4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
26 /* Sparc MMU emulation */
28 #if defined(CONFIG_USER_ONLY)
30 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
31 MMUAccessType access_type, int mmu_idx,
32 bool probe, uintptr_t retaddr)
34 SPARCCPU *cpu = SPARC_CPU(cs);
35 CPUSPARCState *env = &cpu->env;
37 if (access_type == MMU_INST_FETCH) {
38 cs->exception_index = TT_TFAULT;
40 cs->exception_index = TT_DFAULT;
42 env->dmmu.mmuregs[4] = address;
44 env->mmuregs[4] = address;
47 cpu_loop_exit_restore(cs, retaddr);
52 #ifndef TARGET_SPARC64
54 * Sparc V8 Reference MMU (SRMMU)
56 static const int access_table[8][8] = {
57 { 0, 0, 0, 0, 8, 0, 12, 12 },
58 { 0, 0, 0, 0, 8, 0, 0, 0 },
59 { 8, 8, 0, 0, 0, 8, 12, 12 },
60 { 8, 8, 0, 0, 0, 8, 0, 0 },
61 { 8, 0, 8, 0, 8, 8, 12, 12 },
62 { 8, 0, 8, 0, 8, 0, 8, 0 },
63 { 8, 8, 8, 0, 8, 8, 12, 12 },
64 { 8, 8, 8, 0, 8, 8, 8, 0 }
67 static const int perm_table[2][8] = {
70 PAGE_READ | PAGE_WRITE,
71 PAGE_READ | PAGE_EXEC,
72 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
74 PAGE_READ | PAGE_WRITE,
75 PAGE_READ | PAGE_EXEC,
76 PAGE_READ | PAGE_WRITE | PAGE_EXEC
80 PAGE_READ | PAGE_WRITE,
81 PAGE_READ | PAGE_EXEC,
82 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
90 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
91 int *prot, int *access_index, MemTxAttrs *attrs,
92 target_ulong address, int rw, int mmu_idx,
93 target_ulong *page_size)
98 int error_code = 0, is_dirty, is_user;
99 unsigned long page_offset;
100 CPUState *cs = env_cpu(env);
103 is_user = mmu_idx == MMU_USER_IDX;
105 if (mmu_idx == MMU_PHYS_IDX) {
106 *page_size = TARGET_PAGE_SIZE;
107 /* Boot mode: instruction fetches are taken from PROM */
108 if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
109 *physical = env->prom_addr | (address & 0x7ffffULL);
110 *prot = PAGE_READ | PAGE_EXEC;
114 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
118 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
119 *physical = 0xffffffffffff0000ULL;
121 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
122 /* Context base + context number */
123 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
124 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
125 if (result != MEMTX_OK) {
126 return 4 << 2; /* Translation fault, L = 0 */
130 switch (pde & PTE_ENTRYTYPE_MASK) {
132 case 0: /* Invalid */
134 case 2: /* L0 PTE, maybe should not happen? */
135 case 3: /* Reserved */
138 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
139 pde = address_space_ldl(cs->as, pde_ptr,
140 MEMTXATTRS_UNSPECIFIED, &result);
141 if (result != MEMTX_OK) {
142 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
145 switch (pde & PTE_ENTRYTYPE_MASK) {
147 case 0: /* Invalid */
148 return (1 << 8) | (1 << 2);
149 case 3: /* Reserved */
150 return (1 << 8) | (4 << 2);
152 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
153 pde = address_space_ldl(cs->as, pde_ptr,
154 MEMTXATTRS_UNSPECIFIED, &result);
155 if (result != MEMTX_OK) {
156 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
159 switch (pde & PTE_ENTRYTYPE_MASK) {
161 case 0: /* Invalid */
162 return (2 << 8) | (1 << 2);
163 case 3: /* Reserved */
164 return (2 << 8) | (4 << 2);
166 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
167 pde = address_space_ldl(cs->as, pde_ptr,
168 MEMTXATTRS_UNSPECIFIED, &result);
169 if (result != MEMTX_OK) {
170 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
173 switch (pde & PTE_ENTRYTYPE_MASK) {
175 case 0: /* Invalid */
176 return (3 << 8) | (1 << 2);
177 case 1: /* PDE, should not happen */
178 case 3: /* Reserved */
179 return (3 << 8) | (4 << 2);
183 *page_size = TARGET_PAGE_SIZE;
186 page_offset = address & 0x3f000;
187 *page_size = 0x40000;
191 page_offset = address & 0xfff000;
192 *page_size = 0x1000000;
197 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
198 error_code = access_table[*access_index][access_perms];
199 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
203 /* update page modified and dirty bits */
204 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
205 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
206 pde |= PG_ACCESSED_MASK;
208 pde |= PG_MODIFIED_MASK;
210 stl_phys_notdirty(cs->as, pde_ptr, pde);
213 /* the page can be put in the TLB */
214 *prot = perm_table[is_user][access_perms];
215 if (!(pde & PG_MODIFIED_MASK)) {
216 /* only set write access if already dirty... otherwise wait
218 *prot &= ~PAGE_WRITE;
221 /* Even if large ptes, we map only one 4KB page in the cache to
222 avoid filling it too fast */
223 *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
227 /* Perform address translation */
228 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
229 MMUAccessType access_type, int mmu_idx,
230 bool probe, uintptr_t retaddr)
232 SPARCCPU *cpu = SPARC_CPU(cs);
233 CPUSPARCState *env = &cpu->env;
236 target_ulong page_size;
237 int error_code = 0, prot, access_index;
238 MemTxAttrs attrs = {};
241 * TODO: If we ever need tlb_vaddr_to_host for this target,
242 * then we must figure out how to manipulate FSR and FAR
243 * when both MMU_NF and probe are set. In the meantime,
244 * do not support this use case.
248 address &= TARGET_PAGE_MASK;
249 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
250 address, access_type,
251 mmu_idx, &page_size);
253 if (likely(error_code == 0)) {
254 qemu_log_mask(CPU_LOG_MMU,
255 "Translate at %" VADDR_PRIx " -> "
256 TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
257 address, paddr, vaddr);
258 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
262 if (env->mmuregs[3]) { /* Fault status register */
263 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
265 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
266 env->mmuregs[4] = address; /* Fault address register */
268 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
269 /* No fault mode: if a mapping is available, just override
270 permissions. If no mapping is available, redirect accesses to
271 neverland. Fake/overridden mappings will be flushed when
272 switching to normal mode. */
273 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
274 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
277 if (access_type == MMU_INST_FETCH) {
278 cs->exception_index = TT_TFAULT;
280 cs->exception_index = TT_DFAULT;
282 cpu_loop_exit_restore(cs, retaddr);
286 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
288 CPUState *cs = env_cpu(env);
294 * TODO: MMU probe operations are supposed to set the fault
295 * status registers, but we don't do this.
298 /* Context base + context number */
299 pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
300 (env->mmuregs[2] << 2);
301 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
302 if (result != MEMTX_OK) {
306 switch (pde & PTE_ENTRYTYPE_MASK) {
308 case 0: /* Invalid */
309 case 2: /* PTE, maybe should not happen? */
310 case 3: /* Reserved */
316 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
317 pde = address_space_ldl(cs->as, pde_ptr,
318 MEMTXATTRS_UNSPECIFIED, &result);
319 if (result != MEMTX_OK) {
323 switch (pde & PTE_ENTRYTYPE_MASK) {
325 case 0: /* Invalid */
326 case 3: /* Reserved */
334 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
335 pde = address_space_ldl(cs->as, pde_ptr,
336 MEMTXATTRS_UNSPECIFIED, &result);
337 if (result != MEMTX_OK) {
341 switch (pde & PTE_ENTRYTYPE_MASK) {
343 case 0: /* Invalid */
344 case 3: /* Reserved */
352 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
353 pde = address_space_ldl(cs->as, pde_ptr,
354 MEMTXATTRS_UNSPECIFIED, &result);
355 if (result != MEMTX_OK) {
359 switch (pde & PTE_ENTRYTYPE_MASK) {
361 case 0: /* Invalid */
362 case 1: /* PDE, should not happen */
363 case 3: /* Reserved */
374 void dump_mmu(CPUSPARCState *env)
376 CPUState *cs = env_cpu(env);
377 target_ulong va, va1, va2;
378 unsigned int n, m, o;
382 qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
383 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
384 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
385 pde = mmu_probe(env, va, 2);
387 pa = cpu_get_phys_page_debug(cs, va);
388 qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
389 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
390 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
391 pde = mmu_probe(env, va1, 1);
393 pa = cpu_get_phys_page_debug(cs, va1);
394 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
395 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
397 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
398 pde = mmu_probe(env, va2, 0);
400 pa = cpu_get_phys_page_debug(cs, va2);
401 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
402 TARGET_FMT_plx " PTE: "
413 /* Gdb expects all registers windows to be flushed in ram. This function handles
414 * reads (and only reads) in stack frames as if windows were flushed. We assume
415 * that the sparc ABI is followed.
417 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
418 uint8_t *buf, int len, bool is_write)
420 SPARCCPU *cpu = SPARC_CPU(cs);
421 CPUSPARCState *env = &cpu->env;
422 target_ulong addr = address;
428 for (i = 0; i < env->nwindows; i++) {
430 target_ulong fp = env->regbase[cwp * 16 + 22];
432 /* Assume fp == 0 means end of frame. */
437 cwp = cpu_cwp_inc(env, cwp + 1);
439 /* Invalid window ? */
440 if (env->wim & (1 << cwp)) {
444 /* According to the ABI, the stack is growing downward. */
445 if (addr + len < fp) {
449 /* Not in this frame. */
450 if (addr > fp + 64) {
454 /* Handle access before this window. */
457 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
465 /* Access byte per byte to registers. Not very efficient but speed
475 for (; len1; len1--) {
476 int reg = cwp * 16 + 8 + (off >> 2);
481 u.v = cpu_to_be32(env->regbase[reg]);
482 *buf++ = u.c[off & 3];
493 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
496 #else /* !TARGET_SPARC64 */
498 /* 41 bit physical address space */
499 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
501 return x & 0x1ffffffffffULL;
505 * UltraSparc IIi I/DMMUs
508 /* Returns true if TTE tag is valid and matches virtual address value
509 in context requires virtual address mask value calculated from TTE
511 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
512 uint64_t address, uint64_t context,
515 uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
517 /* valid, context match, virtual address match? */
518 if (TTE_IS_VALID(tlb->tte) &&
519 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
520 && compare_masked(address, tlb->tag, mask)) {
521 /* decode physical address */
522 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
529 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
530 int *prot, MemTxAttrs *attrs,
531 target_ulong address, int rw, int mmu_idx)
533 CPUState *cs = env_cpu(env);
537 bool is_user = false;
541 g_assert_not_reached();
546 context = env->dmmu.mmu_primary_context & 0x1fff;
547 sfsr |= SFSR_CT_PRIMARY;
549 case MMU_USER_SECONDARY_IDX:
552 case MMU_KERNEL_SECONDARY_IDX:
553 context = env->dmmu.mmu_secondary_context & 0x1fff;
554 sfsr |= SFSR_CT_SECONDARY;
556 case MMU_NUCLEUS_IDX:
557 sfsr |= SFSR_CT_NUCLEUS;
565 sfsr |= SFSR_WRITE_BIT;
566 } else if (rw == 4) {
570 for (i = 0; i < 64; i++) {
571 /* ctx match, vaddr match, valid? */
572 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
575 if (TTE_IS_IE(env->dtlb[i].tte)) {
576 attrs->byte_swap = true;
580 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
581 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
583 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
584 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
587 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
589 sfsr |= SFSR_FT_NF_E_BIT;
592 if (TTE_IS_NFO(env->dtlb[i].tte)) {
594 sfsr |= SFSR_FT_NFO_BIT;
599 /* faults above are reported with TT_DFAULT. */
600 cs->exception_index = TT_DFAULT;
601 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
603 cs->exception_index = TT_DPROT;
605 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
610 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
614 TTE_SET_USED(env->dtlb[i].tte);
619 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
620 sfsr |= SFSR_OW_BIT; /* overflow (not read before
624 if (env->pstate & PS_PRIV) {
628 /* FIXME: ASI field in SFSR must be set */
629 env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
631 env->dmmu.sfar = address; /* Fault address register */
633 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
639 trace_mmu_helper_dmiss(address, context);
643 * - UltraSPARC IIi: SFSR and SFAR unmodified
644 * - JPS1: SFAR updated and some fields of SFSR updated
646 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
647 cs->exception_index = TT_DMISS;
651 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
652 int *prot, MemTxAttrs *attrs,
653 target_ulong address, int mmu_idx)
655 CPUState *cs = env_cpu(env);
658 bool is_user = false;
662 case MMU_USER_SECONDARY_IDX:
663 case MMU_KERNEL_SECONDARY_IDX:
664 g_assert_not_reached();
669 context = env->dmmu.mmu_primary_context & 0x1fff;
677 /* PRIMARY context */
678 context = env->dmmu.mmu_primary_context & 0x1fff;
680 /* NUCLEUS context */
684 for (i = 0; i < 64; i++) {
685 /* ctx match, vaddr match, valid? */
686 if (ultrasparc_tag_match(&env->itlb[i],
687 address, context, physical)) {
689 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
690 /* Fault status register */
691 if (env->immu.sfsr & SFSR_VALID_BIT) {
692 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
697 if (env->pstate & PS_PRIV) {
698 env->immu.sfsr |= SFSR_PR_BIT;
701 env->immu.sfsr |= SFSR_CT_NUCLEUS;
704 /* FIXME: ASI field in SFSR must be set */
705 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
706 cs->exception_index = TT_TFAULT;
708 env->immu.tag_access = (address & ~0x1fffULL) | context;
710 trace_mmu_helper_tfault(address, context);
715 TTE_SET_USED(env->itlb[i].tte);
720 trace_mmu_helper_tmiss(address, context);
722 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
723 env->immu.tag_access = (address & ~0x1fffULL) | context;
724 cs->exception_index = TT_TMISS;
728 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
729 int *prot, int *access_index, MemTxAttrs *attrs,
730 target_ulong address, int rw, int mmu_idx,
731 target_ulong *page_size)
733 /* ??? We treat everything as a small page, then explicitly flush
734 everything when an entry is evicted. */
735 *page_size = TARGET_PAGE_SIZE;
737 /* safety net to catch wrong softmmu index use from dynamic code */
738 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
740 trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
741 env->dmmu.mmu_primary_context,
742 env->dmmu.mmu_secondary_context,
745 trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
746 env->dmmu.mmu_primary_context,
747 env->dmmu.mmu_secondary_context,
752 if (mmu_idx == MMU_PHYS_IDX) {
753 *physical = ultrasparc_truncate_physical(address);
754 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
759 return get_physical_address_code(env, physical, prot, attrs, address,
762 return get_physical_address_data(env, physical, prot, attrs, address,
767 /* Perform address translation */
768 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
769 MMUAccessType access_type, int mmu_idx,
770 bool probe, uintptr_t retaddr)
772 SPARCCPU *cpu = SPARC_CPU(cs);
773 CPUSPARCState *env = &cpu->env;
776 target_ulong page_size;
777 MemTxAttrs attrs = {};
778 int error_code = 0, prot, access_index;
780 address &= TARGET_PAGE_MASK;
781 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
782 address, access_type,
783 mmu_idx, &page_size);
784 if (likely(error_code == 0)) {
787 trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
788 env->dmmu.mmu_primary_context,
789 env->dmmu.mmu_secondary_context);
791 tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
798 cpu_loop_exit_restore(cs, retaddr);
801 void dump_mmu(CPUSPARCState *env)
806 qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
808 env->dmmu.mmu_primary_context,
809 env->dmmu.mmu_secondary_context);
810 qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
811 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
812 if ((env->lsu & DMMU_E) == 0) {
813 qemu_printf("DMMU disabled\n");
815 qemu_printf("DMMU dump\n");
816 for (i = 0; i < 64; i++) {
817 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
832 if (TTE_IS_VALID(env->dtlb[i].tte)) {
833 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
834 ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
836 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
837 TTE_PA(env->dtlb[i].tte),
839 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
840 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
841 TTE_IS_LOCKED(env->dtlb[i].tte) ?
842 "locked" : "unlocked",
843 TTE_IS_IE(env->dtlb[i].tte) ?
845 env->dtlb[i].tag & (uint64_t)0x1fffULL,
846 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
851 if ((env->lsu & IMMU_E) == 0) {
852 qemu_printf("IMMU disabled\n");
854 qemu_printf("IMMU dump\n");
855 for (i = 0; i < 64; i++) {
856 switch (TTE_PGSIZE(env->itlb[i].tte)) {
871 if (TTE_IS_VALID(env->itlb[i].tte)) {
872 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
873 ", %s, %s, %s, ctx %" PRId64 " %s\n",
875 env->itlb[i].tag & (uint64_t)~0x1fffULL,
876 TTE_PA(env->itlb[i].tte),
878 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
879 TTE_IS_LOCKED(env->itlb[i].tte) ?
880 "locked" : "unlocked",
881 env->itlb[i].tag & (uint64_t)0x1fffULL,
882 TTE_IS_GLOBAL(env->itlb[i].tte) ?
889 #endif /* TARGET_SPARC64 */
891 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
892 target_ulong addr, int rw, int mmu_idx)
894 target_ulong page_size;
895 int prot, access_index;
896 MemTxAttrs attrs = {};
898 return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
899 rw, mmu_idx, &page_size);
902 #if defined(TARGET_SPARC64)
903 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
908 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
915 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
917 SPARCCPU *cpu = SPARC_CPU(cs);
918 CPUSPARCState *env = &cpu->env;
920 int mmu_idx = cpu_mmu_index(env, false);
922 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
923 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {