2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GNU GPL v2.
9 #include "qemu/osdep.h"
12 #include "exec/helper-proto.h"
13 #include "fpu/softfloat.h"
15 #define SIGNBIT (uint32_t)0x80000000
16 #define SIGNBIT64 ((uint64_t)1 << 63)
18 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
20 #define NEON_TYPE1(name, type) \
25 #ifdef HOST_WORDS_BIGENDIAN
26 #define NEON_TYPE2(name, type) \
32 #define NEON_TYPE4(name, type) \
41 #define NEON_TYPE2(name, type) \
47 #define NEON_TYPE4(name, type) \
57 NEON_TYPE4(s8, int8_t)
58 NEON_TYPE4(u8, uint8_t)
59 NEON_TYPE2(s16, int16_t)
60 NEON_TYPE2(u16, uint16_t)
61 NEON_TYPE1(s32, int32_t)
62 NEON_TYPE1(u32, uint32_t)
67 /* Copy from a uint32_t to a vector structure type. */
68 #define NEON_UNPACK(vtype, dest, val) do { \
77 /* Copy from a vector structure type to a uint32_t. */
78 #define NEON_PACK(vtype, dest, val) do { \
88 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
91 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
95 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
96 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98 #define NEON_VOP_BODY(vtype, n) \
104 NEON_UNPACK(vtype, vsrc1, arg1); \
105 NEON_UNPACK(vtype, vsrc2, arg2); \
107 NEON_PACK(vtype, res, vdest); \
111 #define NEON_VOP(name, vtype, n) \
112 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
113 NEON_VOP_BODY(vtype, n)
115 #define NEON_VOP_ENV(name, vtype, n) \
116 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
117 NEON_VOP_BODY(vtype, n)
119 /* Pairwise operations. */
120 /* For 32-bit elements each segment only contains a single element, so
121 the elementwise and pairwise operations are the same. */
123 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
124 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
127 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
128 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
129 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131 #define NEON_POP(name, vtype, n) \
132 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
138 NEON_UNPACK(vtype, vsrc1, arg1); \
139 NEON_UNPACK(vtype, vsrc2, arg2); \
141 NEON_PACK(vtype, res, vdest); \
145 /* Unary operators. */
146 #define NEON_VOP1(name, vtype, n) \
147 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
151 NEON_UNPACK(vtype, vsrc1, arg); \
153 NEON_PACK(vtype, arg, vdest); \
158 #define NEON_USAT(dest, src1, src2, type) do { \
159 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
160 if (tmp != (type)tmp) { \
166 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
167 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
169 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
170 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
174 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176 uint32_t res = a + b;
184 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
196 #define NEON_SSAT(dest, src1, src2, type) do { \
197 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
198 if (tmp != (type)tmp) { \
201 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203 tmp = 1 << (sizeof(type) * 8 - 1); \
208 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
209 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
211 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
212 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
216 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
226 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
231 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
238 /* Unsigned saturating accumulate of signed value
240 * Op1/Rn is treated as signed
241 * Op2/Rd is treated as unsigned
243 * Explicit casting is used to ensure the correct sign extension of
244 * inputs. The result is treated as a unsigned value and saturated as such.
246 * We use a macro for the 8/16 bit cases which expects signed integers of va,
247 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
250 #define USATACC(bits, shift) \
252 va = sextract32(a, shift, bits); \
253 vb = extract32(b, shift, bits); \
255 if (vr > UINT##bits##_MAX) { \
257 vr = UINT##bits##_MAX; \
258 } else if (vr < 0) { \
262 r = deposit32(r, shift, bits, vr); \
265 uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
277 uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
289 uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
291 int64_t va = (int32_t)a;
292 int64_t vb = (uint32_t)b;
293 int64_t vr = va + vb;
294 if (vr > UINT32_MAX) {
304 uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
308 /* We only need to look at the pattern of SIGN bits to detect
311 if (~a & b & ~res & SIGNBIT64) {
314 } else if (a & ~b & res & SIGNBIT64) {
321 /* Signed saturating accumulate of unsigned value
323 * Op1/Rn is treated as unsigned
324 * Op2/Rd is treated as signed
326 * The result is treated as a signed value and saturated as such
328 * We use a macro for the 8/16 bit cases which expects signed integers of va,
329 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
332 #define SSATACC(bits, shift) \
334 va = extract32(a, shift, bits); \
335 vb = sextract32(b, shift, bits); \
337 if (vr > INT##bits##_MAX) { \
339 vr = INT##bits##_MAX; \
340 } else if (vr < INT##bits##_MIN) { \
342 vr = INT##bits##_MIN; \
344 r = deposit32(r, shift, bits, vr); \
347 uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
359 uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
372 uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
375 int64_t op1 = (uint32_t)a;
376 int64_t op2 = (int32_t)b;
378 if (res > INT32_MAX) {
381 } else if (res < INT32_MIN) {
388 uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
392 /* We only need to look at the pattern of SIGN bits to detect an overflow */
395 | (a & ~b)) & SIGNBIT64) {
403 #define NEON_USAT(dest, src1, src2, type) do { \
404 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
405 if (tmp != (type)tmp) { \
411 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
412 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
414 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
415 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
419 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
421 uint32_t res = a - b;
429 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
442 #define NEON_SSAT(dest, src1, src2, type) do { \
443 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
444 if (tmp != (type)tmp) { \
447 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
449 tmp = 1 << (sizeof(type) * 8 - 1); \
454 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
455 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
457 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
458 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
462 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
464 uint32_t res = a - b;
465 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
467 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
472 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
477 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
479 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
484 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
485 NEON_VOP(hadd_s8, neon_s8, 4)
486 NEON_VOP(hadd_u8, neon_u8, 4)
487 NEON_VOP(hadd_s16, neon_s16, 2)
488 NEON_VOP(hadd_u16, neon_u16, 2)
491 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
495 dest = (src1 >> 1) + (src2 >> 1);
501 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
505 dest = (src1 >> 1) + (src2 >> 1);
511 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
512 NEON_VOP(rhadd_s8, neon_s8, 4)
513 NEON_VOP(rhadd_u8, neon_u8, 4)
514 NEON_VOP(rhadd_s16, neon_s16, 2)
515 NEON_VOP(rhadd_u16, neon_u16, 2)
518 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
522 dest = (src1 >> 1) + (src2 >> 1);
523 if ((src1 | src2) & 1)
528 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
532 dest = (src1 >> 1) + (src2 >> 1);
533 if ((src1 | src2) & 1)
538 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
539 NEON_VOP(hsub_s8, neon_s8, 4)
540 NEON_VOP(hsub_u8, neon_u8, 4)
541 NEON_VOP(hsub_s16, neon_s16, 2)
542 NEON_VOP(hsub_u16, neon_u16, 2)
545 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
549 dest = (src1 >> 1) - (src2 >> 1);
550 if ((~src1) & src2 & 1)
555 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
559 dest = (src1 >> 1) - (src2 >> 1);
560 if ((~src1) & src2 & 1)
565 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
566 NEON_VOP(cgt_s8, neon_s8, 4)
567 NEON_VOP(cgt_u8, neon_u8, 4)
568 NEON_VOP(cgt_s16, neon_s16, 2)
569 NEON_VOP(cgt_u16, neon_u16, 2)
570 NEON_VOP(cgt_s32, neon_s32, 1)
571 NEON_VOP(cgt_u32, neon_u32, 1)
574 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
575 NEON_VOP(cge_s8, neon_s8, 4)
576 NEON_VOP(cge_u8, neon_u8, 4)
577 NEON_VOP(cge_s16, neon_s16, 2)
578 NEON_VOP(cge_u16, neon_u16, 2)
579 NEON_VOP(cge_s32, neon_s32, 1)
580 NEON_VOP(cge_u32, neon_u32, 1)
583 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
584 NEON_VOP(min_s8, neon_s8, 4)
585 NEON_VOP(min_u8, neon_u8, 4)
586 NEON_VOP(min_s16, neon_s16, 2)
587 NEON_VOP(min_u16, neon_u16, 2)
588 NEON_VOP(min_s32, neon_s32, 1)
589 NEON_VOP(min_u32, neon_u32, 1)
590 NEON_POP(pmin_s8, neon_s8, 4)
591 NEON_POP(pmin_u8, neon_u8, 4)
592 NEON_POP(pmin_s16, neon_s16, 2)
593 NEON_POP(pmin_u16, neon_u16, 2)
596 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
597 NEON_VOP(max_s8, neon_s8, 4)
598 NEON_VOP(max_u8, neon_u8, 4)
599 NEON_VOP(max_s16, neon_s16, 2)
600 NEON_VOP(max_u16, neon_u16, 2)
601 NEON_VOP(max_s32, neon_s32, 1)
602 NEON_VOP(max_u32, neon_u32, 1)
603 NEON_POP(pmax_s8, neon_s8, 4)
604 NEON_POP(pmax_u8, neon_u8, 4)
605 NEON_POP(pmax_s16, neon_s16, 2)
606 NEON_POP(pmax_u16, neon_u16, 2)
609 #define NEON_FN(dest, src1, src2) \
610 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
611 NEON_VOP(abd_s8, neon_s8, 4)
612 NEON_VOP(abd_u8, neon_u8, 4)
613 NEON_VOP(abd_s16, neon_s16, 2)
614 NEON_VOP(abd_u16, neon_u16, 2)
615 NEON_VOP(abd_s32, neon_s32, 1)
616 NEON_VOP(abd_u32, neon_u32, 1)
619 #define NEON_FN(dest, src1, src2) do { \
621 tmp = (int8_t)src2; \
622 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
623 tmp <= -(ssize_t)sizeof(src1) * 8) { \
625 } else if (tmp < 0) { \
626 dest = src1 >> -tmp; \
628 dest = src1 << tmp; \
630 NEON_VOP(shl_u8, neon_u8, 4)
631 NEON_VOP(shl_u16, neon_u16, 2)
632 NEON_VOP(shl_u32, neon_u32, 1)
635 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
637 int8_t shift = (int8_t)shiftop;
638 if (shift >= 64 || shift <= -64) {
640 } else if (shift < 0) {
648 #define NEON_FN(dest, src1, src2) do { \
650 tmp = (int8_t)src2; \
651 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
653 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
654 dest = src1 >> (sizeof(src1) * 8 - 1); \
655 } else if (tmp < 0) { \
656 dest = src1 >> -tmp; \
658 dest = src1 << tmp; \
660 NEON_VOP(shl_s8, neon_s8, 4)
661 NEON_VOP(shl_s16, neon_s16, 2)
662 NEON_VOP(shl_s32, neon_s32, 1)
665 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
667 int8_t shift = (int8_t)shiftop;
671 } else if (shift <= -64) {
673 } else if (shift < 0) {
681 #define NEON_FN(dest, src1, src2) do { \
683 tmp = (int8_t)src2; \
684 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
685 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
687 } else if (tmp < 0) { \
688 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
690 dest = src1 << tmp; \
692 NEON_VOP(rshl_s8, neon_s8, 4)
693 NEON_VOP(rshl_s16, neon_s16, 2)
696 /* The addition of the rounding constant may overflow, so we use an
697 * intermediate 64 bit accumulator. */
698 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
701 int32_t val = (int32_t)valop;
702 int8_t shift = (int8_t)shiftop;
703 if ((shift >= 32) || (shift <= -32)) {
705 } else if (shift < 0) {
706 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
707 dest = big_dest >> -shift;
714 /* Handling addition overflow with 64 bit input values is more
715 * tricky than with 32 bit values. */
716 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
718 int8_t shift = (int8_t)shiftop;
720 if ((shift >= 64) || (shift <= -64)) {
722 } else if (shift < 0) {
723 val >>= (-shift - 1);
724 if (val == INT64_MAX) {
725 /* In this case, it means that the rounding constant is 1,
726 * and the addition would overflow. Return the actual
727 * result directly. */
728 val = 0x4000000000000000LL;
739 #define NEON_FN(dest, src1, src2) do { \
741 tmp = (int8_t)src2; \
742 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
743 tmp < -(ssize_t)sizeof(src1) * 8) { \
745 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
746 dest = src1 >> (-tmp - 1); \
747 } else if (tmp < 0) { \
748 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
750 dest = src1 << tmp; \
752 NEON_VOP(rshl_u8, neon_u8, 4)
753 NEON_VOP(rshl_u16, neon_u16, 2)
756 /* The addition of the rounding constant may overflow, so we use an
757 * intermediate 64 bit accumulator. */
758 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
761 int8_t shift = (int8_t)shiftop;
762 if (shift >= 32 || shift < -32) {
764 } else if (shift == -32) {
766 } else if (shift < 0) {
767 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
768 dest = big_dest >> -shift;
775 /* Handling addition overflow with 64 bit input values is more
776 * tricky than with 32 bit values. */
777 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
779 int8_t shift = (uint8_t)shiftop;
780 if (shift >= 64 || shift < -64) {
782 } else if (shift == -64) {
783 /* Rounding a 1-bit result just preserves that bit. */
785 } else if (shift < 0) {
786 val >>= (-shift - 1);
787 if (val == UINT64_MAX) {
788 /* In this case, it means that the rounding constant is 1,
789 * and the addition would overflow. Return the actual
790 * result directly. */
791 val = 0x8000000000000000ULL;
802 #define NEON_FN(dest, src1, src2) do { \
804 tmp = (int8_t)src2; \
805 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
812 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
814 } else if (tmp < 0) { \
815 dest = src1 >> -tmp; \
817 dest = src1 << tmp; \
818 if ((dest >> tmp) != src1) { \
823 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
824 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
825 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
828 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
830 int8_t shift = (int8_t)shiftop;
836 } else if (shift <= -64) {
838 } else if (shift < 0) {
843 if ((val >> shift) != tmp) {
851 #define NEON_FN(dest, src1, src2) do { \
853 tmp = (int8_t)src2; \
854 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
857 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
864 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
866 } else if (tmp < 0) { \
867 dest = src1 >> -tmp; \
869 dest = src1 << tmp; \
870 if ((dest >> tmp) != src1) { \
872 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
878 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
879 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
880 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
883 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
885 int8_t shift = (uint8_t)shiftop;
890 val = (val >> 63) ^ ~SIGNBIT64;
892 } else if (shift <= -64) {
894 } else if (shift < 0) {
899 if ((val >> shift) != tmp) {
901 val = (tmp >> 63) ^ ~SIGNBIT64;
907 #define NEON_FN(dest, src1, src2) do { \
908 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
913 tmp = (int8_t)src2; \
914 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
921 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
923 } else if (tmp < 0) { \
924 dest = src1 >> -tmp; \
926 dest = src1 << tmp; \
927 if ((dest >> tmp) != src1) { \
933 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
934 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
937 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
939 if ((int32_t)valop < 0) {
943 return helper_neon_qshl_u32(env, valop, shiftop);
946 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
948 if ((int64_t)valop < 0) {
952 return helper_neon_qshl_u64(env, valop, shiftop);
955 #define NEON_FN(dest, src1, src2) do { \
957 tmp = (int8_t)src2; \
958 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
965 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
967 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
968 dest = src1 >> (sizeof(src1) * 8 - 1); \
969 } else if (tmp < 0) { \
970 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
972 dest = src1 << tmp; \
973 if ((dest >> tmp) != src1) { \
978 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
979 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
982 /* The addition of the rounding constant may overflow, so we use an
983 * intermediate 64 bit accumulator. */
984 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
987 int8_t shift = (int8_t)shiftop;
995 } else if (shift < -32) {
997 } else if (shift == -32) {
999 } else if (shift < 0) {
1000 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
1001 dest = big_dest >> -shift;
1003 dest = val << shift;
1004 if ((dest >> shift) != val) {
1012 /* Handling addition overflow with 64 bit input values is more
1013 * tricky than with 32 bit values. */
1014 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
1016 int8_t shift = (int8_t)shiftop;
1022 } else if (shift < -64) {
1024 } else if (shift == -64) {
1026 } else if (shift < 0) {
1027 val >>= (-shift - 1);
1028 if (val == UINT64_MAX) {
1029 /* In this case, it means that the rounding constant is 1,
1030 * and the addition would overflow. Return the actual
1031 * result directly. */
1032 val = 0x8000000000000000ULL;
1040 if ((val >> shift) != tmp) {
1048 #define NEON_FN(dest, src1, src2) do { \
1050 tmp = (int8_t)src2; \
1051 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
1054 dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
1061 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
1063 } else if (tmp < 0) { \
1064 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1066 dest = src1 << tmp; \
1067 if ((dest >> tmp) != src1) { \
1069 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1075 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1076 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1079 /* The addition of the rounding constant may overflow, so we use an
1080 * intermediate 64 bit accumulator. */
1081 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1084 int32_t val = (int32_t)valop;
1085 int8_t shift = (int8_t)shiftop;
1089 dest = (val >> 31) ^ ~SIGNBIT;
1093 } else if (shift <= -32) {
1095 } else if (shift < 0) {
1096 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1097 dest = big_dest >> -shift;
1099 dest = val << shift;
1100 if ((dest >> shift) != val) {
1102 dest = (val >> 31) ^ ~SIGNBIT;
1108 /* Handling addition overflow with 64 bit input values is more
1109 * tricky than with 32 bit values. */
1110 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1112 int8_t shift = (uint8_t)shiftop;
1113 int64_t val = valop;
1118 val = (val >> 63) ^ ~SIGNBIT64;
1120 } else if (shift <= -64) {
1122 } else if (shift < 0) {
1123 val >>= (-shift - 1);
1124 if (val == INT64_MAX) {
1125 /* In this case, it means that the rounding constant is 1,
1126 * and the addition would overflow. Return the actual
1127 * result directly. */
1128 val = 0x4000000000000000ULL;
1136 if ((val >> shift) != tmp) {
1138 val = (tmp >> 63) ^ ~SIGNBIT64;
1144 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1147 mask = (a ^ b) & 0x80808080u;
1150 return (a + b) ^ mask;
1153 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1156 mask = (a ^ b) & 0x80008000u;
1159 return (a + b) ^ mask;
1162 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1163 NEON_POP(padd_u8, neon_u8, 4)
1164 NEON_POP(padd_u16, neon_u16, 2)
1167 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1168 NEON_VOP(sub_u8, neon_u8, 4)
1169 NEON_VOP(sub_u16, neon_u16, 2)
1172 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1173 NEON_VOP(mul_u8, neon_u8, 4)
1174 NEON_VOP(mul_u16, neon_u16, 2)
1177 /* Polynomial multiplication is like integer multiplication except the
1178 partial products are XORed, not added. */
1179 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1189 mask |= (0xff << 8);
1190 if (op1 & (1 << 16))
1191 mask |= (0xff << 16);
1192 if (op1 & (1 << 24))
1193 mask |= (0xff << 24);
1194 result ^= op2 & mask;
1195 op1 = (op1 >> 1) & 0x7f7f7f7f;
1196 op2 = (op2 << 1) & 0xfefefefe;
1201 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1203 uint64_t result = 0;
1205 uint64_t op2ex = op2;
1206 op2ex = (op2ex & 0xff) |
1207 ((op2ex & 0xff00) << 8) |
1208 ((op2ex & 0xff0000) << 16) |
1209 ((op2ex & 0xff000000) << 24);
1215 if (op1 & (1 << 8)) {
1216 mask |= (0xffffU << 16);
1218 if (op1 & (1 << 16)) {
1219 mask |= (0xffffULL << 32);
1221 if (op1 & (1 << 24)) {
1222 mask |= (0xffffULL << 48);
1224 result ^= op2ex & mask;
1225 op1 = (op1 >> 1) & 0x7f7f7f7f;
1231 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1232 NEON_VOP(tst_u8, neon_u8, 4)
1233 NEON_VOP(tst_u16, neon_u16, 2)
1234 NEON_VOP(tst_u32, neon_u32, 1)
1237 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1238 NEON_VOP(ceq_u8, neon_u8, 4)
1239 NEON_VOP(ceq_u16, neon_u16, 2)
1240 NEON_VOP(ceq_u32, neon_u32, 1)
1243 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1244 NEON_VOP1(abs_s8, neon_s8, 4)
1245 NEON_VOP1(abs_s16, neon_s16, 2)
1248 /* Count Leading Sign/Zero Bits. */
1249 static inline int do_clz8(uint8_t x)
1257 static inline int do_clz16(uint16_t x)
1260 for (n = 16; x; n--)
1265 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1266 NEON_VOP1(clz_u8, neon_u8, 4)
1269 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1270 NEON_VOP1(clz_u16, neon_u16, 2)
1273 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1274 NEON_VOP1(cls_s8, neon_s8, 4)
1277 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1278 NEON_VOP1(cls_s16, neon_s16, 2)
1281 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1286 for (count = 32; x; count--)
1292 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1294 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1295 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1296 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1300 /* Reverse bits in each 8 bit word */
1301 uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1303 x = ((x & 0xf0f0f0f0) >> 4)
1304 | ((x & 0x0f0f0f0f) << 4);
1305 x = ((x & 0x88888888) >> 3)
1306 | ((x & 0x44444444) >> 1)
1307 | ((x & 0x22222222) << 1)
1308 | ((x & 0x11111111) << 3);
1312 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1313 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1314 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1316 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1321 int32_t old = tmp; \
1323 if ((int32_t)tmp < old) { \
1325 tmp = SIGNBIT - 1; \
1330 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1331 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1333 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1334 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1336 #undef NEON_QDMULH16
1338 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1339 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1340 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1342 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1347 int64_t old = tmp; \
1348 tmp += (int64_t)1 << 31; \
1349 if ((int64_t)tmp < old) { \
1351 tmp = SIGNBIT64 - 1; \
1356 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1357 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1359 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1360 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1362 #undef NEON_QDMULH32
1364 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1366 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1367 | ((x >> 24) & 0xff000000u);
1370 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1372 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1375 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1377 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1378 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1381 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1383 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1386 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1388 x &= 0xff80ff80ff80ff80ull;
1389 x += 0x0080008000800080ull;
1390 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1391 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1394 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1396 x &= 0xffff8000ffff8000ull;
1397 x += 0x0000800000008000ull;
1398 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1401 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1417 res |= (uint32_t)d << (n / 2); \
1428 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1441 res |= (uint32_t)d << (n / 2);
1451 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1458 if (s != (int8_t)s) { \
1459 d = (s >> 15) ^ 0x7f; \
1464 res |= (uint32_t)d << (n / 2);
1474 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1479 if (low & 0x80000000) {
1482 } else if (low > 0xffff) {
1487 if (high & 0x80000000) {
1490 } else if (high > 0xffff) {
1494 return low | (high << 16);
1497 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1507 if (high > 0xffff) {
1511 return low | (high << 16);
1514 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1519 if (low != (int16_t)low) {
1520 low = (low >> 31) ^ 0x7fff;
1524 if (high != (int16_t)high) {
1525 high = (high >> 31) ^ 0x7fff;
1528 return (uint16_t)low | (high << 16);
1531 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1533 if (x & 0x8000000000000000ull) {
1537 if (x > 0xffffffffu) {
1544 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1546 if (x > 0xffffffffu) {
1553 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1555 if ((int64_t)x != (int32_t)x) {
1557 return ((int64_t)x >> 63) ^ 0x7fffffff;
1562 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1567 tmp = (uint8_t)(x >> 8);
1569 tmp = (uint8_t)(x >> 16);
1571 tmp = (uint8_t)(x >> 24);
1576 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1580 ret = (uint16_t)(int8_t)x;
1581 tmp = (uint16_t)(int8_t)(x >> 8);
1583 tmp = (uint16_t)(int8_t)(x >> 16);
1585 tmp = (uint16_t)(int8_t)(x >> 24);
1590 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1592 uint64_t high = (uint16_t)(x >> 16);
1593 return ((uint16_t)x) | (high << 32);
1596 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1598 uint64_t high = (int16_t)(x >> 16);
1599 return ((uint32_t)(int16_t)x) | (high << 32);
1602 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1605 mask = (a ^ b) & 0x8000800080008000ull;
1606 a &= ~0x8000800080008000ull;
1607 b &= ~0x8000800080008000ull;
1608 return (a + b) ^ mask;
1611 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1614 mask = (a ^ b) & 0x8000000080000000ull;
1615 a &= ~0x8000000080000000ull;
1616 b &= ~0x8000000080000000ull;
1617 return (a + b) ^ mask;
1620 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1625 tmp = a & 0x0000ffff0000ffffull;
1626 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1627 tmp2 = b & 0xffff0000ffff0000ull;
1628 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1629 return ( tmp & 0xffff)
1630 | ((tmp >> 16) & 0xffff0000ull)
1631 | ((tmp2 << 16) & 0xffff00000000ull)
1632 | ( tmp2 & 0xffff000000000000ull);
1635 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1637 uint32_t low = a + (a >> 32);
1638 uint32_t high = b + (b >> 32);
1639 return low + ((uint64_t)high << 32);
1642 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1645 mask = (a ^ ~b) & 0x8000800080008000ull;
1646 a |= 0x8000800080008000ull;
1647 b &= ~0x8000800080008000ull;
1648 return (a - b) ^ mask;
1651 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1654 mask = (a ^ ~b) & 0x8000000080000000ull;
1655 a |= 0x8000000080000000ull;
1656 b &= ~0x8000000080000000ull;
1657 return (a - b) ^ mask;
1660 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1668 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1670 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1675 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1677 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1679 return low | ((uint64_t)high << 32);
1682 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1687 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1689 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1694 /* We have to do the arithmetic in a larger type than
1695 * the input type, because for example with a signed 32 bit
1696 * op the absolute difference can overflow a signed 32 bit value.
1698 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1699 arithtype tmp_x = (intype)(x); \
1700 arithtype tmp_y = (intype)(y); \
1701 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1704 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1708 DO_ABD(result, a, b, uint8_t, uint32_t);
1709 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1710 result |= tmp << 16;
1711 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1712 result |= tmp << 32;
1713 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1714 result |= tmp << 48;
1718 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1722 DO_ABD(result, a, b, int8_t, int32_t);
1723 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1724 result |= tmp << 16;
1725 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1726 result |= tmp << 32;
1727 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1728 result |= tmp << 48;
1732 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1736 DO_ABD(result, a, b, uint16_t, uint32_t);
1737 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1738 return result | (tmp << 32);
1741 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1745 DO_ABD(result, a, b, int16_t, int32_t);
1746 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1747 return result | (tmp << 32);
1750 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1753 DO_ABD(result, a, b, uint32_t, uint64_t);
1757 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1760 DO_ABD(result, a, b, int32_t, int64_t);
1765 /* Widening multiply. Named type is the source type. */
1766 #define DO_MULL(dest, x, y, type1, type2) do { \
1769 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1772 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1777 DO_MULL(result, a, b, uint8_t, uint16_t);
1778 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1779 result |= tmp << 16;
1780 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1781 result |= tmp << 32;
1782 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1783 result |= tmp << 48;
1787 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1792 DO_MULL(result, a, b, int8_t, uint16_t);
1793 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1794 result |= tmp << 16;
1795 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1796 result |= tmp << 32;
1797 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1798 result |= tmp << 48;
1802 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1807 DO_MULL(result, a, b, uint16_t, uint32_t);
1808 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1809 return result | (tmp << 32);
1812 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1817 DO_MULL(result, a, b, int16_t, uint32_t);
1818 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1819 return result | (tmp << 32);
1822 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1826 result = (uint16_t)-x;
1828 result |= (uint64_t)tmp << 16;
1830 result |= (uint64_t)tmp << 32;
1832 result |= (uint64_t)tmp << 48;
1836 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1839 uint32_t high = -(x >> 32);
1840 return low | ((uint64_t)high << 32);
1843 /* Saturating sign manipulation. */
1844 /* ??? Make these use NEON_VOP1 */
1845 #define DO_QABS8(x) do { \
1846 if (x == (int8_t)0x80) { \
1849 } else if (x < 0) { \
1852 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1855 NEON_UNPACK(neon_s8, vec, x);
1860 NEON_PACK(neon_s8, x, vec);
1865 #define DO_QNEG8(x) do { \
1866 if (x == (int8_t)0x80) { \
1872 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1875 NEON_UNPACK(neon_s8, vec, x);
1880 NEON_PACK(neon_s8, x, vec);
1885 #define DO_QABS16(x) do { \
1886 if (x == (int16_t)0x8000) { \
1889 } else if (x < 0) { \
1892 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1895 NEON_UNPACK(neon_s16, vec, x);
1898 NEON_PACK(neon_s16, x, vec);
1903 #define DO_QNEG16(x) do { \
1904 if (x == (int16_t)0x8000) { \
1910 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1913 NEON_UNPACK(neon_s16, vec, x);
1916 NEON_PACK(neon_s16, x, vec);
1921 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1926 } else if ((int32_t)x < 0) {
1932 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1943 uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1945 if (x == SIGNBIT64) {
1948 } else if ((int64_t)x < 0) {
1954 uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1956 if (x == SIGNBIT64) {
1965 /* NEON Float helpers. */
1966 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1968 float_status *fpst = fpstp;
1969 float32 f0 = make_float32(a);
1970 float32 f1 = make_float32(b);
1971 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1974 /* Floating point comparisons produce an integer result.
1975 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1976 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1978 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1980 float_status *fpst = fpstp;
1981 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1984 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1986 float_status *fpst = fpstp;
1987 return -float32_le(make_float32(b), make_float32(a), fpst);
1990 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1992 float_status *fpst = fpstp;
1993 return -float32_lt(make_float32(b), make_float32(a), fpst);
1996 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1998 float_status *fpst = fpstp;
1999 float32 f0 = float32_abs(make_float32(a));
2000 float32 f1 = float32_abs(make_float32(b));
2001 return -float32_le(f1, f0, fpst);
2004 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
2006 float_status *fpst = fpstp;
2007 float32 f0 = float32_abs(make_float32(a));
2008 float32 f1 = float32_abs(make_float32(b));
2009 return -float32_lt(f1, f0, fpst);
2012 uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
2014 float_status *fpst = fpstp;
2015 float64 f0 = float64_abs(make_float64(a));
2016 float64 f1 = float64_abs(make_float64(b));
2017 return -float64_le(f1, f0, fpst);
2020 uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
2022 float_status *fpst = fpstp;
2023 float64 f0 = float64_abs(make_float64(a));
2024 float64 f1 = float64_abs(make_float64(b));
2025 return -float64_lt(f1, f0, fpst);
2028 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
2030 void HELPER(neon_qunzip8)(void *vd, void *vm)
2032 uint64_t *rd = vd, *rm = vm;
2033 uint64_t zd0 = rd[0], zd1 = rd[1];
2034 uint64_t zm0 = rm[0], zm1 = rm[1];
2036 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
2037 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
2038 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
2039 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
2040 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
2041 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
2042 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2043 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
2044 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
2045 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
2046 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
2047 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
2048 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
2049 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
2050 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
2051 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2059 void HELPER(neon_qunzip16)(void *vd, void *vm)
2061 uint64_t *rd = vd, *rm = vm;
2062 uint64_t zd0 = rd[0], zd1 = rd[1];
2063 uint64_t zm0 = rm[0], zm1 = rm[1];
2065 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
2066 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
2067 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
2068 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
2069 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
2070 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
2071 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
2072 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2080 void HELPER(neon_qunzip32)(void *vd, void *vm)
2082 uint64_t *rd = vd, *rm = vm;
2083 uint64_t zd0 = rd[0], zd1 = rd[1];
2084 uint64_t zm0 = rm[0], zm1 = rm[1];
2086 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
2087 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2088 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
2089 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2097 void HELPER(neon_unzip8)(void *vd, void *vm)
2099 uint64_t *rd = vd, *rm = vm;
2100 uint64_t zd = rd[0], zm = rm[0];
2102 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
2103 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
2104 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2105 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
2106 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
2107 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
2108 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
2109 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2115 void HELPER(neon_unzip16)(void *vd, void *vm)
2117 uint64_t *rd = vd, *rm = vm;
2118 uint64_t zd = rd[0], zm = rm[0];
2120 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
2121 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
2122 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
2123 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2129 void HELPER(neon_qzip8)(void *vd, void *vm)
2131 uint64_t *rd = vd, *rm = vm;
2132 uint64_t zd0 = rd[0], zd1 = rd[1];
2133 uint64_t zm0 = rm[0], zm1 = rm[1];
2135 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2136 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2137 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2138 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2139 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2140 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2141 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2142 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2143 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2144 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2145 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2146 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2147 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2148 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2149 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2150 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2158 void HELPER(neon_qzip16)(void *vd, void *vm)
2160 uint64_t *rd = vd, *rm = vm;
2161 uint64_t zd0 = rd[0], zd1 = rd[1];
2162 uint64_t zm0 = rm[0], zm1 = rm[1];
2164 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2165 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2166 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2167 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2168 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2169 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2170 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2171 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2179 void HELPER(neon_qzip32)(void *vd, void *vm)
2181 uint64_t *rd = vd, *rm = vm;
2182 uint64_t zd0 = rd[0], zd1 = rd[1];
2183 uint64_t zm0 = rm[0], zm1 = rm[1];
2185 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2186 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2187 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2188 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2196 void HELPER(neon_zip8)(void *vd, void *vm)
2198 uint64_t *rd = vd, *rm = vm;
2199 uint64_t zd = rd[0], zm = rm[0];
2201 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2202 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2203 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2204 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2205 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2206 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2207 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2208 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2214 void HELPER(neon_zip16)(void *vd, void *vm)
2216 uint64_t *rd = vd, *rm = vm;
2217 uint64_t zd = rd[0], zm = rm[0];
2219 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2220 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2221 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2222 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2228 /* Helper function for 64 bit polynomial multiply case:
2229 * perform PolynomialMult(op1, op2) and return either the top or
2230 * bottom half of the 128 bit result.
2232 uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
2237 for (bitnum = 0; bitnum < 64; bitnum++) {
2238 if (op1 & (1ULL << bitnum)) {
2239 res ^= op2 << bitnum;
2244 uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
2249 /* bit 0 of op1 can't influence the high 64 bits at all */
2250 for (bitnum = 1; bitnum < 64; bitnum++) {
2251 if (op1 & (1ULL << bitnum)) {
2252 res ^= op2 >> (64 - bitnum);