]> Git Repo - qemu.git/blob - arch_init.c
char: io_channel_send: don't lose written bytes
[qemu.git] / arch_init.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58     do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 32;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107 static bool mig_throttle_on;
108 static int dirty_rate_high_cnt;
109 static void check_guest_throttling(void);
110
111 /***********************************************************/
112 /* ram save/restore */
113
114 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
115 #define RAM_SAVE_FLAG_COMPRESS 0x02
116 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
117 #define RAM_SAVE_FLAG_PAGE     0x08
118 #define RAM_SAVE_FLAG_EOS      0x10
119 #define RAM_SAVE_FLAG_CONTINUE 0x20
120 #define RAM_SAVE_FLAG_XBZRLE   0x40
121
122
123 static struct defconfig_file {
124     const char *filename;
125     /* Indicates it is an user config file (disabled by -no-user-config) */
126     bool userconfig;
127 } default_config_files[] = {
128     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
129     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
130     { NULL }, /* end of list */
131 };
132
133
134 int qemu_read_default_config_files(bool userconfig)
135 {
136     int ret;
137     struct defconfig_file *f;
138
139     for (f = default_config_files; f->filename; f++) {
140         if (!userconfig && f->userconfig) {
141             continue;
142         }
143         ret = qemu_read_config_file(f->filename);
144         if (ret < 0 && ret != -ENOENT) {
145             return ret;
146         }
147     }
148
149     return 0;
150 }
151
152 static inline bool is_zero_page(uint8_t *p)
153 {
154     return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
155         TARGET_PAGE_SIZE;
156 }
157
158 /* struct contains XBZRLE cache and a static page
159    used by the compression */
160 static struct {
161     /* buffer used for XBZRLE encoding */
162     uint8_t *encoded_buf;
163     /* buffer for storing page content */
164     uint8_t *current_buf;
165     /* buffer used for XBZRLE decoding */
166     uint8_t *decoded_buf;
167     /* Cache for XBZRLE */
168     PageCache *cache;
169 } XBZRLE = {
170     .encoded_buf = NULL,
171     .current_buf = NULL,
172     .decoded_buf = NULL,
173     .cache = NULL,
174 };
175
176
177 int64_t xbzrle_cache_resize(int64_t new_size)
178 {
179     if (XBZRLE.cache != NULL) {
180         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
181             TARGET_PAGE_SIZE;
182     }
183     return pow2floor(new_size);
184 }
185
186 /* accounting for migration statistics */
187 typedef struct AccountingInfo {
188     uint64_t dup_pages;
189     uint64_t skipped_pages;
190     uint64_t norm_pages;
191     uint64_t iterations;
192     uint64_t xbzrle_bytes;
193     uint64_t xbzrle_pages;
194     uint64_t xbzrle_cache_miss;
195     uint64_t xbzrle_overflows;
196 } AccountingInfo;
197
198 static AccountingInfo acct_info;
199
200 static void acct_clear(void)
201 {
202     memset(&acct_info, 0, sizeof(acct_info));
203 }
204
205 uint64_t dup_mig_bytes_transferred(void)
206 {
207     return acct_info.dup_pages * TARGET_PAGE_SIZE;
208 }
209
210 uint64_t dup_mig_pages_transferred(void)
211 {
212     return acct_info.dup_pages;
213 }
214
215 uint64_t skipped_mig_bytes_transferred(void)
216 {
217     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
218 }
219
220 uint64_t skipped_mig_pages_transferred(void)
221 {
222     return acct_info.skipped_pages;
223 }
224
225 uint64_t norm_mig_bytes_transferred(void)
226 {
227     return acct_info.norm_pages * TARGET_PAGE_SIZE;
228 }
229
230 uint64_t norm_mig_pages_transferred(void)
231 {
232     return acct_info.norm_pages;
233 }
234
235 uint64_t xbzrle_mig_bytes_transferred(void)
236 {
237     return acct_info.xbzrle_bytes;
238 }
239
240 uint64_t xbzrle_mig_pages_transferred(void)
241 {
242     return acct_info.xbzrle_pages;
243 }
244
245 uint64_t xbzrle_mig_pages_cache_miss(void)
246 {
247     return acct_info.xbzrle_cache_miss;
248 }
249
250 uint64_t xbzrle_mig_pages_overflow(void)
251 {
252     return acct_info.xbzrle_overflows;
253 }
254
255 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
256                              int cont, int flag)
257 {
258     size_t size;
259
260     qemu_put_be64(f, offset | cont | flag);
261     size = 8;
262
263     if (!cont) {
264         qemu_put_byte(f, strlen(block->idstr));
265         qemu_put_buffer(f, (uint8_t *)block->idstr,
266                         strlen(block->idstr));
267         size += 1 + strlen(block->idstr);
268     }
269     return size;
270 }
271
272 #define ENCODING_FLAG_XBZRLE 0x1
273
274 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
275                             ram_addr_t current_addr, RAMBlock *block,
276                             ram_addr_t offset, int cont, bool last_stage)
277 {
278     int encoded_len = 0, bytes_sent = -1;
279     uint8_t *prev_cached_page;
280
281     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
282         if (!last_stage) {
283             cache_insert(XBZRLE.cache, current_addr, current_data);
284         }
285         acct_info.xbzrle_cache_miss++;
286         return -1;
287     }
288
289     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
290
291     /* save current buffer into memory */
292     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
293
294     /* XBZRLE encoding (if there is no overflow) */
295     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
296                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
297                                        TARGET_PAGE_SIZE);
298     if (encoded_len == 0) {
299         DPRINTF("Skipping unmodified page\n");
300         return 0;
301     } else if (encoded_len == -1) {
302         DPRINTF("Overflow\n");
303         acct_info.xbzrle_overflows++;
304         /* update data in the cache */
305         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
306         return -1;
307     }
308
309     /* we need to update the data in the cache, in order to get the same data */
310     if (!last_stage) {
311         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
312     }
313
314     /* Send XBZRLE based compressed page */
315     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
316     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
317     qemu_put_be16(f, encoded_len);
318     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
319     bytes_sent += encoded_len + 1 + 2;
320     acct_info.xbzrle_pages++;
321     acct_info.xbzrle_bytes += bytes_sent;
322
323     return bytes_sent;
324 }
325
326
327 /* This is the last block that we have visited serching for dirty pages
328  */
329 static RAMBlock *last_seen_block;
330 /* This is the last block from where we have sent data */
331 static RAMBlock *last_sent_block;
332 static ram_addr_t last_offset;
333 static unsigned long *migration_bitmap;
334 static uint64_t migration_dirty_pages;
335 static uint32_t last_version;
336 static bool ram_bulk_stage;
337
338 static inline
339 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
340                                                  ram_addr_t start)
341 {
342     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
343     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
344     unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
345
346     unsigned long next;
347
348     if (ram_bulk_stage && nr > base) {
349         next = nr + 1;
350     } else {
351         next = find_next_bit(migration_bitmap, size, nr);
352     }
353
354     if (next < size) {
355         clear_bit(next, migration_bitmap);
356         migration_dirty_pages--;
357     }
358     return (next - base) << TARGET_PAGE_BITS;
359 }
360
361 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
362                                               ram_addr_t offset)
363 {
364     bool ret;
365     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
366
367     ret = test_and_set_bit(nr, migration_bitmap);
368
369     if (!ret) {
370         migration_dirty_pages++;
371     }
372     return ret;
373 }
374
375 /* Needs iothread lock! */
376
377 static void migration_bitmap_sync(void)
378 {
379     RAMBlock *block;
380     ram_addr_t addr;
381     uint64_t num_dirty_pages_init = migration_dirty_pages;
382     MigrationState *s = migrate_get_current();
383     static int64_t start_time;
384     static int64_t bytes_xfer_prev;
385     static int64_t num_dirty_pages_period;
386     int64_t end_time;
387     int64_t bytes_xfer_now;
388
389     if (!bytes_xfer_prev) {
390         bytes_xfer_prev = ram_bytes_transferred();
391     }
392
393     if (!start_time) {
394         start_time = qemu_get_clock_ms(rt_clock);
395     }
396
397     trace_migration_bitmap_sync_start();
398     address_space_sync_dirty_bitmap(&address_space_memory);
399
400     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
401         for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
402             if (memory_region_test_and_clear_dirty(block->mr,
403                                                    addr, TARGET_PAGE_SIZE,
404                                                    DIRTY_MEMORY_MIGRATION)) {
405                 migration_bitmap_set_dirty(block->mr, addr);
406             }
407         }
408     }
409     trace_migration_bitmap_sync_end(migration_dirty_pages
410                                     - num_dirty_pages_init);
411     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
412     end_time = qemu_get_clock_ms(rt_clock);
413
414     /* more than 1 second = 1000 millisecons */
415     if (end_time > start_time + 1000) {
416         if (migrate_auto_converge()) {
417             /* The following detection logic can be refined later. For now:
418                Check to see if the dirtied bytes is 50% more than the approx.
419                amount of bytes that just got transferred since the last time we
420                were in this routine. If that happens >N times (for now N==4)
421                we turn on the throttle down logic */
422             bytes_xfer_now = ram_bytes_transferred();
423             if (s->dirty_pages_rate &&
424                (num_dirty_pages_period * TARGET_PAGE_SIZE >
425                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
426                (dirty_rate_high_cnt++ > 4)) {
427                     trace_migration_throttle();
428                     mig_throttle_on = true;
429                     dirty_rate_high_cnt = 0;
430              }
431              bytes_xfer_prev = bytes_xfer_now;
432         } else {
433              mig_throttle_on = false;
434         }
435         s->dirty_pages_rate = num_dirty_pages_period * 1000
436             / (end_time - start_time);
437         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
438         start_time = end_time;
439         num_dirty_pages_period = 0;
440     }
441 }
442
443 /*
444  * ram_save_block: Writes a page of memory to the stream f
445  *
446  * Returns:  The number of bytes written.
447  *           0 means no dirty pages
448  */
449
450 static int ram_save_block(QEMUFile *f, bool last_stage)
451 {
452     RAMBlock *block = last_seen_block;
453     ram_addr_t offset = last_offset;
454     bool complete_round = false;
455     int bytes_sent = 0;
456     MemoryRegion *mr;
457     ram_addr_t current_addr;
458
459     if (!block)
460         block = QTAILQ_FIRST(&ram_list.blocks);
461
462     while (true) {
463         mr = block->mr;
464         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
465         if (complete_round && block == last_seen_block &&
466             offset >= last_offset) {
467             break;
468         }
469         if (offset >= block->length) {
470             offset = 0;
471             block = QTAILQ_NEXT(block, next);
472             if (!block) {
473                 block = QTAILQ_FIRST(&ram_list.blocks);
474                 complete_round = true;
475                 ram_bulk_stage = false;
476             }
477         } else {
478             uint8_t *p;
479             int cont = (block == last_sent_block) ?
480                 RAM_SAVE_FLAG_CONTINUE : 0;
481
482             p = memory_region_get_ram_ptr(mr) + offset;
483
484             /* In doubt sent page as normal */
485             bytes_sent = -1;
486             if (is_zero_page(p)) {
487                 acct_info.dup_pages++;
488                 bytes_sent = save_block_hdr(f, block, offset, cont,
489                                             RAM_SAVE_FLAG_COMPRESS);
490                 qemu_put_byte(f, 0);
491                 bytes_sent++;
492             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
493                 current_addr = block->offset + offset;
494                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
495                                               offset, cont, last_stage);
496                 if (!last_stage) {
497                     p = get_cached_data(XBZRLE.cache, current_addr);
498                 }
499             }
500
501             /* XBZRLE overflow or normal page */
502             if (bytes_sent == -1) {
503                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
504                 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
505                 bytes_sent += TARGET_PAGE_SIZE;
506                 acct_info.norm_pages++;
507             }
508
509             /* if page is unmodified, continue to the next */
510             if (bytes_sent > 0) {
511                 last_sent_block = block;
512                 break;
513             }
514         }
515     }
516     last_seen_block = block;
517     last_offset = offset;
518
519     return bytes_sent;
520 }
521
522 static uint64_t bytes_transferred;
523
524 void acct_update_position(QEMUFile *f, size_t size, bool zero)
525 {
526     uint64_t pages = size / TARGET_PAGE_SIZE;
527     if (zero) {
528         acct_info.dup_pages += pages;
529     } else {
530         acct_info.norm_pages += pages;
531         bytes_transferred += size;
532         qemu_update_position(f, size);
533     }
534 }
535
536 static ram_addr_t ram_save_remaining(void)
537 {
538     return migration_dirty_pages;
539 }
540
541 uint64_t ram_bytes_remaining(void)
542 {
543     return ram_save_remaining() * TARGET_PAGE_SIZE;
544 }
545
546 uint64_t ram_bytes_transferred(void)
547 {
548     return bytes_transferred;
549 }
550
551 uint64_t ram_bytes_total(void)
552 {
553     RAMBlock *block;
554     uint64_t total = 0;
555
556     QTAILQ_FOREACH(block, &ram_list.blocks, next)
557         total += block->length;
558
559     return total;
560 }
561
562 static void migration_end(void)
563 {
564     if (migration_bitmap) {
565         memory_global_dirty_log_stop();
566         g_free(migration_bitmap);
567         migration_bitmap = NULL;
568     }
569
570     if (XBZRLE.cache) {
571         cache_fini(XBZRLE.cache);
572         g_free(XBZRLE.cache);
573         g_free(XBZRLE.encoded_buf);
574         g_free(XBZRLE.current_buf);
575         g_free(XBZRLE.decoded_buf);
576         XBZRLE.cache = NULL;
577     }
578 }
579
580 static void ram_migration_cancel(void *opaque)
581 {
582     migration_end();
583 }
584
585 static void reset_ram_globals(void)
586 {
587     last_seen_block = NULL;
588     last_sent_block = NULL;
589     last_offset = 0;
590     last_version = ram_list.version;
591     ram_bulk_stage = true;
592 }
593
594 #define MAX_WAIT 50 /* ms, half buffered_file limit */
595
596 static int ram_save_setup(QEMUFile *f, void *opaque)
597 {
598     RAMBlock *block;
599     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
600
601     migration_bitmap = bitmap_new(ram_pages);
602     bitmap_set(migration_bitmap, 0, ram_pages);
603     migration_dirty_pages = ram_pages;
604     mig_throttle_on = false;
605     dirty_rate_high_cnt = 0;
606
607     if (migrate_use_xbzrle()) {
608         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
609                                   TARGET_PAGE_SIZE,
610                                   TARGET_PAGE_SIZE);
611         if (!XBZRLE.cache) {
612             DPRINTF("Error creating cache\n");
613             return -1;
614         }
615         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
616         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
617         acct_clear();
618     }
619
620     qemu_mutex_lock_iothread();
621     qemu_mutex_lock_ramlist();
622     bytes_transferred = 0;
623     reset_ram_globals();
624
625     memory_global_dirty_log_start();
626     migration_bitmap_sync();
627     qemu_mutex_unlock_iothread();
628
629     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
630
631     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
632         qemu_put_byte(f, strlen(block->idstr));
633         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
634         qemu_put_be64(f, block->length);
635     }
636
637     qemu_mutex_unlock_ramlist();
638     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
639
640     return 0;
641 }
642
643 static int ram_save_iterate(QEMUFile *f, void *opaque)
644 {
645     int ret;
646     int i;
647     int64_t t0;
648     int total_sent = 0;
649
650     qemu_mutex_lock_ramlist();
651
652     if (ram_list.version != last_version) {
653         reset_ram_globals();
654     }
655
656     t0 = qemu_get_clock_ns(rt_clock);
657     i = 0;
658     while ((ret = qemu_file_rate_limit(f)) == 0) {
659         int bytes_sent;
660
661         bytes_sent = ram_save_block(f, false);
662         /* no more blocks to sent */
663         if (bytes_sent == 0) {
664             break;
665         }
666         total_sent += bytes_sent;
667         acct_info.iterations++;
668         check_guest_throttling();
669         /* we want to check in the 1st loop, just in case it was the 1st time
670            and we had to sync the dirty bitmap.
671            qemu_get_clock_ns() is a bit expensive, so we only check each some
672            iterations
673         */
674         if ((i & 63) == 0) {
675             uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
676             if (t1 > MAX_WAIT) {
677                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
678                         t1, i);
679                 break;
680             }
681         }
682         i++;
683     }
684
685     qemu_mutex_unlock_ramlist();
686
687     if (ret < 0) {
688         bytes_transferred += total_sent;
689         return ret;
690     }
691
692     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
693     total_sent += 8;
694     bytes_transferred += total_sent;
695
696     return total_sent;
697 }
698
699 static int ram_save_complete(QEMUFile *f, void *opaque)
700 {
701     qemu_mutex_lock_ramlist();
702     migration_bitmap_sync();
703
704     /* try transferring iterative blocks of memory */
705
706     /* flush all remaining blocks regardless of rate limiting */
707     while (true) {
708         int bytes_sent;
709
710         bytes_sent = ram_save_block(f, true);
711         /* no more blocks to sent */
712         if (bytes_sent == 0) {
713             break;
714         }
715         bytes_transferred += bytes_sent;
716     }
717     migration_end();
718
719     qemu_mutex_unlock_ramlist();
720     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
721
722     return 0;
723 }
724
725 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
726 {
727     uint64_t remaining_size;
728
729     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
730
731     if (remaining_size < max_size) {
732         qemu_mutex_lock_iothread();
733         migration_bitmap_sync();
734         qemu_mutex_unlock_iothread();
735         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
736     }
737     return remaining_size;
738 }
739
740 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
741 {
742     int ret, rc = 0;
743     unsigned int xh_len;
744     int xh_flags;
745
746     if (!XBZRLE.decoded_buf) {
747         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
748     }
749
750     /* extract RLE header */
751     xh_flags = qemu_get_byte(f);
752     xh_len = qemu_get_be16(f);
753
754     if (xh_flags != ENCODING_FLAG_XBZRLE) {
755         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
756         return -1;
757     }
758
759     if (xh_len > TARGET_PAGE_SIZE) {
760         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
761         return -1;
762     }
763     /* load data and decode */
764     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
765
766     /* decode RLE */
767     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
768                                TARGET_PAGE_SIZE);
769     if (ret == -1) {
770         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
771         rc = -1;
772     } else  if (ret > TARGET_PAGE_SIZE) {
773         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
774                 ret, TARGET_PAGE_SIZE);
775         abort();
776     }
777
778     return rc;
779 }
780
781 static inline void *host_from_stream_offset(QEMUFile *f,
782                                             ram_addr_t offset,
783                                             int flags)
784 {
785     static RAMBlock *block = NULL;
786     char id[256];
787     uint8_t len;
788
789     if (flags & RAM_SAVE_FLAG_CONTINUE) {
790         if (!block) {
791             fprintf(stderr, "Ack, bad migration stream!\n");
792             return NULL;
793         }
794
795         return memory_region_get_ram_ptr(block->mr) + offset;
796     }
797
798     len = qemu_get_byte(f);
799     qemu_get_buffer(f, (uint8_t *)id, len);
800     id[len] = 0;
801
802     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
803         if (!strncmp(id, block->idstr, sizeof(id)))
804             return memory_region_get_ram_ptr(block->mr) + offset;
805     }
806
807     fprintf(stderr, "Can't find block %s!\n", id);
808     return NULL;
809 }
810
811 static int ram_load(QEMUFile *f, void *opaque, int version_id)
812 {
813     ram_addr_t addr;
814     int flags, ret = 0;
815     int error;
816     static uint64_t seq_iter;
817
818     seq_iter++;
819
820     if (version_id < 4 || version_id > 4) {
821         return -EINVAL;
822     }
823
824     do {
825         addr = qemu_get_be64(f);
826
827         flags = addr & ~TARGET_PAGE_MASK;
828         addr &= TARGET_PAGE_MASK;
829
830         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
831             if (version_id == 4) {
832                 /* Synchronize RAM block list */
833                 char id[256];
834                 ram_addr_t length;
835                 ram_addr_t total_ram_bytes = addr;
836
837                 while (total_ram_bytes) {
838                     RAMBlock *block;
839                     uint8_t len;
840
841                     len = qemu_get_byte(f);
842                     qemu_get_buffer(f, (uint8_t *)id, len);
843                     id[len] = 0;
844                     length = qemu_get_be64(f);
845
846                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
847                         if (!strncmp(id, block->idstr, sizeof(id))) {
848                             if (block->length != length) {
849                                 fprintf(stderr,
850                                         "Length mismatch: %s: " RAM_ADDR_FMT
851                                         " in != " RAM_ADDR_FMT "\n", id, length,
852                                         block->length);
853                                 ret =  -EINVAL;
854                                 goto done;
855                             }
856                             break;
857                         }
858                     }
859
860                     if (!block) {
861                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
862                                 "accept migration\n", id);
863                         ret = -EINVAL;
864                         goto done;
865                     }
866
867                     total_ram_bytes -= length;
868                 }
869             }
870         }
871
872         if (flags & RAM_SAVE_FLAG_COMPRESS) {
873             void *host;
874             uint8_t ch;
875
876             host = host_from_stream_offset(f, addr, flags);
877             if (!host) {
878                 return -EINVAL;
879             }
880
881             ch = qemu_get_byte(f);
882             if (ch != 0 || !is_zero_page(host)) {
883                 memset(host, ch, TARGET_PAGE_SIZE);
884 #ifndef _WIN32
885                 if (ch == 0 &&
886                     (!kvm_enabled() || kvm_has_sync_mmu()) &&
887                     getpagesize() <= TARGET_PAGE_SIZE) {
888                     qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
889                 }
890 #endif
891             }
892         } else if (flags & RAM_SAVE_FLAG_PAGE) {
893             void *host;
894
895             host = host_from_stream_offset(f, addr, flags);
896             if (!host) {
897                 return -EINVAL;
898             }
899
900             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
901         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
902             void *host = host_from_stream_offset(f, addr, flags);
903             if (!host) {
904                 return -EINVAL;
905             }
906
907             if (load_xbzrle(f, addr, host) < 0) {
908                 ret = -EINVAL;
909                 goto done;
910             }
911         }
912         error = qemu_file_get_error(f);
913         if (error) {
914             ret = error;
915             goto done;
916         }
917     } while (!(flags & RAM_SAVE_FLAG_EOS));
918
919 done:
920     DPRINTF("Completed load of VM with exit code %d seq iteration "
921             "%" PRIu64 "\n", ret, seq_iter);
922     return ret;
923 }
924
925 SaveVMHandlers savevm_ram_handlers = {
926     .save_live_setup = ram_save_setup,
927     .save_live_iterate = ram_save_iterate,
928     .save_live_complete = ram_save_complete,
929     .save_live_pending = ram_save_pending,
930     .load_state = ram_load,
931     .cancel = ram_migration_cancel,
932 };
933
934 struct soundhw {
935     const char *name;
936     const char *descr;
937     int enabled;
938     int isa;
939     union {
940         int (*init_isa) (ISABus *bus);
941         int (*init_pci) (PCIBus *bus);
942     } init;
943 };
944
945 static struct soundhw soundhw[9];
946 static int soundhw_count;
947
948 void isa_register_soundhw(const char *name, const char *descr,
949                           int (*init_isa)(ISABus *bus))
950 {
951     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
952     soundhw[soundhw_count].name = name;
953     soundhw[soundhw_count].descr = descr;
954     soundhw[soundhw_count].isa = 1;
955     soundhw[soundhw_count].init.init_isa = init_isa;
956     soundhw_count++;
957 }
958
959 void pci_register_soundhw(const char *name, const char *descr,
960                           int (*init_pci)(PCIBus *bus))
961 {
962     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
963     soundhw[soundhw_count].name = name;
964     soundhw[soundhw_count].descr = descr;
965     soundhw[soundhw_count].isa = 0;
966     soundhw[soundhw_count].init.init_pci = init_pci;
967     soundhw_count++;
968 }
969
970 void select_soundhw(const char *optarg)
971 {
972     struct soundhw *c;
973
974     if (is_help_option(optarg)) {
975     show_valid_cards:
976
977         if (soundhw_count) {
978              printf("Valid sound card names (comma separated):\n");
979              for (c = soundhw; c->name; ++c) {
980                  printf ("%-11s %s\n", c->name, c->descr);
981              }
982              printf("\n-soundhw all will enable all of the above\n");
983         } else {
984              printf("Machine has no user-selectable audio hardware "
985                     "(it may or may not have always-present audio hardware).\n");
986         }
987         exit(!is_help_option(optarg));
988     }
989     else {
990         size_t l;
991         const char *p;
992         char *e;
993         int bad_card = 0;
994
995         if (!strcmp(optarg, "all")) {
996             for (c = soundhw; c->name; ++c) {
997                 c->enabled = 1;
998             }
999             return;
1000         }
1001
1002         p = optarg;
1003         while (*p) {
1004             e = strchr(p, ',');
1005             l = !e ? strlen(p) : (size_t) (e - p);
1006
1007             for (c = soundhw; c->name; ++c) {
1008                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1009                     c->enabled = 1;
1010                     break;
1011                 }
1012             }
1013
1014             if (!c->name) {
1015                 if (l > 80) {
1016                     fprintf(stderr,
1017                             "Unknown sound card name (too big to show)\n");
1018                 }
1019                 else {
1020                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
1021                             (int) l, p);
1022                 }
1023                 bad_card = 1;
1024             }
1025             p += l + (e != NULL);
1026         }
1027
1028         if (bad_card) {
1029             goto show_valid_cards;
1030         }
1031     }
1032 }
1033
1034 void audio_init(void)
1035 {
1036     struct soundhw *c;
1037     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1038     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1039
1040     for (c = soundhw; c->name; ++c) {
1041         if (c->enabled) {
1042             if (c->isa) {
1043                 if (!isa_bus) {
1044                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1045                     exit(1);
1046                 }
1047                 c->init.init_isa(isa_bus);
1048             } else {
1049                 if (!pci_bus) {
1050                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1051                     exit(1);
1052                 }
1053                 c->init.init_pci(pci_bus);
1054             }
1055         }
1056     }
1057 }
1058
1059 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1060 {
1061     int ret;
1062
1063     if (strlen(str) != 36) {
1064         return -1;
1065     }
1066
1067     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1068                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1069                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1070                  &uuid[15]);
1071
1072     if (ret != 16) {
1073         return -1;
1074     }
1075 #ifdef TARGET_I386
1076     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16);
1077 #endif
1078     return 0;
1079 }
1080
1081 void do_acpitable_option(const QemuOpts *opts)
1082 {
1083 #ifdef TARGET_I386
1084     Error *err = NULL;
1085
1086     acpi_table_add(opts, &err);
1087     if (err) {
1088         fprintf(stderr, "Wrong acpi table provided: %s\n",
1089                 error_get_pretty(err));
1090         error_free(err);
1091         exit(1);
1092     }
1093 #endif
1094 }
1095
1096 void do_smbios_option(const char *optarg)
1097 {
1098 #ifdef TARGET_I386
1099     if (smbios_entry_add(optarg) < 0) {
1100         exit(1);
1101     }
1102 #endif
1103 }
1104
1105 void cpudef_init(void)
1106 {
1107 #if defined(cpudef_setup)
1108     cpudef_setup(); /* parse cpu definitions in target config file */
1109 #endif
1110 }
1111
1112 int tcg_available(void)
1113 {
1114     return 1;
1115 }
1116
1117 int kvm_available(void)
1118 {
1119 #ifdef CONFIG_KVM
1120     return 1;
1121 #else
1122     return 0;
1123 #endif
1124 }
1125
1126 int xen_available(void)
1127 {
1128 #ifdef CONFIG_XEN
1129     return 1;
1130 #else
1131     return 0;
1132 #endif
1133 }
1134
1135
1136 TargetInfo *qmp_query_target(Error **errp)
1137 {
1138     TargetInfo *info = g_malloc0(sizeof(*info));
1139
1140     info->arch = g_strdup(TARGET_NAME);
1141
1142     return info;
1143 }
1144
1145 /* Stub function that's gets run on the vcpu when its brought out of the
1146    VM to run inside qemu via async_run_on_cpu()*/
1147 static void mig_sleep_cpu(void *opq)
1148 {
1149     qemu_mutex_unlock_iothread();
1150     g_usleep(30*1000);
1151     qemu_mutex_lock_iothread();
1152 }
1153
1154 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1155    much time in the VM. The migration thread will try to catchup.
1156    Workload will experience a performance drop.
1157 */
1158 static void mig_throttle_cpu_down(CPUState *cpu, void *data)
1159 {
1160     async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1161 }
1162
1163 static void mig_throttle_guest_down(void)
1164 {
1165     qemu_mutex_lock_iothread();
1166     qemu_for_each_cpu(mig_throttle_cpu_down, NULL);
1167     qemu_mutex_unlock_iothread();
1168 }
1169
1170 static void check_guest_throttling(void)
1171 {
1172     static int64_t t0;
1173     int64_t        t1;
1174
1175     if (!mig_throttle_on) {
1176         return;
1177     }
1178
1179     if (!t0)  {
1180         t0 = qemu_get_clock_ns(rt_clock);
1181         return;
1182     }
1183
1184     t1 = qemu_get_clock_ns(rt_clock);
1185
1186     /* If it has been more than 40 ms since the last time the guest
1187      * was throttled then do it again.
1188      */
1189     if (40 < (t1-t0)/1000000) {
1190         mig_throttle_guest_down();
1191         t0 = t1;
1192     }
1193 }
This page took 0.086912 seconds and 4 git commands to generate.