check_align(target_ulong addr, uint32_t align)
226 #ifdef DEBUG_UNALIGNED
227 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
228 "\n", addr, env->pc);
230 raise_exception(TT_UNALIGNED);
234 #define F_HELPER(name, p) void helper_f##name##p(void)
236 #define F_BINOP(name) \
237 float32 helper_f ## name ## s (float32 src1, float32 src2) \
239 return float32_ ## name (src1, src2, &env->fp_status); \
243 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
247 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
256 void helper_fsmuld(float32 src1, float32 src2)
258 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
259 float32_to_float64(src2, &env->fp_status),
263 void helper_fdmulq(void)
265 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
266 float64_to_float128(DT1, &env->fp_status),
270 float32 helper_fnegs(float32 src)
272 return float32_chs(src);
275 #ifdef TARGET_SPARC64
278 DT0 = float64_chs(DT1);
283 QT0 = float128_chs(QT1);
287 /* Integer to float conversion. */
288 float32 helper_fitos(int32_t src)
290 return int32_to_float32(src, &env->fp_status);
293 void helper_fitod(int32_t src)
295 DT0 = int32_to_float64(src, &env->fp_status);
298 void helper_fitoq(int32_t src)
300 QT0 = int32_to_float128(src, &env->fp_status);
303 #ifdef TARGET_SPARC64
304 float32 helper_fxtos(void)
306 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
311 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
316 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
321 /* floating point conversion */
322 float32 helper_fdtos(void)
324 return float64_to_float32(DT1, &env->fp_status);
327 void helper_fstod(float32 src)
329 DT0 = float32_to_float64(src, &env->fp_status);
332 float32 helper_fqtos(void)
334 return float128_to_float32(QT1, &env->fp_status);
337 void helper_fstoq(float32 src)
339 QT0 = float32_to_float128(src, &env->fp_status);
342 void helper_fqtod(void)
344 DT0 = float128_to_float64(QT1, &env->fp_status);
347 void helper_fdtoq(void)
349 QT0 = float64_to_float128(DT1, &env->fp_status);
352 /* Float to integer conversion. */
353 int32_t helper_fstoi(float32 src)
355 return float32_to_int32_round_to_zero(src, &env->fp_status);
358 int32_t helper_fdtoi(void)
360 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
363 int32_t helper_fqtoi(void)
365 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
368 #ifdef TARGET_SPARC64
369 void helper_fstox(float32 src)
371 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
374 void helper_fdtox(void)
376 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
379 void helper_fqtox(void)
381 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
384 void helper_faligndata(void)
388 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
389 /* on many architectures a shift of 64 does nothing */
390 if ((env->gsr & 7) != 0) {
391 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
393 *((uint64_t *)&DT0) = tmp;
396 #ifdef HOST_WORDS_BIGENDIAN
397 #define VIS_B64(n) b[7 - (n)]
398 #define VIS_W64(n) w[3 - (n)]
399 #define VIS_SW64(n) sw[3 - (n)]
400 #define VIS_L64(n) l[1 - (n)]
401 #define VIS_B32(n) b[3 - (n)]
402 #define VIS_W32(n) w[1 - (n)]
404 #define VIS_B64(n) b[n]
405 #define VIS_W64(n) w[n]
406 #define VIS_SW64(n) sw[n]
407 #define VIS_L64(n) l[n]
408 #define VIS_B32(n) b[n]
409 #define VIS_W32(n) w[n]
427 void helper_fpmerge(void)
434 // Reverse calculation order to handle overlap
435 d.VIS_B64(7) = s.VIS_B64(3);
436 d.VIS_B64(6) = d.VIS_B64(3);
437 d.VIS_B64(5) = s.VIS_B64(2);
438 d.VIS_B64(4) = d.VIS_B64(2);
439 d.VIS_B64(3) = s.VIS_B64(1);
440 d.VIS_B64(2) = d.VIS_B64(1);
441 d.VIS_B64(1) = s.VIS_B64(0);
442 //d.VIS_B64(0) = d.VIS_B64(0);
447 void helper_fmul8x16(void)
456 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
457 if ((tmp & 0xff) > 0x7f) \
459 d.VIS_W64(r) = tmp >> 8;
470 void helper_fmul8x16al(void)
479 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
480 if ((tmp & 0xff) > 0x7f) \
482 d.VIS_W64(r) = tmp >> 8;
493 void helper_fmul8x16au(void)
502 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
503 if ((tmp & 0xff) > 0x7f) \
505 d.VIS_W64(r) = tmp >> 8;
516 void helper_fmul8sux16(void)
525 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
526 if ((tmp & 0xff) > 0x7f) \
528 d.VIS_W64(r) = tmp >> 8;
539 void helper_fmul8ulx16(void)
548 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
549 if ((tmp & 0xff) > 0x7f) \
551 d.VIS_W64(r) = tmp >> 8;
562 void helper_fmuld8sux16(void)
571 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
572 if ((tmp & 0xff) > 0x7f) \
576 // Reverse calculation order to handle overlap
584 void helper_fmuld8ulx16(void)
593 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
594 if ((tmp & 0xff) > 0x7f) \
598 // Reverse calculation order to handle overlap
606 void helper_fexpand(void)
611 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
613 d.VIS_W64(0) = s.VIS_B32(0) << 4;
614 d.VIS_W64(1) = s.VIS_B32(1) << 4;
615 d.VIS_W64(2) = s.VIS_B32(2) << 4;
616 d.VIS_W64(3) = s.VIS_B32(3) << 4;
621 #define VIS_HELPER(name, F) \
622 void name##16(void) \
629 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
630 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
631 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
632 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
637 uint32_t name##16s(uint32_t src1, uint32_t src2) \
644 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
645 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
650 void name##32(void) \
657 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
658 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
663 uint32_t name##32s(uint32_t src1, uint32_t src2) \
675 #define FADD(a, b) ((a) + (b))
676 #define FSUB(a, b) ((a) - (b))
677 VIS_HELPER(helper_fpadd, FADD)
678 VIS_HELPER(helper_fpsub, FSUB)
680 #define VIS_CMPHELPER(name, F) \
681 void name##16(void) \
688 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
689 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
690 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
691 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
696 void name##32(void) \
703 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
704 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
709 #define FCMPGT(a, b) ((a) > (b))
710 #define FCMPEQ(a, b) ((a) == (b))
711 #define FCMPLE(a, b) ((a) <= (b))
712 #define FCMPNE(a, b) ((a) != (b))
714 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
715 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
716 VIS_CMPHELPER(helper_fcmple, FCMPLE)
717 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
720 void helper_check_ieee_exceptions(void)
724 status = get_float_exception_flags(&env->fp_status);
726 /* Copy IEEE 754 flags into FSR */
727 if (status & float_flag_invalid)
729 if (status & float_flag_overflow)
731 if (status & float_flag_underflow)
733 if (status & float_flag_divbyzero)
735 if (status & float_flag_inexact)
738 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
739 /* Unmasked exception, generate a trap */
740 env->fsr |= FSR_FTT_IEEE_EXCP;
741 raise_exception(TT_FP_EXCP);
743 /* Accumulate exceptions */
744 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
749 void helper_clear_float_exceptions(void)
751 set_float_exception_flags(0, &env->fp_status);
754 float32 helper_fabss(float32 src)
756 return float32_abs(src);
759 #ifdef TARGET_SPARC64
760 void helper_fabsd(void)
762 DT0 = float64_abs(DT1);
765 void helper_fabsq(void)
767 QT0 = float128_abs(QT1);
771 float32 helper_fsqrts(float32 src)
773 return float32_sqrt(src, &env->fp_status);
776 void helper_fsqrtd(void)
778 DT0 = float64_sqrt(DT1, &env->fp_status);
781 void helper_fsqrtq(void)
783 QT0 = float128_sqrt(QT1, &env->fp_status);
786 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
787 void glue(helper_, name) (void) \
789 target_ulong new_fsr; \
791 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
792 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
793 case float_relation_unordered: \
794 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
795 if ((env->fsr & FSR_NVM) || TRAP) { \
796 env->fsr |= new_fsr; \
797 env->fsr |= FSR_NVC; \
798 env->fsr |= FSR_FTT_IEEE_EXCP; \
799 raise_exception(TT_FP_EXCP); \
801 env->fsr |= FSR_NVA; \
804 case float_relation_less: \
805 new_fsr = FSR_FCC0 << FS; \
807 case float_relation_greater: \
808 new_fsr = FSR_FCC1 << FS; \
814 env->fsr |= new_fsr; \
816 #define GEN_FCMPS(name, size, FS, TRAP) \
817 void glue(helper_, name)(float32 src1, float32 src2) \
819 target_ulong new_fsr; \
821 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
822 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
823 case float_relation_unordered: \
824 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
825 if ((env->fsr & FSR_NVM) || TRAP) { \
826 env->fsr |= new_fsr; \
827 env->fsr |= FSR_NVC; \
828 env->fsr |= FSR_FTT_IEEE_EXCP; \
829 raise_exception(TT_FP_EXCP); \
831 env->fsr |= FSR_NVA; \
834 case float_relation_less: \
835 new_fsr = FSR_FCC0 << FS; \
837 case float_relation_greater: \
838 new_fsr = FSR_FCC1 << FS; \
844 env->fsr |= new_fsr; \
847 GEN_FCMPS(fcmps, float32, 0, 0);
848 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
850 GEN_FCMPS(fcmpes, float32, 0, 1);
851 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
853 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
854 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
856 static uint32_t compute_all_flags(void)
858 return env->psr & PSR_ICC;
861 static uint32_t compute_C_flags(void)
863 return env->psr & PSR_CARRY;
866 static inline uint32_t get_NZ_icc(target_ulong dst)
870 if (!(dst & 0xffffffffULL))
872 if ((int32_t) (dst & 0xffffffffULL) < 0)
877 #ifdef TARGET_SPARC64
878 static uint32_t compute_all_flags_xcc(void)
880 return env->xcc & PSR_ICC;
883 static uint32_t compute_C_flags_xcc(void)
885 return env->xcc & PSR_CARRY;
888 static inline uint32_t get_NZ_xcc(target_ulong dst)
894 if ((int64_t)dst < 0)
900 static inline uint32_t get_V_div_icc(target_ulong src2)
909 static uint32_t compute_all_div(void)
913 ret = get_NZ_icc(CC_DST);
914 ret |= get_V_div_icc(CC_SRC2);
918 static uint32_t compute_C_div(void)
923 /* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
924 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
929 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
930 | ((~(dst & (1ULL << 31)))
931 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
936 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
941 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
946 #ifdef TARGET_SPARC64
947 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
956 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
961 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
966 static uint32_t compute_all_add_xcc(void)
970 ret = get_NZ_xcc(CC_DST);
971 ret |= get_C_add_xcc(CC_DST, CC_SRC);
972 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
976 static uint32_t compute_C_add_xcc(void)
978 return get_C_add_xcc(CC_DST, CC_SRC);
982 static uint32_t compute_all_add(void)
986 ret = get_NZ_icc(CC_DST);
987 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
988 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
992 static uint32_t compute_C_add(void)
994 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
997 #ifdef TARGET_SPARC64
998 static uint32_t compute_all_addx_xcc(void)
1002 ret = get_NZ_xcc(CC_DST);
1003 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1004 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1005 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1009 static uint32_t compute_C_addx_xcc(void)
1013 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1014 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1019 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1023 if ((src1 | src2) & 0x3)
1028 static uint32_t compute_all_tadd(void)
1032 ret = get_NZ_icc(CC_DST);
1033 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1034 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1035 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1039 static uint32_t compute_C_tadd(void)
1041 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1044 static uint32_t compute_all_taddtv(void)
1048 ret = get_NZ_icc(CC_DST);
1049 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1053 static uint32_t compute_C_taddtv(void)
1055 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1058 /* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1059 static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1064 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1065 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1066 | (src2 & (1ULL << 31)))))
1071 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1076 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1082 #ifdef TARGET_SPARC64
1083 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1092 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1097 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1102 static uint32_t compute_all_sub_xcc(void)
1106 ret = get_NZ_xcc(CC_DST);
1107 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1108 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1112 static uint32_t compute_C_sub_xcc(void)
1114 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1118 static uint32_t compute_all_sub(void)
1122 ret = get_NZ_icc(CC_DST);
1123 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1124 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1128 static uint32_t compute_C_sub(void)
1130 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1133 #ifdef TARGET_SPARC64
1134 static uint32_t compute_all_subx_xcc(void)
1138 ret = get_NZ_xcc(CC_DST);
1139 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1140 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1141 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1145 static uint32_t compute_C_subx_xcc(void)
1149 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1150 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1155 static uint32_t compute_all_tsub(void)
1159 ret = get_NZ_icc(CC_DST);
1160 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1161 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1162 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1166 static uint32_t compute_C_tsub(void)
1168 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1171 static uint32_t compute_all_tsubtv(void)
1175 ret = get_NZ_icc(CC_DST);
1176 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1180 static uint32_t compute_C_tsubtv(void)
1182 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1185 static uint32_t compute_all_logic(void)
1187 return get_NZ_icc(CC_DST);
1190 static uint32_t compute_C_logic(void)
1195 #ifdef TARGET_SPARC64
1196 static uint32_t compute_all_logic_xcc(void)
1198 return get_NZ_xcc(CC_DST);
1202 typedef struct CCTable {
1203 uint32_t (*compute_all)(void); /* return all the flags */
1204 uint32_t (*compute_c)(void); /* return the C flag */
1207 static const CCTable icc_table[CC_OP_NB] = {
1208 /* CC_OP_DYNAMIC should never happen */
1209 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1210 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1211 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1212 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
1213 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1214 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1215 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1216 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
1217 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1218 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1219 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1222 #ifdef TARGET_SPARC64
1223 static const CCTable xcc_table[CC_OP_NB] = {
1224 /* CC_OP_DYNAMIC should never happen */
1225 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1226 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1227 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1228 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1229 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1230 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1231 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1232 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1233 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1234 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1235 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1239 void helper_compute_psr(void)
1243 new_psr = icc_table[CC_OP].compute_all();
1245 #ifdef TARGET_SPARC64
1246 new_psr = xcc_table[CC_OP].compute_all();
1249 CC_OP = CC_OP_FLAGS;
1252 uint32_t helper_compute_C_icc(void)
1256 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1260 #ifdef TARGET_SPARC64
1261 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1262 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1263 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1265 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1266 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1267 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1269 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1270 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1271 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1273 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1274 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1275 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1277 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1278 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1279 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1281 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1282 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1283 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1287 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1289 static void dump_mxcc(CPUState *env)
1291 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1293 env->mxccdata[0], env->mxccdata[1],
1294 env->mxccdata[2], env->mxccdata[3]);
1295 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1297 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1299 env->mxccregs[0], env->mxccregs[1],
1300 env->mxccregs[2], env->mxccregs[3],
1301 env->mxccregs[4], env->mxccregs[5],
1302 env->mxccregs[6], env->mxccregs[7]);
1306 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1307 && defined(DEBUG_ASI)
1308 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1314 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1315 addr, asi, r1 & 0xff);
1318 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1319 addr, asi, r1 & 0xffff);
1322 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1323 addr, asi, r1 & 0xffffffff);
1326 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1333 #ifndef TARGET_SPARC64
1334 #ifndef CONFIG_USER_ONLY
1335 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1338 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1339 uint32_t last_addr = addr;
1342 helper_check_align(addr, size - 1);
1344 case 2: /* SuperSparc MXCC registers */
1346 case 0x01c00a00: /* MXCC control register */
1348 ret = env->mxccregs[3];
1350 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1353 case 0x01c00a04: /* MXCC control register */
1355 ret = env->mxccregs[3];
1357 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1360 case 0x01c00c00: /* Module reset register */
1362 ret = env->mxccregs[5];
1363 // should we do something here?
1365 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1368 case 0x01c00f00: /* MBus port address register */
1370 ret = env->mxccregs[7];
1372 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1376 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1380 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1381 "addr = %08x -> ret = %" PRIx64 ","
1382 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1387 case 3: /* MMU probe */
1391 mmulev = (addr >> 8) & 15;
1395 ret = mmu_probe(env, addr, mmulev);
1396 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1400 case 4: /* read MMU regs */
1402 int reg = (addr >> 8) & 0x1f;
1404 ret = env->mmuregs[reg];
1405 if (reg == 3) /* Fault status cleared on read */
1406 env->mmuregs[3] = 0;
1407 else if (reg == 0x13) /* Fault status read */
1408 ret = env->mmuregs[3];
1409 else if (reg == 0x14) /* Fault address read */
1410 ret = env->mmuregs[4];
1411 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1414 case 5: // Turbosparc ITLB Diagnostic
1415 case 6: // Turbosparc DTLB Diagnostic
1416 case 7: // Turbosparc IOTLB Diagnostic
1418 case 9: /* Supervisor code access */
1421 ret = ldub_code(addr);
1424 ret = lduw_code(addr);
1428 ret = ldl_code(addr);
1431 ret = ldq_code(addr);
1435 case 0xa: /* User data access */
1438 ret = ldub_user(addr);
1441 ret = lduw_user(addr);
1445 ret = ldl_user(addr);
1448 ret = ldq_user(addr);
1452 case 0xb: /* Supervisor data access */
1455 ret = ldub_kernel(addr);
1458 ret = lduw_kernel(addr);
1462 ret = ldl_kernel(addr);
1465 ret = ldq_kernel(addr);
1469 case 0xc: /* I-cache tag */
1470 case 0xd: /* I-cache data */
1471 case 0xe: /* D-cache tag */
1472 case 0xf: /* D-cache data */
1474 case 0x20: /* MMU passthrough */
1477 ret = ldub_phys(addr);
1480 ret = lduw_phys(addr);
1484 ret = ldl_phys(addr);
1487 ret = ldq_phys(addr);
1491 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1494 ret = ldub_phys((target_phys_addr_t)addr
1495 | ((target_phys_addr_t)(asi & 0xf) << 32));
1498 ret = lduw_phys((target_phys_addr_t)addr
1499 | ((target_phys_addr_t)(asi & 0xf) << 32));
1503 ret = ldl_phys((target_phys_addr_t)addr
1504 | ((target_phys_addr_t)(asi & 0xf) << 32));
1507 ret = ldq_phys((target_phys_addr_t)addr
1508 | ((target_phys_addr_t)(asi & 0xf) << 32));
1512 case 0x30: // Turbosparc secondary cache diagnostic
1513 case 0x31: // Turbosparc RAM snoop
1514 case 0x32: // Turbosparc page table descriptor diagnostic
1515 case 0x39: /* data cache diagnostic register */
1518 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1520 int reg = (addr >> 8) & 3;
1523 case 0: /* Breakpoint Value (Addr) */
1524 ret = env->mmubpregs[reg];
1526 case 1: /* Breakpoint Mask */
1527 ret = env->mmubpregs[reg];
1529 case 2: /* Breakpoint Control */
1530 ret = env->mmubpregs[reg];
1532 case 3: /* Breakpoint Status */
1533 ret = env->mmubpregs[reg];
1534 env->mmubpregs[reg] = 0ULL;
1537 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1541 case 8: /* User code access, XXX */
1543 do_unassigned_access(addr, 0, 0, asi, size);
1553 ret = (int16_t) ret;
1556 ret = (int32_t) ret;
1563 dump_asi("read ", last_addr, asi, size, ret);
1568 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1570 helper_check_align(addr, size - 1);
1572 case 2: /* SuperSparc MXCC registers */
1574 case 0x01c00000: /* MXCC stream data register 0 */
1576 env->mxccdata[0] = val;
1578 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1581 case 0x01c00008: /* MXCC stream data register 1 */
1583 env->mxccdata[1] = val;
1585 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1588 case 0x01c00010: /* MXCC stream data register 2 */
1590 env->mxccdata[2] = val;
1592 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1595 case 0x01c00018: /* MXCC stream data register 3 */
1597 env->mxccdata[3] = val;
1599 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1602 case 0x01c00100: /* MXCC stream source */
1604 env->mxccregs[0] = val;
1606 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1608 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1610 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1612 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1614 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1617 case 0x01c00200: /* MXCC stream destination */
1619 env->mxccregs[1] = val;
1621 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1623 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1625 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1627 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1629 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1632 case 0x01c00a00: /* MXCC control register */
1634 env->mxccregs[3] = val;
1636 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1639 case 0x01c00a04: /* MXCC control register */
1641 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1644 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1647 case 0x01c00e00: /* MXCC error register */
1648 // writing a 1 bit clears the error
1650 env->mxccregs[6] &= ~val;
1652 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1655 case 0x01c00f00: /* MBus port address register */
1657 env->mxccregs[7] = val;
1659 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1663 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1667 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1668 asi, size, addr, val);
1673 case 3: /* MMU flush */
1677 mmulev = (addr >> 8) & 15;
1678 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1680 case 0: // flush page
1681 tlb_flush_page(env, addr & 0xfffff000);
1683 case 1: // flush segment (256k)
1684 case 2: // flush region (16M)
1685 case 3: // flush context (4G)
1686 case 4: // flush entire
1697 case 4: /* write MMU regs */
1699 int reg = (addr >> 8) & 0x1f;
1702 oldreg = env->mmuregs[reg];
1704 case 0: // Control Register
1705 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1707 // Mappings generated during no-fault mode or MMU
1708 // disabled mode are invalid in normal mode
1709 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1710 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1713 case 1: // Context Table Pointer Register
1714 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1716 case 2: // Context Register
1717 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1718 if (oldreg != env->mmuregs[reg]) {
1719 /* we flush when the MMU context changes because
1720 QEMU has no MMU context support */
1724 case 3: // Synchronous Fault Status Register with Clear
1725 case 4: // Synchronous Fault Address Register
1727 case 0x10: // TLB Replacement Control Register
1728 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1730 case 0x13: // Synchronous Fault Status Register with Read and Clear
1731 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1733 case 0x14: // Synchronous Fault Address Register
1734 env->mmuregs[4] = val;
1737 env->mmuregs[reg] = val;
1740 if (oldreg != env->mmuregs[reg]) {
1741 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1742 reg, oldreg, env->mmuregs[reg]);
1749 case 5: // Turbosparc ITLB Diagnostic
1750 case 6: // Turbosparc DTLB Diagnostic
1751 case 7: // Turbosparc IOTLB Diagnostic
1753 case 0xa: /* User data access */
1756 stb_user(addr, val);
1759 stw_user(addr, val);
1763 stl_user(addr, val);
1766 stq_user(addr, val);
1770 case 0xb: /* Supervisor data access */
1773 stb_kernel(addr, val);
1776 stw_kernel(addr, val);
1780 stl_kernel(addr, val);
1783 stq_kernel(addr, val);
1787 case 0xc: /* I-cache tag */
1788 case 0xd: /* I-cache data */
1789 case 0xe: /* D-cache tag */
1790 case 0xf: /* D-cache data */
1791 case 0x10: /* I/D-cache flush page */
1792 case 0x11: /* I/D-cache flush segment */
1793 case 0x12: /* I/D-cache flush region */
1794 case 0x13: /* I/D-cache flush context */
1795 case 0x14: /* I/D-cache flush user */
1797 case 0x17: /* Block copy, sta access */
1803 uint32_t src = val & ~3, dst = addr & ~3, temp;
1805 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1806 temp = ldl_kernel(src);
1807 stl_kernel(dst, temp);
1811 case 0x1f: /* Block fill, stda access */
1814 // fill 32 bytes with val
1816 uint32_t dst = addr & 7;
1818 for (i = 0; i < 32; i += 8, dst += 8)
1819 stq_kernel(dst, val);
1822 case 0x20: /* MMU passthrough */
1826 stb_phys(addr, val);
1829 stw_phys(addr, val);
1833 stl_phys(addr, val);
1836 stq_phys(addr, val);
1841 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1845 stb_phys((target_phys_addr_t)addr
1846 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1849 stw_phys((target_phys_addr_t)addr
1850 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1854 stl_phys((target_phys_addr_t)addr
1855 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1858 stq_phys((target_phys_addr_t)addr
1859 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1864 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1865 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1866 // Turbosparc snoop RAM
1867 case 0x32: // store buffer control or Turbosparc page table
1868 // descriptor diagnostic
1869 case 0x36: /* I-cache flash clear */
1870 case 0x37: /* D-cache flash clear */
1871 case 0x4c: /* breakpoint action */
1873 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1875 int reg = (addr >> 8) & 3;
1878 case 0: /* Breakpoint Value (Addr) */
1879 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1881 case 1: /* Breakpoint Mask */
1882 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1884 case 2: /* Breakpoint Control */
1885 env->mmubpregs[reg] = (val & 0x7fULL);
1887 case 3: /* Breakpoint Status */
1888 env->mmubpregs[reg] = (val & 0xfULL);
1891 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1895 case 8: /* User code access, XXX */
1896 case 9: /* Supervisor code access, XXX */
1898 do_unassigned_access(addr, 1, 0, asi, size);
1902 dump_asi("write", addr, asi, size, val);
1906 #endif /* CONFIG_USER_ONLY */
1907 #else /* TARGET_SPARC64 */
1909 #ifdef CONFIG_USER_ONLY
1910 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1913 #if defined(DEBUG_ASI)
1914 target_ulong last_addr = addr;
1918 raise_exception(TT_PRIV_ACT);
1920 helper_check_align(addr, size - 1);
1921 address_mask(env, &addr);
1924 case 0x82: // Primary no-fault
1925 case 0x8a: // Primary no-fault LE
1926 if (page_check_range(addr, size, PAGE_READ) == -1) {
1928 dump_asi("read ", last_addr, asi, size, ret);
1933 case 0x80: // Primary
1934 case 0x88: // Primary LE
1938 ret = ldub_raw(addr);
1941 ret = lduw_raw(addr);
1944 ret = ldl_raw(addr);
1948 ret = ldq_raw(addr);
1953 case 0x83: // Secondary no-fault
1954 case 0x8b: // Secondary no-fault LE
1955 if (page_check_range(addr, size, PAGE_READ) == -1) {
1957 dump_asi("read ", last_addr, asi, size, ret);
1962 case 0x81: // Secondary
1963 case 0x89: // Secondary LE
1970 /* Convert from little endian */
1972 case 0x88: // Primary LE
1973 case 0x89: // Secondary LE
1974 case 0x8a: // Primary no-fault LE
1975 case 0x8b: // Secondary no-fault LE
1993 /* Convert to signed number */
2000 ret = (int16_t) ret;
2003 ret = (int32_t) ret;
2010 dump_asi("read ", last_addr, asi, size, ret);
2015 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2018 dump_asi("write", addr, asi, size, val);
2021 raise_exception(TT_PRIV_ACT);
2023 helper_check_align(addr, size - 1);
2024 address_mask(env, &addr);
2026 /* Convert to little endian */
2028 case 0x88: // Primary LE
2029 case 0x89: // Secondary LE
2048 case 0x80: // Primary
2049 case 0x88: // Primary LE
2068 case 0x81: // Secondary
2069 case 0x89: // Secondary LE
2073 case 0x82: // Primary no-fault, RO
2074 case 0x83: // Secondary no-fault, RO
2075 case 0x8a: // Primary no-fault LE, RO
2076 case 0x8b: // Secondary no-fault LE, RO
2078 do_unassigned_access(addr, 1, 0, 1, size);
2083 #else /* CONFIG_USER_ONLY */
2085 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2088 #if defined(DEBUG_ASI)
2089 target_ulong last_addr = addr;
2094 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2095 || ((env->def->features & CPU_FEATURE_HYPV)
2096 && asi >= 0x30 && asi < 0x80
2097 && !(env->hpstate & HS_PRIV)))
2098 raise_exception(TT_PRIV_ACT);
2100 helper_check_align(addr, size - 1);
2102 case 0x82: // Primary no-fault
2103 case 0x8a: // Primary no-fault LE
2104 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2106 dump_asi("read ", last_addr, asi, size, ret);
2111 case 0x10: // As if user primary
2112 case 0x18: // As if user primary LE
2113 case 0x80: // Primary
2114 case 0x88: // Primary LE
2115 case 0xe2: // UA2007 Primary block init
2116 case 0xe3: // UA2007 Secondary block init
2117 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2118 if ((env->def->features & CPU_FEATURE_HYPV)
2119 && env->hpstate & HS_PRIV) {
2122 ret = ldub_hypv(addr);
2125 ret = lduw_hypv(addr);
2128 ret = ldl_hypv(addr);
2132 ret = ldq_hypv(addr);
2138 ret = ldub_kernel(addr);
2141 ret = lduw_kernel(addr);
2144 ret = ldl_kernel(addr);
2148 ret = ldq_kernel(addr);
2155 ret = ldub_user(addr);
2158 ret = lduw_user(addr);
2161 ret = ldl_user(addr);
2165 ret = ldq_user(addr);
2170 case 0x14: // Bypass
2171 case 0x15: // Bypass, non-cacheable
2172 case 0x1c: // Bypass LE
2173 case 0x1d: // Bypass, non-cacheable LE
2177 ret = ldub_phys(addr);
2180 ret = lduw_phys(addr);
2183 ret = ldl_phys(addr);
2187 ret = ldq_phys(addr);
2192 case 0x24: // Nucleus quad LDD 128 bit atomic
2193 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2194 // Only ldda allowed
2195 raise_exception(TT_ILL_INSN);
2197 case 0x83: // Secondary no-fault
2198 case 0x8b: // Secondary no-fault LE
2199 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2201 dump_asi("read ", last_addr, asi, size, ret);
2206 case 0x04: // Nucleus
2207 case 0x0c: // Nucleus Little Endian (LE)
2208 case 0x11: // As if user secondary
2209 case 0x19: // As if user secondary LE
2210 case 0x4a: // UPA config
2211 case 0x81: // Secondary
2212 case 0x89: // Secondary LE
2218 case 0x50: // I-MMU regs
2220 int reg = (addr >> 3) & 0xf;
2223 // I-TSB Tag Target register
2224 ret = ultrasparc_tag_target(env->immu.tag_access);
2226 ret = env->immuregs[reg];
2231 case 0x51: // I-MMU 8k TSB pointer
2233 // env->immuregs[5] holds I-MMU TSB register value
2234 // env->immuregs[6] holds I-MMU Tag Access register value
2235 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2239 case 0x52: // I-MMU 64k TSB pointer
2241 // env->immuregs[5] holds I-MMU TSB register value
2242 // env->immuregs[6] holds I-MMU Tag Access register value
2243 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2247 case 0x55: // I-MMU data access
2249 int reg = (addr >> 3) & 0x3f;
2251 ret = env->itlb[reg].tte;
2254 case 0x56: // I-MMU tag read
2256 int reg = (addr >> 3) & 0x3f;
2258 ret = env->itlb[reg].tag;
2261 case 0x58: // D-MMU regs
2263 int reg = (addr >> 3) & 0xf;
2266 // D-TSB Tag Target register
2267 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2269 ret = env->dmmuregs[reg];
2273 case 0x59: // D-MMU 8k TSB pointer
2275 // env->dmmuregs[5] holds D-MMU TSB register value
2276 // env->dmmuregs[6] holds D-MMU Tag Access register value
2277 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2281 case 0x5a: // D-MMU 64k TSB pointer
2283 // env->dmmuregs[5] holds D-MMU TSB register value
2284 // env->dmmuregs[6] holds D-MMU Tag Access register value
2285 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2289 case 0x5d: // D-MMU data access
2291 int reg = (addr >> 3) & 0x3f;
2293 ret = env->dtlb[reg].tte;
2296 case 0x5e: // D-MMU tag read
2298 int reg = (addr >> 3) & 0x3f;
2300 ret = env->dtlb[reg].tag;
2303 case 0x46: // D-cache data
2304 case 0x47: // D-cache tag access
2305 case 0x4b: // E-cache error enable
2306 case 0x4c: // E-cache asynchronous fault status
2307 case 0x4d: // E-cache asynchronous fault address
2308 case 0x4e: // E-cache tag data
2309 case 0x66: // I-cache instruction access
2310 case 0x67: // I-cache tag access
2311 case 0x6e: // I-cache predecode
2312 case 0x6f: // I-cache LRU etc.
2313 case 0x76: // E-cache tag
2314 case 0x7e: // E-cache tag
2316 case 0x5b: // D-MMU data pointer
2317 case 0x48: // Interrupt dispatch, RO
2318 case 0x49: // Interrupt data receive
2319 case 0x7f: // Incoming interrupt vector, RO
2322 case 0x54: // I-MMU data in, WO
2323 case 0x57: // I-MMU demap, WO
2324 case 0x5c: // D-MMU data in, WO
2325 case 0x5f: // D-MMU demap, WO
2326 case 0x77: // Interrupt vector, WO
2328 do_unassigned_access(addr, 0, 0, 1, size);
2333 /* Convert from little endian */
2335 case 0x0c: // Nucleus Little Endian (LE)
2336 case 0x18: // As if user primary LE
2337 case 0x19: // As if user secondary LE
2338 case 0x1c: // Bypass LE
2339 case 0x1d: // Bypass, non-cacheable LE
2340 case 0x88: // Primary LE
2341 case 0x89: // Secondary LE
2342 case 0x8a: // Primary no-fault LE
2343 case 0x8b: // Secondary no-fault LE
2361 /* Convert to signed number */
2368 ret = (int16_t) ret;
2371 ret = (int32_t) ret;
2378 dump_asi("read ", last_addr, asi, size, ret);
2383 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2386 dump_asi("write", addr, asi, size, val);
2391 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2392 || ((env->def->features & CPU_FEATURE_HYPV)
2393 && asi >= 0x30 && asi < 0x80
2394 && !(env->hpstate & HS_PRIV)))
2395 raise_exception(TT_PRIV_ACT);
2397 helper_check_align(addr, size - 1);
2398 /* Convert to little endian */
2400 case 0x0c: // Nucleus Little Endian (LE)
2401 case 0x18: // As if user primary LE
2402 case 0x19: // As if user secondary LE
2403 case 0x1c: // Bypass LE
2404 case 0x1d: // Bypass, non-cacheable LE
2405 case 0x88: // Primary LE
2406 case 0x89: // Secondary LE
2425 case 0x10: // As if user primary
2426 case 0x18: // As if user primary LE
2427 case 0x80: // Primary
2428 case 0x88: // Primary LE
2429 case 0xe2: // UA2007 Primary block init
2430 case 0xe3: // UA2007 Secondary block init
2431 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2432 if ((env->def->features & CPU_FEATURE_HYPV)
2433 && env->hpstate & HS_PRIV) {
2436 stb_hypv(addr, val);
2439 stw_hypv(addr, val);
2442 stl_hypv(addr, val);
2446 stq_hypv(addr, val);
2452 stb_kernel(addr, val);
2455 stw_kernel(addr, val);
2458 stl_kernel(addr, val);
2462 stq_kernel(addr, val);
2469 stb_user(addr, val);
2472 stw_user(addr, val);
2475 stl_user(addr, val);
2479 stq_user(addr, val);
2484 case 0x14: // Bypass
2485 case 0x15: // Bypass, non-cacheable
2486 case 0x1c: // Bypass LE
2487 case 0x1d: // Bypass, non-cacheable LE
2491 stb_phys(addr, val);
2494 stw_phys(addr, val);
2497 stl_phys(addr, val);
2501 stq_phys(addr, val);
2506 case 0x24: // Nucleus quad LDD 128 bit atomic
2507 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2508 // Only ldda allowed
2509 raise_exception(TT_ILL_INSN);
2511 case 0x04: // Nucleus
2512 case 0x0c: // Nucleus Little Endian (LE)
2513 case 0x11: // As if user secondary
2514 case 0x19: // As if user secondary LE
2515 case 0x4a: // UPA config
2516 case 0x81: // Secondary
2517 case 0x89: // Secondary LE
2525 env->lsu = val & (DMMU_E | IMMU_E);
2526 // Mappings generated during D/I MMU disabled mode are
2527 // invalid in normal mode
2528 if (oldreg != env->lsu) {
2529 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2538 case 0x50: // I-MMU regs
2540 int reg = (addr >> 3) & 0xf;
2543 oldreg = env->immuregs[reg];
2547 case 1: // Not in I-MMU
2552 val = 0; // Clear SFSR
2553 env->immu.sfsr = val;
2557 case 5: // TSB access
2558 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2559 PRIx64 "\n", env->immu.tsb, val);
2560 env->immu.tsb = val;
2562 case 6: // Tag access
2563 env->immu.tag_access = val;
2572 if (oldreg != env->immuregs[reg]) {
2573 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2574 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2581 case 0x54: // I-MMU data in
2582 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2584 case 0x55: // I-MMU data access
2588 unsigned int i = (addr >> 3) & 0x3f;
2590 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2593 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2598 case 0x57: // I-MMU demap
2599 demap_tlb(env->itlb, val, "immu", env);
2601 case 0x58: // D-MMU regs
2603 int reg = (addr >> 3) & 0xf;
2606 oldreg = env->dmmuregs[reg];
2612 if ((val & 1) == 0) {
2613 val = 0; // Clear SFSR, Fault address
2616 env->dmmu.sfsr = val;
2618 case 1: // Primary context
2619 env->dmmu.mmu_primary_context = val;
2621 case 2: // Secondary context
2622 env->dmmu.mmu_secondary_context = val;
2624 case 5: // TSB access
2625 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2626 PRIx64 "\n", env->dmmu.tsb, val);
2627 env->dmmu.tsb = val;
2629 case 6: // Tag access
2630 env->dmmu.tag_access = val;
2632 case 7: // Virtual Watchpoint
2633 case 8: // Physical Watchpoint
2635 env->dmmuregs[reg] = val;
2639 if (oldreg != env->dmmuregs[reg]) {
2640 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2641 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2648 case 0x5c: // D-MMU data in
2649 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2651 case 0x5d: // D-MMU data access
2653 unsigned int i = (addr >> 3) & 0x3f;
2655 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2658 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2663 case 0x5f: // D-MMU demap
2664 demap_tlb(env->dtlb, val, "dmmu", env);
2666 case 0x49: // Interrupt data receive
2669 case 0x46: // D-cache data
2670 case 0x47: // D-cache tag access
2671 case 0x4b: // E-cache error enable
2672 case 0x4c: // E-cache asynchronous fault status
2673 case 0x4d: // E-cache asynchronous fault address
2674 case 0x4e: // E-cache tag data
2675 case 0x66: // I-cache instruction access
2676 case 0x67: // I-cache tag access
2677 case 0x6e: // I-cache predecode
2678 case 0x6f: // I-cache LRU etc.
2679 case 0x76: // E-cache tag
2680 case 0x7e: // E-cache tag
2682 case 0x51: // I-MMU 8k TSB pointer, RO
2683 case 0x52: // I-MMU 64k TSB pointer, RO
2684 case 0x56: // I-MMU tag read, RO
2685 case 0x59: // D-MMU 8k TSB pointer, RO
2686 case 0x5a: // D-MMU 64k TSB pointer, RO
2687 case 0x5b: // D-MMU data pointer, RO
2688 case 0x5e: // D-MMU tag read, RO
2689 case 0x48: // Interrupt dispatch, RO
2690 case 0x7f: // Incoming interrupt vector, RO
2691 case 0x82: // Primary no-fault, RO
2692 case 0x83: // Secondary no-fault, RO
2693 case 0x8a: // Primary no-fault LE, RO
2694 case 0x8b: // Secondary no-fault LE, RO
2696 do_unassigned_access(addr, 1, 0, 1, size);
2700 #endif /* CONFIG_USER_ONLY */
2702 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2704 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2705 || ((env->def->features & CPU_FEATURE_HYPV)
2706 && asi >= 0x30 && asi < 0x80
2707 && !(env->hpstate & HS_PRIV)))
2708 raise_exception(TT_PRIV_ACT);
2711 case 0x24: // Nucleus quad LDD 128 bit atomic
2712 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2713 helper_check_align(addr, 0xf);
2715 env->gregs[1] = ldq_kernel(addr + 8);
2717 bswap64s(&env->gregs[1]);
2718 } else if (rd < 8) {
2719 env->gregs[rd] = ldq_kernel(addr);
2720 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2722 bswap64s(&env->gregs[rd]);
2723 bswap64s(&env->gregs[rd + 1]);
2726 env->regwptr[rd] = ldq_kernel(addr);
2727 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2729 bswap64s(&env->regwptr[rd]);
2730 bswap64s(&env->regwptr[rd + 1]);
2735 helper_check_align(addr, 0x3);
2737 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2739 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2740 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2742 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2743 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2749 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2754 helper_check_align(addr, 3);
2756 case 0xf0: // Block load primary
2757 case 0xf1: // Block load secondary
2758 case 0xf8: // Block load primary LE
2759 case 0xf9: // Block load secondary LE
2761 raise_exception(TT_ILL_INSN);
2764 helper_check_align(addr, 0x3f);
2765 for (i = 0; i < 16; i++) {
2766 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2776 val = helper_ld_asi(addr, asi, size, 0);
2780 *((uint32_t *)&env->fpr[rd]) = val;
2783 *((int64_t *)&DT0) = val;
2791 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2794 target_ulong val = 0;
2796 helper_check_align(addr, 3);
2798 case 0xe0: // UA2007 Block commit store primary (cache flush)
2799 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2800 case 0xf0: // Block store primary
2801 case 0xf1: // Block store secondary
2802 case 0xf8: // Block store primary LE
2803 case 0xf9: // Block store secondary LE
2805 raise_exception(TT_ILL_INSN);
2808 helper_check_align(addr, 0x3f);
2809 for (i = 0; i < 16; i++) {
2810 val = *(uint32_t *)&env->fpr[rd++];
2811 helper_st_asi(addr, val, asi & 0x8f, 4);
2823 val = *((uint32_t *)&env->fpr[rd]);
2826 val = *((int64_t *)&DT0);
2832 helper_st_asi(addr, val, asi, size);
2835 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2836 target_ulong val2, uint32_t asi)
2840 val2 &= 0xffffffffUL;
2841 ret = helper_ld_asi(addr, asi, 4, 0);
2842 ret &= 0xffffffffUL;
2844 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2848 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2849 target_ulong val2, uint32_t asi)
2853 ret = helper_ld_asi(addr, asi, 8, 0);
2855 helper_st_asi(addr, val1, asi, 8);
2858 #endif /* TARGET_SPARC64 */
2860 #ifndef TARGET_SPARC64
2861 void helper_rett(void)
2865 if (env->psret == 1)
2866 raise_exception(TT_ILL_INSN);
2869 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2870 if (env->wim & (1 << cwp)) {
2871 raise_exception(TT_WIN_UNF);
2874 env->psrs = env->psrps;
2878 target_ulong helper_udiv(target_ulong a, target_ulong b)
2883 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2887 raise_exception(TT_DIV_ZERO);
2891 if (x0 > 0xffffffff) {
2900 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2905 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2909 raise_exception(TT_DIV_ZERO);
2913 if ((int32_t) x0 != x0) {
2915 return x0 < 0? 0x80000000: 0x7fffffff;
2922 void helper_stdf(target_ulong addr, int mem_idx)
2924 helper_check_align(addr, 7);
2925 #if !defined(CONFIG_USER_ONLY)
2928 stfq_user(addr, DT0);
2931 stfq_kernel(addr, DT0);
2933 #ifdef TARGET_SPARC64
2935 stfq_hypv(addr, DT0);
2942 address_mask(env, &addr);
2943 stfq_raw(addr, DT0);
2947 void helper_lddf(target_ulong addr, int mem_idx)
2949 helper_check_align(addr, 7);
2950 #if !defined(CONFIG_USER_ONLY)
2953 DT0 = ldfq_user(addr);
2956 DT0 = ldfq_kernel(addr);
2958 #ifdef TARGET_SPARC64
2960 DT0 = ldfq_hypv(addr);
2967 address_mask(env, &addr);
2968 DT0 = ldfq_raw(addr);
2972 void helper_ldqf(target_ulong addr, int mem_idx)
2974 // XXX add 128 bit load
2977 helper_check_align(addr, 7);
2978 #if !defined(CONFIG_USER_ONLY)
2981 u.ll.upper = ldq_user(addr);
2982 u.ll.lower = ldq_user(addr + 8);
2986 u.ll.upper = ldq_kernel(addr);
2987 u.ll.lower = ldq_kernel(addr + 8);
2990 #ifdef TARGET_SPARC64
2992 u.ll.upper = ldq_hypv(addr);
2993 u.ll.lower = ldq_hypv(addr + 8);
3001 address_mask(env, &addr);
3002 u.ll.upper = ldq_raw(addr);
3003 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
3008 void helper_stqf(target_ulong addr, int mem_idx)
3010 // XXX add 128 bit store
3013 helper_check_align(addr, 7);
3014 #if !defined(CONFIG_USER_ONLY)
3018 stq_user(addr, u.ll.upper);
3019 stq_user(addr + 8, u.ll.lower);
3023 stq_kernel(addr, u.ll.upper);
3024 stq_kernel(addr + 8, u.ll.lower);
3026 #ifdef TARGET_SPARC64
3029 stq_hypv(addr, u.ll.upper);
3030 stq_hypv(addr + 8, u.ll.lower);
3038 address_mask(env, &addr);
3039 stq_raw(addr, u.ll.upper);
3040 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3044 static inline void set_fsr(void)
3048 switch (env->fsr & FSR_RD_MASK) {
3049 case FSR_RD_NEAREST:
3050 rnd_mode = float_round_nearest_even;
3054 rnd_mode = float_round_to_zero;
3057 rnd_mode = float_round_up;
3060 rnd_mode = float_round_down;
3063 set_float_rounding_mode(rnd_mode, &env->fp_status);
3066 void helper_ldfsr(uint32_t new_fsr)
3068 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3072 #ifdef TARGET_SPARC64
3073 void helper_ldxfsr(uint64_t new_fsr)
3075 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3080 void helper_debug(void)
3082 env->exception_index = EXCP_DEBUG;
3086 #ifndef TARGET_SPARC64
3087 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3089 void helper_save(void)
3093 cwp = cpu_cwp_dec(env, env->cwp - 1);
3094 if (env->wim & (1 << cwp)) {
3095 raise_exception(TT_WIN_OVF);
3100 void helper_restore(void)
3104 cwp = cpu_cwp_inc(env, env->cwp + 1);
3105 if (env->wim & (1 << cwp)) {
3106 raise_exception(TT_WIN_UNF);
3111 void helper_wrpsr(target_ulong new_psr)
3113 if ((new_psr & PSR_CWP) >= env->nwindows)
3114 raise_exception(TT_ILL_INSN);
3116 PUT_PSR(env, new_psr);
3119 target_ulong helper_rdpsr(void)
3121 return GET_PSR(env);
3125 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3127 void helper_save(void)
3131 cwp = cpu_cwp_dec(env, env->cwp - 1);
3132 if (env->cansave == 0) {
3133 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3134 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3135 ((env->wstate & 0x7) << 2)));
3137 if (env->cleanwin - env->canrestore == 0) {
3138 // XXX Clean windows without trap
3139 raise_exception(TT_CLRWIN);
3148 void helper_restore(void)
3152 cwp = cpu_cwp_inc(env, env->cwp + 1);
3153 if (env->canrestore == 0) {
3154 raise_exception(TT_FILL | (env->otherwin != 0 ?
3155 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3156 ((env->wstate & 0x7) << 2)));
3164 void helper_flushw(void)
3166 if (env->cansave != env->nwindows - 2) {
3167 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3168 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3169 ((env->wstate & 0x7) << 2)));
3173 void helper_saved(void)
3176 if (env->otherwin == 0)
3182 void helper_restored(void)
3185 if (env->cleanwin < env->nwindows - 1)
3187 if (env->otherwin == 0)
3193 target_ulong helper_rdccr(void)
3195 return GET_CCR(env);
3198 void helper_wrccr(target_ulong new_ccr)
3200 PUT_CCR(env, new_ccr);
3203 // CWP handling is reversed in V9, but we still use the V8 register
3205 target_ulong helper_rdcwp(void)
3207 return GET_CWP64(env);
3210 void helper_wrcwp(target_ulong new_cwp)
3212 PUT_CWP64(env, new_cwp);
3215 // This function uses non-native bit order
3216 #define GET_FIELD(X, FROM, TO) \
3217 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3219 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3220 #define GET_FIELD_SP(X, FROM, TO) \
3221 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3223 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3225 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3226 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3227 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3228 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3229 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3230 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3231 (((pixel_addr >> 55) & 1) << 4) |
3232 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3233 GET_FIELD_SP(pixel_addr, 11, 12);
3236 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3240 tmp = addr + offset;
3242 env->gsr |= tmp & 7ULL;
3246 target_ulong helper_popc(target_ulong val)
3248 return ctpop64(val);
3251 static inline uint64_t *get_gregset(uint32_t pstate)
3255 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3257 (pstate & PS_IG) ? " IG" : "",
3258 (pstate & PS_MG) ? " MG" : "",
3259 (pstate & PS_AG) ? " AG" : "");
3260 /* pass through to normal set of global registers */
3272 static inline void change_pstate(uint32_t new_pstate)
3274 uint32_t pstate_regs, new_pstate_regs;
3275 uint64_t *src, *dst;
3277 if (env->def->features & CPU_FEATURE_GL) {
3278 // PS_AG is not implemented in this case
3279 new_pstate &= ~PS_AG;
3282 pstate_regs = env->pstate & 0xc01;
3283 new_pstate_regs = new_pstate & 0xc01;
3285 if (new_pstate_regs != pstate_regs) {
3286 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3287 pstate_regs, new_pstate_regs);
3288 // Switch global register bank
3289 src = get_gregset(new_pstate_regs);
3290 dst = get_gregset(pstate_regs);
3291 memcpy32(dst, env->gregs);
3292 memcpy32(env->gregs, src);
3295 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3298 env->pstate = new_pstate;
3301 void helper_wrpstate(target_ulong new_state)
3303 change_pstate(new_state & 0xf3f);
3305 #if !defined(CONFIG_USER_ONLY)
3306 if (cpu_interrupts_enabled(env)) {
3307 cpu_check_irqs(env);
3312 void helper_wrpil(target_ulong new_pil)
3314 #if !defined(CONFIG_USER_ONLY)
3315 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3316 env->psrpil, (uint32_t)new_pil);
3318 env->psrpil = new_pil;
3320 if (cpu_interrupts_enabled(env)) {
3321 cpu_check_irqs(env);
3326 void helper_done(void)
3328 trap_state* tsptr = cpu_tsptr(env);
3330 env->pc = tsptr->tnpc;
3331 env->npc = tsptr->tnpc + 4;
3332 PUT_CCR(env, tsptr->tstate >> 32);
3333 env->asi = (tsptr->tstate >> 24) & 0xff;
3334 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3335 PUT_CWP64(env, tsptr->tstate & 0xff);
3338 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3340 #if !defined(CONFIG_USER_ONLY)
3341 if (cpu_interrupts_enabled(env)) {
3342 cpu_check_irqs(env);
3347 void helper_retry(void)
3349 trap_state* tsptr = cpu_tsptr(env);
3351 env->pc = tsptr->tpc;
3352 env->npc = tsptr->tnpc;
3353 PUT_CCR(env, tsptr->tstate >> 32);
3354 env->asi = (tsptr->tstate >> 24) & 0xff;
3355 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3356 PUT_CWP64(env, tsptr->tstate & 0xff);
3359 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3361 #if !defined(CONFIG_USER_ONLY)
3362 if (cpu_interrupts_enabled(env)) {
3363 cpu_check_irqs(env);
3368 static void do_modify_softint(const char* operation, uint32_t value)
3370 if (env->softint != value) {
3371 env->softint = value;
3372 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3373 #if !defined(CONFIG_USER_ONLY)
3374 if (cpu_interrupts_enabled(env)) {
3375 cpu_check_irqs(env);
3381 void helper_set_softint(uint64_t value)
3383 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3386 void helper_clear_softint(uint64_t value)
3388 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3391 void helper_write_softint(uint64_t value)
3393 do_modify_softint("helper_write_softint", (uint32_t)value);
3397 void helper_flush(target_ulong addr)
3400 tb_invalidate_page_range(addr, addr + 8);
3403 #ifdef TARGET_SPARC64
3405 static const char * const excp_names[0x80] = {
3406 [TT_TFAULT] = "Instruction Access Fault",
3407 [TT_TMISS] = "Instruction Access MMU Miss",
3408 [TT_CODE_ACCESS] = "Instruction Access Error",
3409 [TT_ILL_INSN] = "Illegal Instruction",
3410 [TT_PRIV_INSN] = "Privileged Instruction",
3411 [TT_NFPU_INSN] = "FPU Disabled",
3412 [TT_FP_EXCP] = "FPU Exception",
3413 [TT_TOVF] = "Tag Overflow",
3414 [TT_CLRWIN] = "Clean Windows",
3415 [TT_DIV_ZERO] = "Division By Zero",
3416 [TT_DFAULT] = "Data Access Fault",
3417 [TT_DMISS] = "Data Access MMU Miss",
3418 [TT_DATA_ACCESS] = "Data Access Error",
3419 [TT_DPROT] = "Data Protection Error",
3420 [TT_UNALIGNED] = "Unaligned Memory Access",
3421 [TT_PRIV_ACT] = "Privileged Action",
3422 [TT_EXTINT | 0x1] = "External Interrupt 1",
3423 [TT_EXTINT | 0x2] = "External Interrupt 2",
3424 [TT_EXTINT | 0x3] = "External Interrupt 3",
3425 [TT_EXTINT | 0x4] = "External Interrupt 4",
3426 [TT_EXTINT | 0x5] = "External Interrupt 5",
3427 [TT_EXTINT | 0x6] = "External Interrupt 6",
3428 [TT_EXTINT | 0x7] = "External Interrupt 7",
3429 [TT_EXTINT | 0x8] = "External Interrupt 8",
3430 [TT_EXTINT | 0x9] = "External Interrupt 9",
3431 [TT_EXTINT | 0xa] = "External Interrupt 10",
3432 [TT_EXTINT | 0xb] = "External Interrupt 11",
3433 [TT_EXTINT | 0xc] = "External Interrupt 12",
3434 [TT_EXTINT | 0xd] = "External Interrupt 13",
3435 [TT_EXTINT | 0xe] = "External Interrupt 14",
3436 [TT_EXTINT | 0xf] = "External Interrupt 15",
3440 trap_state* cpu_tsptr(CPUState* env)
3442 return &env->ts[env->tl & MAXTL_MASK];
3445 void do_interrupt(CPUState *env)
3447 int intno = env->exception_index;
3451 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3455 if (intno < 0 || intno >= 0x180)
3457 else if (intno >= 0x100)
3458 name = "Trap Instruction";
3459 else if (intno >= 0xc0)
3460 name = "Window Fill";
3461 else if (intno >= 0x80)
3462 name = "Window Spill";
3464 name = excp_names[intno];
3469 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3470 " SP=%016" PRIx64 "\n",
3473 env->npc, env->regwptr[6]);
3474 log_cpu_state(env, 0);
3481 ptr = (uint8_t *)env->pc;
3482 for(i = 0; i < 16; i++) {
3483 qemu_log(" %02x", ldub(ptr + i));
3491 #if !defined(CONFIG_USER_ONLY)
3492 if (env->tl >= env->maxtl) {
3493 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3494 " Error state", env->exception_index, env->tl, env->maxtl);
3498 if (env->tl < env->maxtl - 1) {
3501 env->pstate |= PS_RED;
3502 if (env->tl < env->maxtl)
3505 tsptr = cpu_tsptr(env);
3507 tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3508 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3510 tsptr->tpc = env->pc;
3511 tsptr->tnpc = env->npc;
3516 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3520 case TT_TMISS ... TT_TMISS + 3:
3521 case TT_DMISS ... TT_DMISS + 3:
3522 case TT_DPROT ... TT_DPROT + 3:
3523 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3526 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3530 if (intno == TT_CLRWIN)
3531 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3532 else if ((intno & 0x1c0) == TT_SPILL)
3533 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3534 else if ((intno & 0x1c0) == TT_FILL)
3535 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3536 env->tbr &= ~0x7fffULL;
3537 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3539 env->npc = env->pc + 4;
3540 env->exception_index = -1;
3544 static const char * const excp_names[0x80] = {
3545 [TT_TFAULT] = "Instruction Access Fault",
3546 [TT_ILL_INSN] = "Illegal Instruction",
3547 [TT_PRIV_INSN] = "Privileged Instruction",
3548 [TT_NFPU_INSN] = "FPU Disabled",
3549 [TT_WIN_OVF] = "Window Overflow",
3550 [TT_WIN_UNF] = "Window Underflow",
3551 [TT_UNALIGNED] = "Unaligned Memory Access",
3552 [TT_FP_EXCP] = "FPU Exception",
3553 [TT_DFAULT] = "Data Access Fault",
3554 [TT_TOVF] = "Tag Overflow",
3555 [TT_EXTINT | 0x1] = "External Interrupt 1",
3556 [TT_EXTINT | 0x2] = "External Interrupt 2",
3557 [TT_EXTINT | 0x3] = "External Interrupt 3",
3558 [TT_EXTINT | 0x4] = "External Interrupt 4",
3559 [TT_EXTINT | 0x5] = "External Interrupt 5",
3560 [TT_EXTINT | 0x6] = "External Interrupt 6",
3561 [TT_EXTINT | 0x7] = "External Interrupt 7",
3562 [TT_EXTINT | 0x8] = "External Interrupt 8",
3563 [TT_EXTINT | 0x9] = "External Interrupt 9",
3564 [TT_EXTINT | 0xa] = "External Interrupt 10",
3565 [TT_EXTINT | 0xb] = "External Interrupt 11",
3566 [TT_EXTINT | 0xc] = "External Interrupt 12",
3567 [TT_EXTINT | 0xd] = "External Interrupt 13",
3568 [TT_EXTINT | 0xe] = "External Interrupt 14",
3569 [TT_EXTINT | 0xf] = "External Interrupt 15",
3570 [TT_TOVF] = "Tag Overflow",
3571 [TT_CODE_ACCESS] = "Instruction Access Error",
3572 [TT_DATA_ACCESS] = "Data Access Error",
3573 [TT_DIV_ZERO] = "Division By Zero",
3574 [TT_NCP_INSN] = "Coprocessor Disabled",
3578 void do_interrupt(CPUState *env)
3580 int cwp, intno = env->exception_index;
3583 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3587 if (intno < 0 || intno >= 0x100)
3589 else if (intno >= 0x80)
3590 name = "Trap Instruction";
3592 name = excp_names[intno];
3597 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3600 env->npc, env->regwptr[6]);
3601 log_cpu_state(env, 0);
3608 ptr = (uint8_t *)env->pc;
3609 for(i = 0; i < 16; i++) {
3610 qemu_log(" %02x", ldub(ptr + i));
3618 #if !defined(CONFIG_USER_ONLY)
3619 if (env->psret == 0) {
3620 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3621 env->exception_index);
3626 cwp = cpu_cwp_dec(env, env->cwp - 1);
3627 cpu_set_cwp(env, cwp);
3628 env->regwptr[9] = env->pc;
3629 env->regwptr[10] = env->npc;
3630 env->psrps = env->psrs;
3632 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3634 env->npc = env->pc + 4;
3635 env->exception_index = -1;
3639 #if !defined(CONFIG_USER_ONLY)
3641 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3644 #define MMUSUFFIX _mmu
3645 #define ALIGNED_ONLY
3648 #include "softmmu_template.h"
3651 #include "softmmu_template.h"
3654 #include "softmmu_template.h"
3657 #include "softmmu_template.h"
3659 /* XXX: make it generic ? */
3660 static void cpu_restore_state2(void *retaddr)
3662 TranslationBlock *tb;
3666 /* now we have a real cpu fault */
3667 pc = (unsigned long)retaddr;
3668 tb = tb_find_pc(pc);
3670 /* the PC is inside the translated code. It means that we have
3671 a virtual CPU fault */
3672 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3677 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3680 #ifdef DEBUG_UNALIGNED
3681 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3682 "\n", addr, env->pc);
3684 cpu_restore_state2(retaddr);
3685 raise_exception(TT_UNALIGNED);
3688 /* try to fill the TLB and return an exception if error. If retaddr is
3689 NULL, it means that the function was called in C code (i.e. not
3690 from generated code or from helper.c) */
3691 /* XXX: fix it to restore all registers */
3692 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3695 CPUState *saved_env;
3697 /* XXX: hack to restore env in all cases, even if not called from
3700 env = cpu_single_env;
3702 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3704 cpu_restore_state2(retaddr);
3712 #ifndef TARGET_SPARC64
3713 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3714 int is_asi, int size)
3716 CPUState *saved_env;
3719 /* XXX: hack to restore env in all cases, even if not called from
3722 env = cpu_single_env;
3723 #ifdef DEBUG_UNASSIGNED
3725 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3726 " asi 0x%02x from " TARGET_FMT_lx "\n",
3727 is_exec ? "exec" : is_write ? "write" : "read", size,
3728 size == 1 ? "" : "s", addr, is_asi, env->pc);
3730 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3731 " from " TARGET_FMT_lx "\n",
3732 is_exec ? "exec" : is_write ? "write" : "read", size,
3733 size == 1 ? "" : "s", addr, env->pc);
3735 /* Don't overwrite translation and access faults */
3736 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
3737 if ((fault_type > 4) || (fault_type == 0)) {
3738 env->mmuregs[3] = 0; /* Fault status register */
3740 env->mmuregs[3] |= 1 << 16;
3742 env->mmuregs[3] |= 1 << 5;
3744 env->mmuregs[3] |= 1 << 6;
3746 env->mmuregs[3] |= 1 << 7;
3747 env->mmuregs[3] |= (5 << 2) | 2;
3748 /* SuperSPARC will never place instruction fault addresses in the FAR */
3750 env->mmuregs[4] = addr; /* Fault address register */
3753 /* overflow (same type fault was not read before another fault) */
3754 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
3755 env->mmuregs[3] |= 1;
3758 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3760 raise_exception(TT_CODE_ACCESS);
3762 raise_exception(TT_DATA_ACCESS);
3765 /* flush neverland mappings created during no-fault mode,
3766 so the sequential MMU faults report proper fault types */
3767 if (env->mmuregs[0] & MMU_NF) {
3774 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3775 int is_asi, int size)
3777 CPUState *saved_env;
3779 /* XXX: hack to restore env in all cases, even if not called from
3782 env = cpu_single_env;
3784 #ifdef DEBUG_UNASSIGNED
3785 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3786 "\n", addr, env->pc);
3790 raise_exception(TT_CODE_ACCESS);
3792 raise_exception(TT_DATA_ACCESS);
3798 #ifdef TARGET_SPARC64
3799 void helper_tick_set_count(void *opaque, uint64_t count)
3801 #if !defined(CONFIG_USER_ONLY)
3802 cpu_tick_set_count(opaque, count);
3806 uint64_t helper_tick_get_count(void *opaque)
3808 #if !defined(CONFIG_USER_ONLY)
3809 return cpu_tick_get_count(opaque);
3815 void helper_tick_set_limit(void *opaque, uint64_t limit)
3817 #if !defined(CONFIG_USER_ONLY)
3818 cpu_tick_set_limit(opaque, limit);