2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/runstate.h"
27 #include "kvm/kvm_i386.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "sysemu/tcg.h"
30 #include "sysemu/hw_accel.h"
31 #include "monitor/monitor.h"
32 #include "hw/i386/apic_internal.h"
35 void cpu_sync_bndcs_hflags(CPUX86State *env)
37 uint32_t hflags = env->hflags;
38 uint32_t hflags2 = env->hflags2;
41 if ((hflags & HF_CPL_MASK) == 3) {
42 bndcsr = env->bndcs_regs.cfgu;
44 bndcsr = env->msr_bndcfgs;
47 if ((env->cr[4] & CR4_OSXSAVE_MASK)
48 && (env->xcr0 & XSTATE_BNDCSR_MASK)
49 && (bndcsr & BNDCFG_ENABLE)) {
50 hflags |= HF_MPX_EN_MASK;
52 hflags &= ~HF_MPX_EN_MASK;
55 if (bndcsr & BNDCFG_BNDPRESERVE) {
56 hflags2 |= HF2_MPX_PR_MASK;
58 hflags2 &= ~HF2_MPX_PR_MASK;
62 env->hflags2 = hflags2;
65 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
67 int cpuver = env->cpuid_version;
69 if (family == NULL || model == NULL) {
73 *family = (cpuver >> 8) & 0x0f;
74 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
77 /* Broadcast MCA signal for processor version 06H_EH and above */
78 int cpu_x86_support_mca_broadcast(CPUX86State *env)
83 cpu_x86_version(env, &family, &model);
84 if ((family == 6 && model >= 14) || family > 6) {
91 /***********************************************************/
94 static const char *cc_op_str[CC_OP_NB] = {
161 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f,
162 const char *name, struct SegmentCache *sc)
165 if (env->hflags & HF_CS64_MASK) {
166 qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
167 sc->selector, sc->base, sc->limit,
168 sc->flags & 0x00ffff00);
172 qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
173 (uint32_t)sc->base, sc->limit,
174 sc->flags & 0x00ffff00);
177 if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
180 qemu_fprintf(f, " DPL=%d ",
181 (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
182 if (sc->flags & DESC_S_MASK) {
183 if (sc->flags & DESC_CS_MASK) {
184 qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
185 ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
186 qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
187 (sc->flags & DESC_R_MASK) ? 'R' : '-');
189 qemu_fprintf(f, (sc->flags & DESC_B_MASK
190 || env->hflags & HF_LMA_MASK)
192 qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
193 (sc->flags & DESC_W_MASK) ? 'W' : '-');
195 qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
197 static const char *sys_type_name[2][16] = {
199 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
200 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
201 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
202 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
205 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
206 "Reserved", "Reserved", "Reserved", "Reserved",
207 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
208 "Reserved", "IntGate64", "TrapGate64"
211 qemu_fprintf(f, "%s",
212 sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
213 [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]);
216 qemu_fprintf(f, "\n");
219 #ifndef CONFIG_USER_ONLY
221 /* ARRAY_SIZE check is not required because
222 * DeliveryMode(dm) has a size of 3 bit.
224 static inline const char *dm2str(uint32_t dm)
226 static const char *str[] = {
239 static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer)
241 uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
242 qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
244 lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
245 lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
246 lvt & APIC_LVT_MASKED ? "masked" : "",
247 lvt & APIC_LVT_DELIV_STS ? "pending" : "",
249 "" : lvt & APIC_LVT_TIMER_PERIODIC ?
250 "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
251 "tsc-deadline" : "one-shot",
253 if (dm != APIC_DM_NMI) {
254 qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK);
260 /* ARRAY_SIZE check is not required because
261 * destination shorthand has a size of 2 bit.
263 static inline const char *shorthand2str(uint32_t shorthand)
265 const char *str[] = {
266 "no-shorthand", "self", "all-self", "all"
268 return str[shorthand];
271 static inline uint8_t divider_conf(uint32_t divide_conf)
273 uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
275 return divide_val == 7 ? 1 : 2 << divide_val;
278 static inline void mask2str(char *str, uint32_t val, uint8_t size)
281 *str++ = (val >> size) & 1 ? '1' : '0';
286 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
288 static void dump_apic_icr(APICCommonState *s, CPUX86State *env)
290 uint32_t icr = s->icr[0], icr2 = s->icr[1];
291 uint8_t dest_shorthand = \
292 (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
293 bool logical_mod = icr & APIC_ICR_DEST_MOD;
294 char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
298 qemu_printf("ICR\t 0x%08x %s %s %s %s\n",
300 logical_mod ? "logical" : "physical",
301 icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
302 icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
303 shorthand2str(dest_shorthand));
305 qemu_printf("ICR2\t 0x%08x", icr2);
306 if (dest_shorthand != 0) {
310 x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
311 dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
315 qemu_printf(" cpu %u (X2APIC ID)\n", dest_field);
317 qemu_printf(" cpu %u (APIC ID)\n",
318 dest_field & APIC_LOGDEST_XAPIC_ID);
323 if (s->dest_mode == 0xf) { /* flat mode */
324 mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
325 qemu_printf(" mask %s (APIC ID)\n", apic_id_str);
326 } else if (s->dest_mode == 0) { /* cluster mode */
328 mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
329 qemu_printf(" cluster %u mask %s (X2APIC ID)\n",
330 dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
332 mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
333 qemu_printf(" cluster %u mask %s (APIC ID)\n",
334 dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
339 static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab,
344 qemu_printf("%s\t ", name);
345 for (i = 0; i < 256; i++) {
346 if (apic_get_bit(ireg_tab, i)) {
347 qemu_printf("%u%s ", i,
348 apic_get_bit(tmr_tab, i) ? "(level)" : "");
352 qemu_printf("%s\n", empty ? "(none)" : "");
355 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
357 X86CPU *cpu = X86_CPU(cs);
358 APICCommonState *s = APIC_COMMON(cpu->apic_state);
360 qemu_printf("local apic state not available\n");
363 uint32_t *lvt = s->lvt;
365 qemu_printf("dumping local APIC state for CPU %-2u\n\n",
366 CPU(cpu)->cpu_index);
367 dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false);
368 dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false);
369 dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false);
370 dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false);
371 dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false);
372 dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true);
374 qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u"
375 " current_count = %u\n",
376 s->divide_conf & APIC_DCR_MASK,
377 divider_conf(s->divide_conf),
378 s->initial_count, apic_get_current_count(s));
380 qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
382 s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
383 s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
384 s->spurious_vec & APIC_VECTOR_MASK);
386 dump_apic_icr(s, &cpu->env);
388 qemu_printf("ESR\t 0x%08x\n", s->esr);
390 dump_apic_interrupt("ISR", s->isr, s->tmr);
391 dump_apic_interrupt("IRR", s->irr, s->tmr);
393 qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
394 s->arb_id, s->tpr, s->dest_mode, s->log_dest);
395 if (s->dest_mode == 0) {
396 qemu_printf("(cluster %u: id %u)",
397 s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
398 s->log_dest & APIC_LOGDEST_XAPIC_ID);
400 qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s));
403 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
406 #endif /* !CONFIG_USER_ONLY */
408 #define DUMP_CODE_BYTES_TOTAL 50
409 #define DUMP_CODE_BYTES_BACKWARD 20
411 void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags)
413 X86CPU *cpu = X86_CPU(cs);
414 CPUX86State *env = &cpu->env;
417 static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
419 eflags = cpu_compute_eflags(env);
421 if (env->hflags & HF_CS64_MASK) {
422 qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
423 "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
424 "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
425 "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
426 "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
444 eflags & DF_MASK ? 'D' : '-',
445 eflags & CC_O ? 'O' : '-',
446 eflags & CC_S ? 'S' : '-',
447 eflags & CC_Z ? 'Z' : '-',
448 eflags & CC_A ? 'A' : '-',
449 eflags & CC_P ? 'P' : '-',
450 eflags & CC_C ? 'C' : '-',
451 env->hflags & HF_CPL_MASK,
452 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
453 (env->a20_mask >> 20) & 1,
454 (env->hflags >> HF_SMM_SHIFT) & 1,
459 qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
460 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
461 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
462 (uint32_t)env->regs[R_EAX],
463 (uint32_t)env->regs[R_EBX],
464 (uint32_t)env->regs[R_ECX],
465 (uint32_t)env->regs[R_EDX],
466 (uint32_t)env->regs[R_ESI],
467 (uint32_t)env->regs[R_EDI],
468 (uint32_t)env->regs[R_EBP],
469 (uint32_t)env->regs[R_ESP],
470 (uint32_t)env->eip, eflags,
471 eflags & DF_MASK ? 'D' : '-',
472 eflags & CC_O ? 'O' : '-',
473 eflags & CC_S ? 'S' : '-',
474 eflags & CC_Z ? 'Z' : '-',
475 eflags & CC_A ? 'A' : '-',
476 eflags & CC_P ? 'P' : '-',
477 eflags & CC_C ? 'C' : '-',
478 env->hflags & HF_CPL_MASK,
479 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
480 (env->a20_mask >> 20) & 1,
481 (env->hflags >> HF_SMM_SHIFT) & 1,
485 for(i = 0; i < 6; i++) {
486 cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]);
488 cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt);
489 cpu_x86_dump_seg_cache(env, f, "TR", &env->tr);
492 if (env->hflags & HF_LMA_MASK) {
493 qemu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
494 env->gdt.base, env->gdt.limit);
495 qemu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
496 env->idt.base, env->idt.limit);
497 qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
498 (uint32_t)env->cr[0],
501 (uint32_t)env->cr[4]);
502 for(i = 0; i < 4; i++)
503 qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
504 qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
505 env->dr[6], env->dr[7]);
509 qemu_fprintf(f, "GDT= %08x %08x\n",
510 (uint32_t)env->gdt.base, env->gdt.limit);
511 qemu_fprintf(f, "IDT= %08x %08x\n",
512 (uint32_t)env->idt.base, env->idt.limit);
513 qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
514 (uint32_t)env->cr[0],
515 (uint32_t)env->cr[2],
516 (uint32_t)env->cr[3],
517 (uint32_t)env->cr[4]);
518 for(i = 0; i < 4; i++) {
519 qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
521 qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
522 env->dr[6], env->dr[7]);
524 if (flags & CPU_DUMP_CCOP) {
525 if ((unsigned)env->cc_op < CC_OP_NB)
526 snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
528 snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
530 if (env->hflags & HF_CS64_MASK) {
531 qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
532 env->cc_src, env->cc_dst,
537 qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
538 (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
542 qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
543 if (flags & CPU_DUMP_FPU) {
546 for(i = 0; i < 8; i++) {
547 fptag |= ((!env->fptags[i]) << i);
549 update_mxcsr_from_sse_status(env);
550 qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
552 (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
558 u.d = env->fpregs[i].d;
559 qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
560 i, u.l.lower, u.l.upper);
562 qemu_fprintf(f, "\n");
564 qemu_fprintf(f, " ");
566 if (env->hflags & HF_CS64_MASK)
571 qemu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
573 env->xmm_regs[i].ZMM_L(3),
574 env->xmm_regs[i].ZMM_L(2),
575 env->xmm_regs[i].ZMM_L(1),
576 env->xmm_regs[i].ZMM_L(0));
578 qemu_fprintf(f, "\n");
580 qemu_fprintf(f, " ");
583 if (flags & CPU_DUMP_CODE) {
584 target_ulong base = env->segs[R_CS].base + env->eip;
585 target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
589 qemu_fprintf(f, "Code=");
590 for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
591 if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
592 snprintf(codestr, sizeof(codestr), "%02x", code);
594 snprintf(codestr, sizeof(codestr), "??");
596 qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
597 i == offs ? "<" : "", codestr, i == offs ? ">" : "");
599 qemu_fprintf(f, "\n");
603 /***********************************************************/
605 /* XXX: add PGE support */
607 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
609 CPUX86State *env = &cpu->env;
611 a20_state = (a20_state != 0);
612 if (a20_state != ((env->a20_mask >> 20) & 1)) {
613 CPUState *cs = CPU(cpu);
615 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
616 /* if the cpu is currently executing code, we must unlink it and
617 all the potentially executing TB */
618 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
620 /* when a20 is changed, all the MMU mappings are invalid, so
621 we must flush everything */
623 env->a20_mask = ~(1 << 20) | (a20_state << 20);
627 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
629 X86CPU *cpu = env_archcpu(env);
632 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
633 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
634 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
639 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
640 (env->efer & MSR_EFER_LME)) {
641 /* enter in long mode */
642 /* XXX: generate an exception */
643 if (!(env->cr[4] & CR4_PAE_MASK))
645 env->efer |= MSR_EFER_LMA;
646 env->hflags |= HF_LMA_MASK;
647 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
648 (env->efer & MSR_EFER_LMA)) {
650 env->efer &= ~MSR_EFER_LMA;
651 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
652 env->eip &= 0xffffffff;
655 env->cr[0] = new_cr0 | CR0_ET_MASK;
657 /* update PE flag in hidden flags */
658 pe_state = (env->cr[0] & CR0_PE_MASK);
659 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
660 /* ensure that ADDSEG is always set in real mode */
661 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
662 /* update FPU flags */
663 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
664 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
667 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
669 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
671 env->cr[3] = new_cr3;
672 if (env->cr[0] & CR0_PG_MASK) {
673 qemu_log_mask(CPU_LOG_MMU,
674 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
675 tlb_flush(env_cpu(env));
679 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
683 #if defined(DEBUG_MMU)
684 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
686 if ((new_cr4 ^ env->cr[4]) &
687 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
688 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
689 tlb_flush(env_cpu(env));
692 /* Clear bits we're going to recompute. */
693 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
696 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
697 new_cr4 &= ~CR4_OSFXSR_MASK;
699 if (new_cr4 & CR4_OSFXSR_MASK) {
700 hflags |= HF_OSFXSR_MASK;
703 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
704 new_cr4 &= ~CR4_SMAP_MASK;
706 if (new_cr4 & CR4_SMAP_MASK) {
707 hflags |= HF_SMAP_MASK;
710 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
711 new_cr4 &= ~CR4_PKE_MASK;
714 env->cr[4] = new_cr4;
715 env->hflags = hflags;
717 cpu_sync_bndcs_hflags(env);
720 #if !defined(CONFIG_USER_ONLY)
721 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
724 X86CPU *cpu = X86_CPU(cs);
725 CPUX86State *env = &cpu->env;
726 target_ulong pde_addr, pte_addr;
729 uint32_t page_offset;
732 *attrs = cpu_get_mem_attrs(env);
734 a20_mask = x86_get_a20_mask(env);
735 if (!(env->cr[0] & CR0_PG_MASK)) {
736 pte = addr & a20_mask;
738 } else if (env->cr[4] & CR4_PAE_MASK) {
739 target_ulong pdpe_addr;
743 if (env->hflags & HF_LMA_MASK) {
744 bool la57 = env->cr[4] & CR4_LA57_MASK;
745 uint64_t pml5e_addr, pml5e;
746 uint64_t pml4e_addr, pml4e;
749 /* test virtual address sign extension */
750 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
751 if (sext != 0 && sext != -1) {
756 pml5e_addr = ((env->cr[3] & ~0xfff) +
757 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
758 pml5e = x86_ldq_phys(cs, pml5e_addr);
759 if (!(pml5e & PG_PRESENT_MASK)) {
766 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
767 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
768 pml4e = x86_ldq_phys(cs, pml4e_addr);
769 if (!(pml4e & PG_PRESENT_MASK)) {
772 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
773 (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
774 pdpe = x86_ldq_phys(cs, pdpe_addr);
775 if (!(pdpe & PG_PRESENT_MASK)) {
778 if (pdpe & PG_PSE_MASK) {
779 page_size = 1024 * 1024 * 1024;
787 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
789 pdpe = x86_ldq_phys(cs, pdpe_addr);
790 if (!(pdpe & PG_PRESENT_MASK))
794 pde_addr = ((pdpe & PG_ADDRESS_MASK) +
795 (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
796 pde = x86_ldq_phys(cs, pde_addr);
797 if (!(pde & PG_PRESENT_MASK)) {
800 if (pde & PG_PSE_MASK) {
802 page_size = 2048 * 1024;
806 pte_addr = ((pde & PG_ADDRESS_MASK) +
807 (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
809 pte = x86_ldq_phys(cs, pte_addr);
811 if (!(pte & PG_PRESENT_MASK)) {
817 /* page directory entry */
818 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
819 pde = x86_ldl_phys(cs, pde_addr);
820 if (!(pde & PG_PRESENT_MASK))
822 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
823 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
824 page_size = 4096 * 1024;
826 /* page directory entry */
827 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
828 pte = x86_ldl_phys(cs, pte_addr);
829 if (!(pte & PG_PRESENT_MASK)) {
834 pte = pte & a20_mask;
840 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
841 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
842 return pte | page_offset;
845 typedef struct MCEInjectionParams {
853 } MCEInjectionParams;
855 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
858 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
860 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
864 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
866 MCEInjectionParams *params = data.host_ptr;
867 X86CPU *cpu = X86_CPU(cs);
868 CPUX86State *cenv = &cpu->env;
869 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
870 g_autofree char *msg = NULL;
871 bool need_reset = false;
873 bool ar = !!(params->status & MCI_STATUS_AR);
875 cpu_synchronize_state(cs);
876 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
879 * If there is an MCE exception being processed, ignore this SRAO MCE
880 * unless unconditional injection was requested.
882 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
883 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
887 if (params->status & MCI_STATUS_UC) {
889 * if MSR_MCG_CTL is not all 1s, the uncorrected error
890 * reporting is disabled
892 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
893 monitor_printf(params->mon,
894 "CPU %d: Uncorrected error reporting disabled\n",
900 * if MSR_MCi_CTL is not all 1s, the uncorrected error
901 * reporting is disabled for the bank
903 if (banks[0] != ~(uint64_t)0) {
904 monitor_printf(params->mon,
905 "CPU %d: Uncorrected error reporting disabled for"
907 cs->cpu_index, params->bank);
911 if (!(cenv->cr[4] & CR4_MCE_MASK)) {
913 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
914 "raising triple fault", cs->cpu_index);
915 } else if (recursive) {
917 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
918 "raising triple fault", cs->cpu_index);
922 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
924 monitor_printf(params->mon, "%s", msg);
925 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
926 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
930 if (banks[1] & MCI_STATUS_VAL) {
931 params->status |= MCI_STATUS_OVER;
933 banks[2] = params->addr;
934 banks[3] = params->misc;
935 cenv->mcg_status = params->mcg_status;
936 banks[1] = params->status;
937 cpu_interrupt(cs, CPU_INTERRUPT_MCE);
938 } else if (!(banks[1] & MCI_STATUS_VAL)
939 || !(banks[1] & MCI_STATUS_UC)) {
940 if (banks[1] & MCI_STATUS_VAL) {
941 params->status |= MCI_STATUS_OVER;
943 banks[2] = params->addr;
944 banks[3] = params->misc;
945 banks[1] = params->status;
947 banks[1] |= MCI_STATUS_OVER;
950 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
953 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
954 uint64_t status, uint64_t mcg_status, uint64_t addr,
955 uint64_t misc, int flags)
957 CPUState *cs = CPU(cpu);
958 CPUX86State *cenv = &cpu->env;
959 MCEInjectionParams params = {
963 .mcg_status = mcg_status,
968 unsigned bank_num = cenv->mcg_cap & 0xff;
970 if (!cenv->mcg_cap) {
971 monitor_printf(mon, "MCE injection not supported\n");
974 if (bank >= bank_num) {
975 monitor_printf(mon, "Invalid MCE bank number\n");
978 if (!(status & MCI_STATUS_VAL)) {
979 monitor_printf(mon, "Invalid MCE status code\n");
982 if ((flags & MCE_INJECT_BROADCAST)
983 && !cpu_x86_support_mca_broadcast(cenv)) {
984 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
988 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms));
989 if (flags & MCE_INJECT_BROADCAST) {
993 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
994 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
997 CPU_FOREACH(other_cs) {
998 if (other_cs == cs) {
1001 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms));
1006 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
1008 X86CPU *cpu = env_archcpu(env);
1009 CPUState *cs = env_cpu(env);
1011 if (kvm_enabled() || whpx_enabled()) {
1012 env->tpr_access_type = access;
1014 cpu_interrupt(cs, CPU_INTERRUPT_TPR);
1015 } else if (tcg_enabled()) {
1016 cpu_restore_state(cs, cs->mem_io_pc, false);
1018 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
1021 #endif /* !CONFIG_USER_ONLY */
1023 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
1024 target_ulong *base, unsigned int *limit,
1025 unsigned int *flags)
1027 CPUState *cs = env_cpu(env);
1037 index = selector & ~7;
1038 ptr = dt->base + index;
1039 if ((index + 7) > dt->limit
1040 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1041 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1044 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1045 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1046 if (e2 & DESC_G_MASK)
1047 *limit = (*limit << 12) | 0xfff;
1053 #if !defined(CONFIG_USER_ONLY)
1054 void do_cpu_init(X86CPU *cpu)
1056 CPUState *cs = CPU(cpu);
1057 CPUX86State *env = &cpu->env;
1058 CPUX86State *save = g_new(CPUX86State, 1);
1059 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
1064 cs->interrupt_request = sipi;
1065 memcpy(&env->start_init_save, &save->start_init_save,
1066 offsetof(CPUX86State, end_init_save) -
1067 offsetof(CPUX86State, start_init_save));
1070 if (kvm_enabled()) {
1071 kvm_arch_do_init_vcpu(cpu);
1073 apic_init_reset(cpu->apic_state);
1076 void do_cpu_sipi(X86CPU *cpu)
1078 apic_sipi(cpu->apic_state);
1081 void do_cpu_init(X86CPU *cpu)
1084 void do_cpu_sipi(X86CPU *cpu)
1089 /* Frob eflags into and out of the CPU temporary format. */
1091 void x86_cpu_exec_enter(CPUState *cs)
1093 X86CPU *cpu = X86_CPU(cs);
1094 CPUX86State *env = &cpu->env;
1096 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1097 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
1098 CC_OP = CC_OP_EFLAGS;
1099 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1102 void x86_cpu_exec_exit(CPUState *cs)
1104 X86CPU *cpu = X86_CPU(cs);
1105 CPUX86State *env = &cpu->env;
1107 env->eflags = cpu_compute_eflags(env);
1110 #ifndef CONFIG_USER_ONLY
1111 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
1113 X86CPU *cpu = X86_CPU(cs);
1114 CPUX86State *env = &cpu->env;
1115 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1116 AddressSpace *as = cpu_addressspace(cs, attrs);
1118 return address_space_ldub(as, addr, attrs, NULL);
1121 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
1123 X86CPU *cpu = X86_CPU(cs);
1124 CPUX86State *env = &cpu->env;
1125 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1126 AddressSpace *as = cpu_addressspace(cs, attrs);
1128 return address_space_lduw(as, addr, attrs, NULL);
1131 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
1133 X86CPU *cpu = X86_CPU(cs);
1134 CPUX86State *env = &cpu->env;
1135 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1136 AddressSpace *as = cpu_addressspace(cs, attrs);
1138 return address_space_ldl(as, addr, attrs, NULL);
1141 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
1143 X86CPU *cpu = X86_CPU(cs);
1144 CPUX86State *env = &cpu->env;
1145 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1146 AddressSpace *as = cpu_addressspace(cs, attrs);
1148 return address_space_ldq(as, addr, attrs, NULL);
1151 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
1153 X86CPU *cpu = X86_CPU(cs);
1154 CPUX86State *env = &cpu->env;
1155 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1156 AddressSpace *as = cpu_addressspace(cs, attrs);
1158 address_space_stb(as, addr, val, attrs, NULL);
1161 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
1163 X86CPU *cpu = X86_CPU(cs);
1164 CPUX86State *env = &cpu->env;
1165 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1166 AddressSpace *as = cpu_addressspace(cs, attrs);
1168 address_space_stl_notdirty(as, addr, val, attrs, NULL);
1171 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
1173 X86CPU *cpu = X86_CPU(cs);
1174 CPUX86State *env = &cpu->env;
1175 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1176 AddressSpace *as = cpu_addressspace(cs, attrs);
1178 address_space_stw(as, addr, val, attrs, NULL);
1181 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
1183 X86CPU *cpu = X86_CPU(cs);
1184 CPUX86State *env = &cpu->env;
1185 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1186 AddressSpace *as = cpu_addressspace(cs, attrs);
1188 address_space_stl(as, addr, val, attrs, NULL);
1191 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
1193 X86CPU *cpu = X86_CPU(cs);
1194 CPUX86State *env = &cpu->env;
1195 MemTxAttrs attrs = cpu_get_mem_attrs(env);
1196 AddressSpace *as = cpu_addressspace(cs, attrs);
1198 address_space_stq(as, addr, val, attrs, NULL);