4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
46 #include "migration/colo.h"
48 /***********************************************************/
49 /* ram save/restore */
51 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
52 #define RAM_SAVE_FLAG_COMPRESS 0x02
53 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
54 #define RAM_SAVE_FLAG_PAGE 0x08
55 #define RAM_SAVE_FLAG_EOS 0x10
56 #define RAM_SAVE_FLAG_CONTINUE 0x20
57 #define RAM_SAVE_FLAG_XBZRLE 0x40
58 /* 0x80 is reserved in migration.h start with 0x100 next */
59 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
61 static uint8_t *ZERO_TARGET_PAGE;
63 static inline bool is_zero_range(uint8_t *p, uint64_t size)
65 return buffer_is_zero(p, size);
68 /* struct contains XBZRLE cache and a static page
69 used by the compression */
71 /* buffer used for XBZRLE encoding */
73 /* buffer for storing page content */
75 /* Cache for XBZRLE, Protected by lock. */
80 /* buffer used for XBZRLE decoding */
81 static uint8_t *xbzrle_decoded_buf;
83 static void XBZRLE_cache_lock(void)
85 if (migrate_use_xbzrle())
86 qemu_mutex_lock(&XBZRLE.lock);
89 static void XBZRLE_cache_unlock(void)
91 if (migrate_use_xbzrle())
92 qemu_mutex_unlock(&XBZRLE.lock);
96 * xbzrle_cache_resize: resize the xbzrle cache
98 * This function is called from qmp_migrate_set_cache_size in main
99 * thread, possibly while a migration is in progress. A running
100 * migration may be using the cache and might finish during this call,
101 * hence changes to the cache are protected by XBZRLE.lock().
103 * Returns the new_size or negative in case of error.
105 * @new_size: new cache size
107 int64_t xbzrle_cache_resize(int64_t new_size)
109 PageCache *new_cache;
112 if (new_size < TARGET_PAGE_SIZE) {
118 if (XBZRLE.cache != NULL) {
119 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
122 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
125 error_report("Error creating cache");
130 cache_fini(XBZRLE.cache);
131 XBZRLE.cache = new_cache;
135 ret = pow2floor(new_size);
137 XBZRLE_cache_unlock();
143 /* Main migration bitmap */
145 /* bitmap of pages that haven't been sent even once
146 * only maintained and used in postcopy at the moment
147 * where it's used to send the dirtymap at the start
148 * of the postcopy phase
150 unsigned long *unsentmap;
152 typedef struct RAMBitmap RAMBitmap;
155 * An outstanding page request, on the source, having been received
158 struct RAMSrcPageRequest {
163 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
166 /* State of RAM for migration */
168 /* QEMUFile used for this migration */
170 /* Last block that we have visited searching for dirty pages */
171 RAMBlock *last_seen_block;
172 /* Last block from where we have sent data */
173 RAMBlock *last_sent_block;
174 /* Last dirty target page we have sent */
175 ram_addr_t last_page;
176 /* last ram version we have seen */
177 uint32_t last_version;
178 /* We are in the first round */
180 /* How many times we have dirty too many pages */
181 int dirty_rate_high_cnt;
182 /* How many times we have synchronized the bitmap */
183 uint64_t bitmap_sync_count;
184 /* these variables are used for bitmap sync */
185 /* last time we did a full bitmap_sync */
186 int64_t time_last_bitmap_sync;
187 /* bytes transferred at start_time */
188 uint64_t bytes_xfer_prev;
189 /* number of dirty pages since start_time */
190 uint64_t num_dirty_pages_period;
191 /* xbzrle misses since the beginning of the period */
192 uint64_t xbzrle_cache_miss_prev;
193 /* number of iterations at the beginning of period */
194 uint64_t iterations_prev;
195 /* Accounting fields */
196 /* number of zero pages. It used to be pages filled by the same char. */
198 /* number of normal transferred pages */
200 /* Iterations since start */
202 /* xbzrle transmitted bytes. Notice that this is with
203 * compression, they can't be calculated from the pages */
204 uint64_t xbzrle_bytes;
205 /* xbzrle transmmited pages */
206 uint64_t xbzrle_pages;
207 /* xbzrle number of cache miss */
208 uint64_t xbzrle_cache_miss;
209 /* xbzrle miss rate */
210 double xbzrle_cache_miss_rate;
211 /* xbzrle number of overflows */
212 uint64_t xbzrle_overflows;
213 /* number of dirty bits in the bitmap */
214 uint64_t migration_dirty_pages;
215 /* total number of bytes transferred */
216 uint64_t bytes_transferred;
217 /* number of dirtied pages in the last second */
218 uint64_t dirty_pages_rate;
219 /* Count of requests incoming from destination */
220 uint64_t postcopy_requests;
221 /* protects modification of the bitmap */
222 QemuMutex bitmap_mutex;
223 /* Ram Bitmap protected by RCU */
224 RAMBitmap *ram_bitmap;
225 /* The RAMBlock used in the last src_page_requests */
226 RAMBlock *last_req_rb;
227 /* Queue of outstanding page requests from the destination */
228 QemuMutex src_page_req_mutex;
229 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
231 typedef struct RAMState RAMState;
233 static RAMState ram_state;
235 uint64_t dup_mig_pages_transferred(void)
237 return ram_state.zero_pages;
240 uint64_t norm_mig_pages_transferred(void)
242 return ram_state.norm_pages;
245 uint64_t xbzrle_mig_bytes_transferred(void)
247 return ram_state.xbzrle_bytes;
250 uint64_t xbzrle_mig_pages_transferred(void)
252 return ram_state.xbzrle_pages;
255 uint64_t xbzrle_mig_pages_cache_miss(void)
257 return ram_state.xbzrle_cache_miss;
260 double xbzrle_mig_cache_miss_rate(void)
262 return ram_state.xbzrle_cache_miss_rate;
265 uint64_t xbzrle_mig_pages_overflow(void)
267 return ram_state.xbzrle_overflows;
270 uint64_t ram_bytes_transferred(void)
272 return ram_state.bytes_transferred;
275 uint64_t ram_bytes_remaining(void)
277 return ram_state.migration_dirty_pages * TARGET_PAGE_SIZE;
280 uint64_t ram_dirty_sync_count(void)
282 return ram_state.bitmap_sync_count;
285 uint64_t ram_dirty_pages_rate(void)
287 return ram_state.dirty_pages_rate;
290 uint64_t ram_postcopy_requests(void)
292 return ram_state.postcopy_requests;
295 /* used by the search for pages to send */
296 struct PageSearchStatus {
297 /* Current block being searched */
299 /* Current page to search from */
301 /* Set once we wrap around */
304 typedef struct PageSearchStatus PageSearchStatus;
306 struct CompressParam {
315 typedef struct CompressParam CompressParam;
317 struct DecompressParam {
326 typedef struct DecompressParam DecompressParam;
328 static CompressParam *comp_param;
329 static QemuThread *compress_threads;
330 /* comp_done_cond is used to wake up the migration thread when
331 * one of the compression threads has finished the compression.
332 * comp_done_lock is used to co-work with comp_done_cond.
334 static QemuMutex comp_done_lock;
335 static QemuCond comp_done_cond;
336 /* The empty QEMUFileOps will be used by file in CompressParam */
337 static const QEMUFileOps empty_ops = { };
339 static DecompressParam *decomp_param;
340 static QemuThread *decompress_threads;
341 static QemuMutex decomp_done_lock;
342 static QemuCond decomp_done_cond;
344 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
347 static void *do_data_compress(void *opaque)
349 CompressParam *param = opaque;
353 qemu_mutex_lock(¶m->mutex);
354 while (!param->quit) {
356 block = param->block;
357 offset = param->offset;
359 qemu_mutex_unlock(¶m->mutex);
361 do_compress_ram_page(param->file, block, offset);
363 qemu_mutex_lock(&comp_done_lock);
365 qemu_cond_signal(&comp_done_cond);
366 qemu_mutex_unlock(&comp_done_lock);
368 qemu_mutex_lock(¶m->mutex);
370 qemu_cond_wait(¶m->cond, ¶m->mutex);
373 qemu_mutex_unlock(¶m->mutex);
378 static inline void terminate_compression_threads(void)
380 int idx, thread_count;
382 thread_count = migrate_compress_threads();
384 for (idx = 0; idx < thread_count; idx++) {
385 qemu_mutex_lock(&comp_param[idx].mutex);
386 comp_param[idx].quit = true;
387 qemu_cond_signal(&comp_param[idx].cond);
388 qemu_mutex_unlock(&comp_param[idx].mutex);
392 void migrate_compress_threads_join(void)
396 if (!migrate_use_compression()) {
399 terminate_compression_threads();
400 thread_count = migrate_compress_threads();
401 for (i = 0; i < thread_count; i++) {
402 qemu_thread_join(compress_threads + i);
403 qemu_fclose(comp_param[i].file);
404 qemu_mutex_destroy(&comp_param[i].mutex);
405 qemu_cond_destroy(&comp_param[i].cond);
407 qemu_mutex_destroy(&comp_done_lock);
408 qemu_cond_destroy(&comp_done_cond);
409 g_free(compress_threads);
411 compress_threads = NULL;
415 void migrate_compress_threads_create(void)
419 if (!migrate_use_compression()) {
422 thread_count = migrate_compress_threads();
423 compress_threads = g_new0(QemuThread, thread_count);
424 comp_param = g_new0(CompressParam, thread_count);
425 qemu_cond_init(&comp_done_cond);
426 qemu_mutex_init(&comp_done_lock);
427 for (i = 0; i < thread_count; i++) {
428 /* comp_param[i].file is just used as a dummy buffer to save data,
429 * set its ops to empty.
431 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
432 comp_param[i].done = true;
433 comp_param[i].quit = false;
434 qemu_mutex_init(&comp_param[i].mutex);
435 qemu_cond_init(&comp_param[i].cond);
436 qemu_thread_create(compress_threads + i, "compress",
437 do_data_compress, comp_param + i,
438 QEMU_THREAD_JOINABLE);
443 * save_page_header: write page header to wire
445 * If this is the 1st block, it also writes the block identification
447 * Returns the number of bytes written
449 * @f: QEMUFile where to send the data
450 * @block: block that contains the page we want to send
451 * @offset: offset inside the block for the page
452 * in the lower bits, it contains flags
454 static size_t save_page_header(RAMState *rs, RAMBlock *block, ram_addr_t offset)
458 if (block == rs->last_sent_block) {
459 offset |= RAM_SAVE_FLAG_CONTINUE;
461 qemu_put_be64(rs->f, offset);
464 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
465 len = strlen(block->idstr);
466 qemu_put_byte(rs->f, len);
467 qemu_put_buffer(rs->f, (uint8_t *)block->idstr, len);
469 rs->last_sent_block = block;
475 * mig_throttle_guest_down: throotle down the guest
477 * Reduce amount of guest cpu execution to hopefully slow down memory
478 * writes. If guest dirty memory rate is reduced below the rate at
479 * which we can transfer pages to the destination then we should be
480 * able to complete migration. Some workloads dirty memory way too
481 * fast and will not effectively converge, even with auto-converge.
483 static void mig_throttle_guest_down(void)
485 MigrationState *s = migrate_get_current();
486 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
487 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
489 /* We have not started throttling yet. Let's start it. */
490 if (!cpu_throttle_active()) {
491 cpu_throttle_set(pct_initial);
493 /* Throttling already on, just increase the rate */
494 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
499 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
501 * @rs: current RAM state
502 * @current_addr: address for the zero page
504 * Update the xbzrle cache to reflect a page that's been sent as all 0.
505 * The important thing is that a stale (not-yet-0'd) page be replaced
507 * As a bonus, if the page wasn't in the cache it gets added so that
508 * when a small write is made into the 0'd page it gets XBZRLE sent.
510 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
512 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
516 /* We don't care if this fails to allocate a new cache page
517 * as long as it updated an old one */
518 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
519 rs->bitmap_sync_count);
522 #define ENCODING_FLAG_XBZRLE 0x1
525 * save_xbzrle_page: compress and send current page
527 * Returns: 1 means that we wrote the page
528 * 0 means that page is identical to the one already sent
529 * -1 means that xbzrle would be longer than normal
531 * @rs: current RAM state
532 * @current_data: pointer to the address of the page contents
533 * @current_addr: addr of the page
534 * @block: block that contains the page we want to send
535 * @offset: offset inside the block for the page
536 * @last_stage: if we are at the completion stage
538 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
539 ram_addr_t current_addr, RAMBlock *block,
540 ram_addr_t offset, bool last_stage)
542 int encoded_len = 0, bytes_xbzrle;
543 uint8_t *prev_cached_page;
545 if (!cache_is_cached(XBZRLE.cache, current_addr, rs->bitmap_sync_count)) {
546 rs->xbzrle_cache_miss++;
548 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
549 rs->bitmap_sync_count) == -1) {
552 /* update *current_data when the page has been
553 inserted into cache */
554 *current_data = get_cached_data(XBZRLE.cache, current_addr);
560 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
562 /* save current buffer into memory */
563 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
565 /* XBZRLE encoding (if there is no overflow) */
566 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
567 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
569 if (encoded_len == 0) {
570 trace_save_xbzrle_page_skipping();
572 } else if (encoded_len == -1) {
573 trace_save_xbzrle_page_overflow();
574 rs->xbzrle_overflows++;
575 /* update data in the cache */
577 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
578 *current_data = prev_cached_page;
583 /* we need to update the data in the cache, in order to get the same data */
585 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
588 /* Send XBZRLE based compressed page */
589 bytes_xbzrle = save_page_header(rs, block,
590 offset | RAM_SAVE_FLAG_XBZRLE);
591 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
592 qemu_put_be16(rs->f, encoded_len);
593 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
594 bytes_xbzrle += encoded_len + 1 + 2;
596 rs->xbzrle_bytes += bytes_xbzrle;
597 rs->bytes_transferred += bytes_xbzrle;
603 * migration_bitmap_find_dirty: find the next dirty page from start
605 * Called with rcu_read_lock() to protect migration_bitmap
607 * Returns the byte offset within memory region of the start of a dirty page
609 * @rs: current RAM state
610 * @rb: RAMBlock where to search for dirty pages
611 * @start: page where we start the search
612 * @page_abs: pointer into where to store the dirty page
615 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
617 unsigned long *page_abs)
619 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
620 unsigned long nr = base + start;
621 uint64_t rb_size = rb->used_length;
622 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
623 unsigned long *bitmap;
627 bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
628 if (rs->ram_bulk_stage && nr > base) {
631 next = find_next_bit(bitmap, size, nr);
638 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
639 unsigned long page_abs)
642 unsigned long *bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
644 ret = test_and_clear_bit(page_abs, bitmap);
647 rs->migration_dirty_pages--;
652 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
653 ram_addr_t start, ram_addr_t length)
655 unsigned long *bitmap;
656 bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
657 rs->migration_dirty_pages +=
658 cpu_physical_memory_sync_dirty_bitmap(bitmap, rb, start, length,
659 &rs->num_dirty_pages_period);
663 * ram_pagesize_summary: calculate all the pagesizes of a VM
665 * Returns a summary bitmap of the page sizes of all RAMBlocks
667 * For VMs with just normal pages this is equivalent to the host page
668 * size. If it's got some huge pages then it's the OR of all the
669 * different page sizes.
671 uint64_t ram_pagesize_summary(void)
674 uint64_t summary = 0;
676 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
677 summary |= block->page_size;
683 static void migration_bitmap_sync(RAMState *rs)
687 uint64_t bytes_xfer_now;
689 rs->bitmap_sync_count++;
691 if (!rs->bytes_xfer_prev) {
692 rs->bytes_xfer_prev = ram_bytes_transferred();
695 if (!rs->time_last_bitmap_sync) {
696 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
699 trace_migration_bitmap_sync_start();
700 memory_global_dirty_log_sync();
702 qemu_mutex_lock(&rs->bitmap_mutex);
704 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
705 migration_bitmap_sync_range(rs, block, 0, block->used_length);
708 qemu_mutex_unlock(&rs->bitmap_mutex);
710 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
712 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
714 /* more than 1 second = 1000 millisecons */
715 if (end_time > rs->time_last_bitmap_sync + 1000) {
716 if (migrate_auto_converge()) {
717 /* The following detection logic can be refined later. For now:
718 Check to see if the dirtied bytes is 50% more than the approx.
719 amount of bytes that just got transferred since the last time we
720 were in this routine. If that happens twice, start or increase
722 bytes_xfer_now = ram_bytes_transferred();
724 if (rs->dirty_pages_rate &&
725 (rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
726 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
727 (rs->dirty_rate_high_cnt++ >= 2)) {
728 trace_migration_throttle();
729 rs->dirty_rate_high_cnt = 0;
730 mig_throttle_guest_down();
732 rs->bytes_xfer_prev = bytes_xfer_now;
735 if (migrate_use_xbzrle()) {
736 if (rs->iterations_prev != rs->iterations) {
737 rs->xbzrle_cache_miss_rate =
738 (double)(rs->xbzrle_cache_miss -
739 rs->xbzrle_cache_miss_prev) /
740 (rs->iterations - rs->iterations_prev);
742 rs->iterations_prev = rs->iterations;
743 rs->xbzrle_cache_miss_prev = rs->xbzrle_cache_miss;
745 rs->dirty_pages_rate = rs->num_dirty_pages_period * 1000
746 / (end_time - rs->time_last_bitmap_sync);
747 rs->time_last_bitmap_sync = end_time;
748 rs->num_dirty_pages_period = 0;
750 if (migrate_use_events()) {
751 qapi_event_send_migration_pass(rs->bitmap_sync_count, NULL);
756 * save_zero_page: send the zero page to the stream
758 * Returns the number of pages written.
760 * @rs: current RAM state
761 * @block: block that contains the page we want to send
762 * @offset: offset inside the block for the page
763 * @p: pointer to the page
765 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
770 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
772 rs->bytes_transferred +=
773 save_page_header(rs, block, offset | RAM_SAVE_FLAG_COMPRESS);
774 qemu_put_byte(rs->f, 0);
775 rs->bytes_transferred += 1;
782 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
784 if (!migrate_release_ram() || !migration_in_postcopy()) {
788 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
792 * ram_save_page: send the given page to the stream
794 * Returns the number of pages written.
796 * >=0 - Number of pages written - this might legally be 0
797 * if xbzrle noticed the page was the same.
799 * @rs: current RAM state
800 * @block: block that contains the page we want to send
801 * @offset: offset inside the block for the page
802 * @last_stage: if we are at the completion stage
804 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
808 ram_addr_t current_addr;
811 bool send_async = true;
812 RAMBlock *block = pss->block;
813 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
815 p = block->host + offset;
817 /* In doubt sent page as normal */
819 ret = ram_control_save_page(rs->f, block->offset,
820 offset, TARGET_PAGE_SIZE, &bytes_xmit);
822 rs->bytes_transferred += bytes_xmit;
828 current_addr = block->offset + offset;
830 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
831 if (ret != RAM_SAVE_CONTROL_DELAYED) {
832 if (bytes_xmit > 0) {
834 } else if (bytes_xmit == 0) {
839 pages = save_zero_page(rs, block, offset, p);
841 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
842 * page would be stale
844 xbzrle_cache_zero_page(rs, current_addr);
845 ram_release_pages(block->idstr, offset, pages);
846 } else if (!rs->ram_bulk_stage &&
847 !migration_in_postcopy() && migrate_use_xbzrle()) {
848 pages = save_xbzrle_page(rs, &p, current_addr, block,
851 /* Can't send this cached data async, since the cache page
852 * might get updated before it gets to the wire
859 /* XBZRLE overflow or normal page */
861 rs->bytes_transferred += save_page_header(rs, block,
862 offset | RAM_SAVE_FLAG_PAGE);
864 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
865 migrate_release_ram() &
866 migration_in_postcopy());
868 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
870 rs->bytes_transferred += TARGET_PAGE_SIZE;
875 XBZRLE_cache_unlock();
880 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
883 RAMState *rs = &ram_state;
884 int bytes_sent, blen;
885 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
887 bytes_sent = save_page_header(rs, block, offset |
888 RAM_SAVE_FLAG_COMPRESS_PAGE);
889 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
890 migrate_compress_level());
893 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
894 error_report("compressed data failed!");
897 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
903 static void flush_compressed_data(RAMState *rs)
905 int idx, len, thread_count;
907 if (!migrate_use_compression()) {
910 thread_count = migrate_compress_threads();
912 qemu_mutex_lock(&comp_done_lock);
913 for (idx = 0; idx < thread_count; idx++) {
914 while (!comp_param[idx].done) {
915 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
918 qemu_mutex_unlock(&comp_done_lock);
920 for (idx = 0; idx < thread_count; idx++) {
921 qemu_mutex_lock(&comp_param[idx].mutex);
922 if (!comp_param[idx].quit) {
923 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
924 rs->bytes_transferred += len;
926 qemu_mutex_unlock(&comp_param[idx].mutex);
930 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
933 param->block = block;
934 param->offset = offset;
937 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
940 int idx, thread_count, bytes_xmit = -1, pages = -1;
942 thread_count = migrate_compress_threads();
943 qemu_mutex_lock(&comp_done_lock);
945 for (idx = 0; idx < thread_count; idx++) {
946 if (comp_param[idx].done) {
947 comp_param[idx].done = false;
948 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
949 qemu_mutex_lock(&comp_param[idx].mutex);
950 set_compress_params(&comp_param[idx], block, offset);
951 qemu_cond_signal(&comp_param[idx].cond);
952 qemu_mutex_unlock(&comp_param[idx].mutex);
955 rs->bytes_transferred += bytes_xmit;
962 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
965 qemu_mutex_unlock(&comp_done_lock);
971 * ram_save_compressed_page: compress the given page and send it to the stream
973 * Returns the number of pages written.
975 * @rs: current RAM state
976 * @block: block that contains the page we want to send
977 * @offset: offset inside the block for the page
978 * @last_stage: if we are at the completion stage
980 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
984 uint64_t bytes_xmit = 0;
987 RAMBlock *block = pss->block;
988 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
990 p = block->host + offset;
992 ret = ram_control_save_page(rs->f, block->offset,
993 offset, TARGET_PAGE_SIZE, &bytes_xmit);
995 rs->bytes_transferred += bytes_xmit;
998 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
999 if (ret != RAM_SAVE_CONTROL_DELAYED) {
1000 if (bytes_xmit > 0) {
1002 } else if (bytes_xmit == 0) {
1007 /* When starting the process of a new block, the first page of
1008 * the block should be sent out before other pages in the same
1009 * block, and all the pages in last block should have been sent
1010 * out, keeping this order is important, because the 'cont' flag
1011 * is used to avoid resending the block name.
1013 if (block != rs->last_sent_block) {
1014 flush_compressed_data(rs);
1015 pages = save_zero_page(rs, block, offset, p);
1017 /* Make sure the first page is sent out before other pages */
1018 bytes_xmit = save_page_header(rs, block, offset |
1019 RAM_SAVE_FLAG_COMPRESS_PAGE);
1020 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
1021 migrate_compress_level());
1023 rs->bytes_transferred += bytes_xmit + blen;
1027 qemu_file_set_error(rs->f, blen);
1028 error_report("compressed data failed!");
1032 ram_release_pages(block->idstr, offset, pages);
1035 pages = save_zero_page(rs, block, offset, p);
1037 pages = compress_page_with_multi_thread(rs, block, offset);
1039 ram_release_pages(block->idstr, offset, pages);
1048 * find_dirty_block: find the next dirty page and update any state
1049 * associated with the search process.
1051 * Returns if a page is found
1053 * @rs: current RAM state
1054 * @pss: data about the state of the current dirty page scan
1055 * @again: set to false if the search has scanned the whole of RAM
1056 * @page_abs: pointer into where to store the dirty page
1058 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss,
1059 bool *again, unsigned long *page_abs)
1061 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page,
1063 if (pss->complete_round && pss->block == rs->last_seen_block &&
1064 pss->page >= rs->last_page) {
1066 * We've been once around the RAM and haven't found anything.
1072 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1073 /* Didn't find anything in this RAM Block */
1075 pss->block = QLIST_NEXT_RCU(pss->block, next);
1077 /* Hit the end of the list */
1078 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1079 /* Flag that we've looped */
1080 pss->complete_round = true;
1081 rs->ram_bulk_stage = false;
1082 if (migrate_use_xbzrle()) {
1083 /* If xbzrle is on, stop using the data compression at this
1084 * point. In theory, xbzrle can do better than compression.
1086 flush_compressed_data(rs);
1089 /* Didn't find anything this time, but try again on the new block */
1093 /* Can go around again, but... */
1095 /* We've found something so probably don't need to */
1101 * unqueue_page: gets a page of the queue
1103 * Helper for 'get_queued_page' - gets a page off the queue
1105 * Returns the block of the page (or NULL if none available)
1107 * @rs: current RAM state
1108 * @offset: used to return the offset within the RAMBlock
1109 * @page_abs: pointer into where to store the dirty page
1111 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset,
1112 unsigned long *page_abs)
1114 RAMBlock *block = NULL;
1116 qemu_mutex_lock(&rs->src_page_req_mutex);
1117 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1118 struct RAMSrcPageRequest *entry =
1119 QSIMPLEQ_FIRST(&rs->src_page_requests);
1121 *offset = entry->offset;
1122 *page_abs = (entry->offset + entry->rb->offset) >> TARGET_PAGE_BITS;
1124 if (entry->len > TARGET_PAGE_SIZE) {
1125 entry->len -= TARGET_PAGE_SIZE;
1126 entry->offset += TARGET_PAGE_SIZE;
1128 memory_region_unref(block->mr);
1129 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1133 qemu_mutex_unlock(&rs->src_page_req_mutex);
1139 * get_queued_page: unqueue a page from the postocpy requests
1141 * Skips pages that are already sent (!dirty)
1143 * Returns if a queued page is found
1145 * @rs: current RAM state
1146 * @pss: data about the state of the current dirty page scan
1147 * @page_abs: pointer into where to store the dirty page
1149 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss,
1150 unsigned long *page_abs)
1157 block = unqueue_page(rs, &offset, page_abs);
1159 * We're sending this page, and since it's postcopy nothing else
1160 * will dirty it, and we must make sure it doesn't get sent again
1161 * even if this queue request was received after the background
1162 * search already sent it.
1165 unsigned long *bitmap;
1166 bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
1167 dirty = test_bit(*page_abs, bitmap);
1169 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1172 atomic_rcu_read(&rs->ram_bitmap)->unsentmap));
1174 trace_get_queued_page(block->idstr, (uint64_t)offset,
1179 } while (block && !dirty);
1183 * As soon as we start servicing pages out of order, then we have
1184 * to kill the bulk stage, since the bulk stage assumes
1185 * in (migration_bitmap_find_and_reset_dirty) that every page is
1186 * dirty, that's no longer true.
1188 rs->ram_bulk_stage = false;
1191 * We want the background search to continue from the queued page
1192 * since the guest is likely to want other pages near to the page
1193 * it just requested.
1196 pss->page = offset >> TARGET_PAGE_BITS;
1203 * migration_page_queue_free: drop any remaining pages in the ram
1206 * It should be empty at the end anyway, but in error cases there may
1207 * be some left. in case that there is any page left, we drop it.
1210 void migration_page_queue_free(void)
1212 struct RAMSrcPageRequest *mspr, *next_mspr;
1213 RAMState *rs = &ram_state;
1214 /* This queue generally should be empty - but in the case of a failed
1215 * migration might have some droppings in.
1218 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1219 memory_region_unref(mspr->rb->mr);
1220 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1227 * ram_save_queue_pages: queue the page for transmission
1229 * A request from postcopy destination for example.
1231 * Returns zero on success or negative on error
1233 * @rbname: Name of the RAMBLock of the request. NULL means the
1234 * same that last one.
1235 * @start: starting address from the start of the RAMBlock
1236 * @len: length (in bytes) to send
1238 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1241 RAMState *rs = &ram_state;
1243 rs->postcopy_requests++;
1246 /* Reuse last RAMBlock */
1247 ramblock = rs->last_req_rb;
1251 * Shouldn't happen, we can't reuse the last RAMBlock if
1252 * it's the 1st request.
1254 error_report("ram_save_queue_pages no previous block");
1258 ramblock = qemu_ram_block_by_name(rbname);
1261 /* We shouldn't be asked for a non-existent RAMBlock */
1262 error_report("ram_save_queue_pages no block '%s'", rbname);
1265 rs->last_req_rb = ramblock;
1267 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1268 if (start+len > ramblock->used_length) {
1269 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1270 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1271 __func__, start, len, ramblock->used_length);
1275 struct RAMSrcPageRequest *new_entry =
1276 g_malloc0(sizeof(struct RAMSrcPageRequest));
1277 new_entry->rb = ramblock;
1278 new_entry->offset = start;
1279 new_entry->len = len;
1281 memory_region_ref(ramblock->mr);
1282 qemu_mutex_lock(&rs->src_page_req_mutex);
1283 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1284 qemu_mutex_unlock(&rs->src_page_req_mutex);
1295 * ram_save_target_page: save one target page
1297 * Returns the number of pages written
1299 * @rs: current RAM state
1300 * @ms: current migration state
1301 * @pss: data about the page we want to send
1302 * @last_stage: if we are at the completion stage
1303 * @page_abs: page number of the dirty page
1305 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1306 bool last_stage, unsigned long page_abs)
1310 /* Check the pages is dirty and if it is send it */
1311 if (migration_bitmap_clear_dirty(rs, page_abs)) {
1312 unsigned long *unsentmap;
1314 * If xbzrle is on, stop using the data compression after first
1315 * round of migration even if compression is enabled. In theory,
1316 * xbzrle can do better than compression.
1319 if (migrate_use_compression()
1320 && (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
1321 res = ram_save_compressed_page(rs, pss, last_stage);
1323 res = ram_save_page(rs, pss, last_stage);
1329 unsentmap = atomic_rcu_read(&rs->ram_bitmap)->unsentmap;
1331 clear_bit(page_abs, unsentmap);
1339 * ram_save_host_page: save a whole host page
1341 * Starting at *offset send pages up to the end of the current host
1342 * page. It's valid for the initial offset to point into the middle of
1343 * a host page in which case the remainder of the hostpage is sent.
1344 * Only dirty target pages are sent. Note that the host page size may
1345 * be a huge page for this block.
1347 * Returns the number of pages written or negative on error
1349 * @rs: current RAM state
1350 * @ms: current migration state
1351 * @pss: data about the page we want to send
1352 * @last_stage: if we are at the completion stage
1353 * @page_abs: Page number of the dirty page
1355 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1357 unsigned long page_abs)
1359 int tmppages, pages = 0;
1360 size_t pagesize_bits =
1361 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1364 tmppages = ram_save_target_page(rs, pss, last_stage, page_abs);
1372 } while (pss->page & (pagesize_bits - 1));
1374 /* The offset we leave with is the last one we looked at */
1380 * ram_find_and_save_block: finds a dirty page and sends it to f
1382 * Called within an RCU critical section.
1384 * Returns the number of pages written where zero means no dirty pages
1386 * @rs: current RAM state
1387 * @last_stage: if we are at the completion stage
1389 * On systems where host-page-size > target-page-size it will send all the
1390 * pages in a host page that are dirty.
1393 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1395 PageSearchStatus pss;
1398 unsigned long page_abs; /* Page number of the dirty page */
1400 /* No dirty page as there is zero RAM */
1401 if (!ram_bytes_total()) {
1405 pss.block = rs->last_seen_block;
1406 pss.page = rs->last_page;
1407 pss.complete_round = false;
1410 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1415 found = get_queued_page(rs, &pss, &page_abs);
1418 /* priority queue empty, so just search for something dirty */
1419 found = find_dirty_block(rs, &pss, &again, &page_abs);
1423 pages = ram_save_host_page(rs, &pss, last_stage, page_abs);
1425 } while (!pages && again);
1427 rs->last_seen_block = pss.block;
1428 rs->last_page = pss.page;
1433 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1435 uint64_t pages = size / TARGET_PAGE_SIZE;
1436 RAMState *rs = &ram_state;
1439 rs->zero_pages += pages;
1441 rs->norm_pages += pages;
1442 rs->bytes_transferred += size;
1443 qemu_update_position(f, size);
1447 uint64_t ram_bytes_total(void)
1453 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1454 total += block->used_length;
1459 void free_xbzrle_decoded_buf(void)
1461 g_free(xbzrle_decoded_buf);
1462 xbzrle_decoded_buf = NULL;
1465 static void migration_bitmap_free(struct RAMBitmap *bmap)
1468 g_free(bmap->unsentmap);
1472 static void ram_migration_cleanup(void *opaque)
1474 RAMState *rs = opaque;
1476 /* caller have hold iothread lock or is in a bh, so there is
1477 * no writing race against this migration_bitmap
1479 struct RAMBitmap *bitmap = rs->ram_bitmap;
1480 atomic_rcu_set(&rs->ram_bitmap, NULL);
1482 memory_global_dirty_log_stop();
1483 call_rcu(bitmap, migration_bitmap_free, rcu);
1486 XBZRLE_cache_lock();
1488 cache_fini(XBZRLE.cache);
1489 g_free(XBZRLE.encoded_buf);
1490 g_free(XBZRLE.current_buf);
1491 g_free(ZERO_TARGET_PAGE);
1492 XBZRLE.cache = NULL;
1493 XBZRLE.encoded_buf = NULL;
1494 XBZRLE.current_buf = NULL;
1496 XBZRLE_cache_unlock();
1499 static void ram_state_reset(RAMState *rs)
1501 rs->last_seen_block = NULL;
1502 rs->last_sent_block = NULL;
1504 rs->last_version = ram_list.version;
1505 rs->ram_bulk_stage = true;
1508 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1510 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1512 RAMState *rs = &ram_state;
1514 /* called in qemu main thread, so there is
1515 * no writing race against this migration_bitmap
1517 if (rs->ram_bitmap) {
1518 struct RAMBitmap *old_bitmap = rs->ram_bitmap, *bitmap;
1519 bitmap = g_new(struct RAMBitmap, 1);
1520 bitmap->bmap = bitmap_new(new);
1522 /* prevent migration_bitmap content from being set bit
1523 * by migration_bitmap_sync_range() at the same time.
1524 * it is safe to migration if migration_bitmap is cleared bit
1527 qemu_mutex_lock(&rs->bitmap_mutex);
1528 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1529 bitmap_set(bitmap->bmap, old, new - old);
1531 /* We don't have a way to safely extend the sentmap
1532 * with RCU; so mark it as missing, entry to postcopy
1535 bitmap->unsentmap = NULL;
1537 atomic_rcu_set(&rs->ram_bitmap, bitmap);
1538 qemu_mutex_unlock(&rs->bitmap_mutex);
1539 rs->migration_dirty_pages += new - old;
1540 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1545 * 'expected' is the value you expect the bitmap mostly to be full
1546 * of; it won't bother printing lines that are all this value.
1547 * If 'todump' is null the migration bitmap is dumped.
1549 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1551 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1552 RAMState *rs = &ram_state;
1554 int64_t linelen = 128;
1558 todump = atomic_rcu_read(&rs->ram_bitmap)->bmap;
1561 for (cur = 0; cur < ram_pages; cur += linelen) {
1565 * Last line; catch the case where the line length
1566 * is longer than remaining ram
1568 if (cur + linelen > ram_pages) {
1569 linelen = ram_pages - cur;
1571 for (curb = 0; curb < linelen; curb++) {
1572 bool thisbit = test_bit(cur + curb, todump);
1573 linebuf[curb] = thisbit ? '1' : '.';
1574 found = found || (thisbit != expected);
1577 linebuf[curb] = '\0';
1578 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1583 /* **** functions for postcopy ***** */
1585 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1587 RAMState *rs = &ram_state;
1588 struct RAMBlock *block;
1589 unsigned long *bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
1591 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1592 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1593 unsigned long range = first + (block->used_length >> TARGET_PAGE_BITS);
1594 unsigned long run_start = find_next_zero_bit(bitmap, range, first);
1596 while (run_start < range) {
1597 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1598 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
1599 (run_end - run_start) << TARGET_PAGE_BITS);
1600 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1606 * postcopy_send_discard_bm_ram: discard a RAMBlock
1608 * Returns zero on success
1610 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1611 * Note: At this point the 'unsentmap' is the processed bitmap combined
1612 * with the dirtymap; so a '1' means it's either dirty or unsent.
1614 * @ms: current migration state
1615 * @pds: state for postcopy
1616 * @start: RAMBlock starting page
1617 * @length: RAMBlock size
1619 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1620 PostcopyDiscardState *pds,
1621 unsigned long start,
1622 unsigned long length)
1624 RAMState *rs = &ram_state;
1625 unsigned long end = start + length; /* one after the end */
1626 unsigned long current;
1627 unsigned long *unsentmap;
1629 unsentmap = atomic_rcu_read(&rs->ram_bitmap)->unsentmap;
1630 for (current = start; current < end; ) {
1631 unsigned long one = find_next_bit(unsentmap, end, current);
1634 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1635 unsigned long discard_length;
1638 discard_length = end - one;
1640 discard_length = zero - one;
1642 if (discard_length) {
1643 postcopy_discard_send_range(ms, pds, one, discard_length);
1645 current = one + discard_length;
1655 * postcopy_each_ram_send_discard: discard all RAMBlocks
1657 * Returns 0 for success or negative for error
1659 * Utility for the outgoing postcopy code.
1660 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1661 * passing it bitmap indexes and name.
1662 * (qemu_ram_foreach_block ends up passing unscaled lengths
1663 * which would mean postcopy code would have to deal with target page)
1665 * @ms: current migration state
1667 static int postcopy_each_ram_send_discard(MigrationState *ms)
1669 struct RAMBlock *block;
1672 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1673 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1674 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1679 * Postcopy sends chunks of bitmap over the wire, but it
1680 * just needs indexes at this point, avoids it having
1681 * target page specific code.
1683 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1684 block->used_length >> TARGET_PAGE_BITS);
1685 postcopy_discard_send_finish(ms, pds);
1695 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1697 * Helper for postcopy_chunk_hostpages; it's called twice to
1698 * canonicalize the two bitmaps, that are similar, but one is
1701 * Postcopy requires that all target pages in a hostpage are dirty or
1702 * clean, not a mix. This function canonicalizes the bitmaps.
1704 * @ms: current migration state
1705 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1706 * otherwise we need to canonicalize partially dirty host pages
1707 * @block: block that contains the page we want to canonicalize
1708 * @pds: state for postcopy
1710 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1712 PostcopyDiscardState *pds)
1714 RAMState *rs = &ram_state;
1715 unsigned long *bitmap;
1716 unsigned long *unsentmap;
1717 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1718 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1719 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1720 unsigned long last = first + (len - 1);
1721 unsigned long run_start;
1723 if (block->page_size == TARGET_PAGE_SIZE) {
1724 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1728 bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
1729 unsentmap = atomic_rcu_read(&rs->ram_bitmap)->unsentmap;
1732 /* Find a sent page */
1733 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1735 /* Find a dirty page */
1736 run_start = find_next_bit(bitmap, last + 1, first);
1739 while (run_start <= last) {
1740 bool do_fixup = false;
1741 unsigned long fixup_start_addr;
1742 unsigned long host_offset;
1745 * If the start of this run of pages is in the middle of a host
1746 * page, then we need to fixup this host page.
1748 host_offset = run_start % host_ratio;
1751 run_start -= host_offset;
1752 fixup_start_addr = run_start;
1753 /* For the next pass */
1754 run_start = run_start + host_ratio;
1756 /* Find the end of this run */
1757 unsigned long run_end;
1759 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1761 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1764 * If the end isn't at the start of a host page, then the
1765 * run doesn't finish at the end of a host page
1766 * and we need to discard.
1768 host_offset = run_end % host_ratio;
1771 fixup_start_addr = run_end - host_offset;
1773 * This host page has gone, the next loop iteration starts
1774 * from after the fixup
1776 run_start = fixup_start_addr + host_ratio;
1779 * No discards on this iteration, next loop starts from
1780 * next sent/dirty page
1782 run_start = run_end + 1;
1789 /* Tell the destination to discard this page */
1790 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1791 /* For the unsent_pass we:
1792 * discard partially sent pages
1793 * For the !unsent_pass (dirty) we:
1794 * discard partially dirty pages that were sent
1795 * (any partially sent pages were already discarded
1796 * by the previous unsent_pass)
1798 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1802 /* Clean up the bitmap */
1803 for (page = fixup_start_addr;
1804 page < fixup_start_addr + host_ratio; page++) {
1805 /* All pages in this host page are now not sent */
1806 set_bit(page, unsentmap);
1809 * Remark them as dirty, updating the count for any pages
1810 * that weren't previously dirty.
1812 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
1817 /* Find the next sent page for the next iteration */
1818 run_start = find_next_zero_bit(unsentmap, last + 1,
1821 /* Find the next dirty page for the next iteration */
1822 run_start = find_next_bit(bitmap, last + 1, run_start);
1828 * postcopy_chuck_hostpages: discrad any partially sent host page
1830 * Utility for the outgoing postcopy code.
1832 * Discard any partially sent host-page size chunks, mark any partially
1833 * dirty host-page size chunks as all dirty. In this case the host-page
1834 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1836 * Returns zero on success
1838 * @ms: current migration state
1840 static int postcopy_chunk_hostpages(MigrationState *ms)
1842 RAMState *rs = &ram_state;
1843 struct RAMBlock *block;
1845 /* Easiest way to make sure we don't resume in the middle of a host-page */
1846 rs->last_seen_block = NULL;
1847 rs->last_sent_block = NULL;
1850 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1851 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1853 PostcopyDiscardState *pds =
1854 postcopy_discard_send_init(ms, first, block->idstr);
1856 /* First pass: Discard all partially sent host pages */
1857 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1859 * Second pass: Ensure that all partially dirty host pages are made
1862 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1864 postcopy_discard_send_finish(ms, pds);
1865 } /* ram_list loop */
1871 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1873 * Returns zero on success
1875 * Transmit the set of pages to be discarded after precopy to the target
1876 * these are pages that:
1877 * a) Have been previously transmitted but are now dirty again
1878 * b) Pages that have never been transmitted, this ensures that
1879 * any pages on the destination that have been mapped by background
1880 * tasks get discarded (transparent huge pages is the specific concern)
1881 * Hopefully this is pretty sparse
1883 * @ms: current migration state
1885 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1887 RAMState *rs = &ram_state;
1889 unsigned long *bitmap, *unsentmap;
1893 /* This should be our last sync, the src is now paused */
1894 migration_bitmap_sync(rs);
1896 unsentmap = atomic_rcu_read(&rs->ram_bitmap)->unsentmap;
1898 /* We don't have a safe way to resize the sentmap, so
1899 * if the bitmap was resized it will be NULL at this
1902 error_report("migration ram resized during precopy phase");
1907 /* Deal with TPS != HPS and huge pages */
1908 ret = postcopy_chunk_hostpages(ms);
1915 * Update the unsentmap to be unsentmap = unsentmap | dirty
1917 bitmap = atomic_rcu_read(&rs->ram_bitmap)->bmap;
1918 bitmap_or(unsentmap, unsentmap, bitmap,
1919 last_ram_offset() >> TARGET_PAGE_BITS);
1922 trace_ram_postcopy_send_discard_bitmap();
1923 #ifdef DEBUG_POSTCOPY
1924 ram_debug_dump_bitmap(unsentmap, true);
1927 ret = postcopy_each_ram_send_discard(ms);
1934 * ram_discard_range: discard dirtied pages at the beginning of postcopy
1936 * Returns zero on success
1938 * @rbname: name of the RAMBlock of the request. NULL means the
1939 * same that last one.
1940 * @start: RAMBlock starting page
1941 * @length: RAMBlock size
1943 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
1947 trace_ram_discard_range(rbname, start, length);
1950 RAMBlock *rb = qemu_ram_block_by_name(rbname);
1953 error_report("ram_discard_range: Failed to find block '%s'", rbname);
1957 ret = ram_block_discard_range(rb, start, length);
1965 static int ram_state_init(RAMState *rs)
1967 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1969 memset(rs, 0, sizeof(*rs));
1970 qemu_mutex_init(&rs->bitmap_mutex);
1971 qemu_mutex_init(&rs->src_page_req_mutex);
1972 QSIMPLEQ_INIT(&rs->src_page_requests);
1974 if (migrate_use_xbzrle()) {
1975 XBZRLE_cache_lock();
1976 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1977 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1980 if (!XBZRLE.cache) {
1981 XBZRLE_cache_unlock();
1982 error_report("Error creating cache");
1985 XBZRLE_cache_unlock();
1987 /* We prefer not to abort if there is no memory */
1988 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1989 if (!XBZRLE.encoded_buf) {
1990 error_report("Error allocating encoded_buf");
1994 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1995 if (!XBZRLE.current_buf) {
1996 error_report("Error allocating current_buf");
1997 g_free(XBZRLE.encoded_buf);
1998 XBZRLE.encoded_buf = NULL;
2003 /* For memory_global_dirty_log_start below. */
2004 qemu_mutex_lock_iothread();
2006 qemu_mutex_lock_ramlist();
2008 ram_state_reset(rs);
2010 rs->ram_bitmap = g_new0(struct RAMBitmap, 1);
2011 /* Skip setting bitmap if there is no RAM */
2012 if (ram_bytes_total()) {
2013 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2014 rs->ram_bitmap->bmap = bitmap_new(ram_bitmap_pages);
2015 bitmap_set(rs->ram_bitmap->bmap, 0, ram_bitmap_pages);
2017 if (migrate_postcopy_ram()) {
2018 rs->ram_bitmap->unsentmap = bitmap_new(ram_bitmap_pages);
2019 bitmap_set(rs->ram_bitmap->unsentmap, 0, ram_bitmap_pages);
2024 * Count the total number of pages used by ram blocks not including any
2025 * gaps due to alignment or unplugs.
2027 rs->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2029 memory_global_dirty_log_start();
2030 migration_bitmap_sync(rs);
2031 qemu_mutex_unlock_ramlist();
2032 qemu_mutex_unlock_iothread();
2039 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2040 * long-running RCU critical section. When rcu-reclaims in the code
2041 * start to become numerous it will be necessary to reduce the
2042 * granularity of these critical sections.
2046 * ram_save_setup: Setup RAM for migration
2048 * Returns zero to indicate success and negative for error
2050 * @f: QEMUFile where to send the data
2051 * @opaque: RAMState pointer
2053 static int ram_save_setup(QEMUFile *f, void *opaque)
2055 RAMState *rs = opaque;
2058 /* migration has already setup the bitmap, reuse it. */
2059 if (!migration_in_colo_state()) {
2060 if (ram_state_init(rs) < 0) {
2068 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2070 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2071 qemu_put_byte(f, strlen(block->idstr));
2072 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2073 qemu_put_be64(f, block->used_length);
2074 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2075 qemu_put_be64(f, block->page_size);
2081 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2082 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2084 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2090 * ram_save_iterate: iterative stage for migration
2092 * Returns zero to indicate success and negative for error
2094 * @f: QEMUFile where to send the data
2095 * @opaque: RAMState pointer
2097 static int ram_save_iterate(QEMUFile *f, void *opaque)
2099 RAMState *rs = opaque;
2106 if (ram_list.version != rs->last_version) {
2107 ram_state_reset(rs);
2110 /* Read version before ram_list.blocks */
2113 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2115 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2117 while ((ret = qemu_file_rate_limit(f)) == 0) {
2120 pages = ram_find_and_save_block(rs, false);
2121 /* no more pages to sent */
2128 /* we want to check in the 1st loop, just in case it was the 1st time
2129 and we had to sync the dirty bitmap.
2130 qemu_get_clock_ns() is a bit expensive, so we only check each some
2133 if ((i & 63) == 0) {
2134 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2135 if (t1 > MAX_WAIT) {
2136 trace_ram_save_iterate_big_wait(t1, i);
2142 flush_compressed_data(rs);
2146 * Must occur before EOS (or any QEMUFile operation)
2147 * because of RDMA protocol.
2149 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2151 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2152 rs->bytes_transferred += 8;
2154 ret = qemu_file_get_error(f);
2163 * ram_save_complete: function called to send the remaining amount of ram
2165 * Returns zero to indicate success
2167 * Called with iothread lock
2169 * @f: QEMUFile where to send the data
2170 * @opaque: RAMState pointer
2172 static int ram_save_complete(QEMUFile *f, void *opaque)
2174 RAMState *rs = opaque;
2178 if (!migration_in_postcopy()) {
2179 migration_bitmap_sync(rs);
2182 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2184 /* try transferring iterative blocks of memory */
2186 /* flush all remaining blocks regardless of rate limiting */
2190 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2191 /* no more blocks to sent */
2197 flush_compressed_data(rs);
2198 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2202 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2207 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2208 uint64_t *non_postcopiable_pending,
2209 uint64_t *postcopiable_pending)
2211 RAMState *rs = opaque;
2212 uint64_t remaining_size;
2214 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2216 if (!migration_in_postcopy() &&
2217 remaining_size < max_size) {
2218 qemu_mutex_lock_iothread();
2220 migration_bitmap_sync(rs);
2222 qemu_mutex_unlock_iothread();
2223 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2226 /* We can do postcopy, and all the data is postcopiable */
2227 *postcopiable_pending += remaining_size;
2230 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2232 unsigned int xh_len;
2234 uint8_t *loaded_data;
2236 if (!xbzrle_decoded_buf) {
2237 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2239 loaded_data = xbzrle_decoded_buf;
2241 /* extract RLE header */
2242 xh_flags = qemu_get_byte(f);
2243 xh_len = qemu_get_be16(f);
2245 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2246 error_report("Failed to load XBZRLE page - wrong compression!");
2250 if (xh_len > TARGET_PAGE_SIZE) {
2251 error_report("Failed to load XBZRLE page - len overflow!");
2254 /* load data and decode */
2255 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2258 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2259 TARGET_PAGE_SIZE) == -1) {
2260 error_report("Failed to load XBZRLE page - decode error!");
2268 * ram_block_from_stream: read a RAMBlock id from the migration stream
2270 * Must be called from within a rcu critical section.
2272 * Returns a pointer from within the RCU-protected ram_list.
2274 * @f: QEMUFile where to read the data from
2275 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2277 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2279 static RAMBlock *block = NULL;
2283 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2285 error_report("Ack, bad migration stream!");
2291 len = qemu_get_byte(f);
2292 qemu_get_buffer(f, (uint8_t *)id, len);
2295 block = qemu_ram_block_by_name(id);
2297 error_report("Can't find block %s", id);
2304 static inline void *host_from_ram_block_offset(RAMBlock *block,
2307 if (!offset_in_ramblock(block, offset)) {
2311 return block->host + offset;
2315 * ram_handle_compressed: handle the zero page case
2317 * If a page (or a whole RDMA chunk) has been
2318 * determined to be zero, then zap it.
2320 * @host: host address for the zero page
2321 * @ch: what the page is filled from. We only support zero
2322 * @size: size of the zero page
2324 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2326 if (ch != 0 || !is_zero_range(host, size)) {
2327 memset(host, ch, size);
2331 static void *do_data_decompress(void *opaque)
2333 DecompressParam *param = opaque;
2334 unsigned long pagesize;
2338 qemu_mutex_lock(¶m->mutex);
2339 while (!param->quit) {
2344 qemu_mutex_unlock(¶m->mutex);
2346 pagesize = TARGET_PAGE_SIZE;
2347 /* uncompress() will return failed in some case, especially
2348 * when the page is dirted when doing the compression, it's
2349 * not a problem because the dirty page will be retransferred
2350 * and uncompress() won't break the data in other pages.
2352 uncompress((Bytef *)des, &pagesize,
2353 (const Bytef *)param->compbuf, len);
2355 qemu_mutex_lock(&decomp_done_lock);
2357 qemu_cond_signal(&decomp_done_cond);
2358 qemu_mutex_unlock(&decomp_done_lock);
2360 qemu_mutex_lock(¶m->mutex);
2362 qemu_cond_wait(¶m->cond, ¶m->mutex);
2365 qemu_mutex_unlock(¶m->mutex);
2370 static void wait_for_decompress_done(void)
2372 int idx, thread_count;
2374 if (!migrate_use_compression()) {
2378 thread_count = migrate_decompress_threads();
2379 qemu_mutex_lock(&decomp_done_lock);
2380 for (idx = 0; idx < thread_count; idx++) {
2381 while (!decomp_param[idx].done) {
2382 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2385 qemu_mutex_unlock(&decomp_done_lock);
2388 void migrate_decompress_threads_create(void)
2390 int i, thread_count;
2392 thread_count = migrate_decompress_threads();
2393 decompress_threads = g_new0(QemuThread, thread_count);
2394 decomp_param = g_new0(DecompressParam, thread_count);
2395 qemu_mutex_init(&decomp_done_lock);
2396 qemu_cond_init(&decomp_done_cond);
2397 for (i = 0; i < thread_count; i++) {
2398 qemu_mutex_init(&decomp_param[i].mutex);
2399 qemu_cond_init(&decomp_param[i].cond);
2400 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2401 decomp_param[i].done = true;
2402 decomp_param[i].quit = false;
2403 qemu_thread_create(decompress_threads + i, "decompress",
2404 do_data_decompress, decomp_param + i,
2405 QEMU_THREAD_JOINABLE);
2409 void migrate_decompress_threads_join(void)
2411 int i, thread_count;
2413 thread_count = migrate_decompress_threads();
2414 for (i = 0; i < thread_count; i++) {
2415 qemu_mutex_lock(&decomp_param[i].mutex);
2416 decomp_param[i].quit = true;
2417 qemu_cond_signal(&decomp_param[i].cond);
2418 qemu_mutex_unlock(&decomp_param[i].mutex);
2420 for (i = 0; i < thread_count; i++) {
2421 qemu_thread_join(decompress_threads + i);
2422 qemu_mutex_destroy(&decomp_param[i].mutex);
2423 qemu_cond_destroy(&decomp_param[i].cond);
2424 g_free(decomp_param[i].compbuf);
2426 g_free(decompress_threads);
2427 g_free(decomp_param);
2428 decompress_threads = NULL;
2429 decomp_param = NULL;
2432 static void decompress_data_with_multi_threads(QEMUFile *f,
2433 void *host, int len)
2435 int idx, thread_count;
2437 thread_count = migrate_decompress_threads();
2438 qemu_mutex_lock(&decomp_done_lock);
2440 for (idx = 0; idx < thread_count; idx++) {
2441 if (decomp_param[idx].done) {
2442 decomp_param[idx].done = false;
2443 qemu_mutex_lock(&decomp_param[idx].mutex);
2444 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2445 decomp_param[idx].des = host;
2446 decomp_param[idx].len = len;
2447 qemu_cond_signal(&decomp_param[idx].cond);
2448 qemu_mutex_unlock(&decomp_param[idx].mutex);
2452 if (idx < thread_count) {
2455 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2458 qemu_mutex_unlock(&decomp_done_lock);
2462 * ram_postcopy_incoming_init: allocate postcopy data structures
2464 * Returns 0 for success and negative if there was one error
2466 * @mis: current migration incoming state
2468 * Allocate data structures etc needed by incoming migration with
2469 * postcopy-ram. postcopy-ram's similarly names
2470 * postcopy_ram_incoming_init does the work.
2472 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2474 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2476 return postcopy_ram_incoming_init(mis, ram_pages);
2480 * ram_load_postcopy: load a page in postcopy case
2482 * Returns 0 for success or -errno in case of error
2484 * Called in postcopy mode by ram_load().
2485 * rcu_read_lock is taken prior to this being called.
2487 * @f: QEMUFile where to send the data
2489 static int ram_load_postcopy(QEMUFile *f)
2491 int flags = 0, ret = 0;
2492 bool place_needed = false;
2493 bool matching_page_sizes = false;
2494 MigrationIncomingState *mis = migration_incoming_get_current();
2495 /* Temporary page that is later 'placed' */
2496 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2497 void *last_host = NULL;
2498 bool all_zero = false;
2500 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2503 void *page_buffer = NULL;
2504 void *place_source = NULL;
2505 RAMBlock *block = NULL;
2508 addr = qemu_get_be64(f);
2509 flags = addr & ~TARGET_PAGE_MASK;
2510 addr &= TARGET_PAGE_MASK;
2512 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2513 place_needed = false;
2514 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2515 block = ram_block_from_stream(f, flags);
2517 host = host_from_ram_block_offset(block, addr);
2519 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2523 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
2525 * Postcopy requires that we place whole host pages atomically;
2526 * these may be huge pages for RAMBlocks that are backed by
2528 * To make it atomic, the data is read into a temporary page
2529 * that's moved into place later.
2530 * The migration protocol uses, possibly smaller, target-pages
2531 * however the source ensures it always sends all the components
2532 * of a host page in order.
2534 page_buffer = postcopy_host_page +
2535 ((uintptr_t)host & (block->page_size - 1));
2536 /* If all TP are zero then we can optimise the place */
2537 if (!((uintptr_t)host & (block->page_size - 1))) {
2540 /* not the 1st TP within the HP */
2541 if (host != (last_host + TARGET_PAGE_SIZE)) {
2542 error_report("Non-sequential target page %p/%p",
2551 * If it's the last part of a host page then we place the host
2554 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2555 (block->page_size - 1)) == 0;
2556 place_source = postcopy_host_page;
2560 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2561 case RAM_SAVE_FLAG_COMPRESS:
2562 ch = qemu_get_byte(f);
2563 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2569 case RAM_SAVE_FLAG_PAGE:
2571 if (!place_needed || !matching_page_sizes) {
2572 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2574 /* Avoids the qemu_file copy during postcopy, which is
2575 * going to do a copy later; can only do it when we
2576 * do this read in one go (matching page sizes)
2578 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2582 case RAM_SAVE_FLAG_EOS:
2586 error_report("Unknown combination of migration flags: %#x"
2587 " (postcopy mode)", flags);
2592 /* This gets called at the last target page in the host page */
2593 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2596 ret = postcopy_place_page_zero(mis, place_dest,
2599 ret = postcopy_place_page(mis, place_dest,
2600 place_source, block->page_size);
2604 ret = qemu_file_get_error(f);
2611 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2613 int flags = 0, ret = 0;
2614 static uint64_t seq_iter;
2617 * If system is running in postcopy mode, page inserts to host memory must
2620 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2621 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2622 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
2626 if (version_id != 4) {
2630 /* This RCU critical section can be very long running.
2631 * When RCU reclaims in the code start to become numerous,
2632 * it will be necessary to reduce the granularity of this
2637 if (postcopy_running) {
2638 ret = ram_load_postcopy(f);
2641 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2642 ram_addr_t addr, total_ram_bytes;
2646 addr = qemu_get_be64(f);
2647 flags = addr & ~TARGET_PAGE_MASK;
2648 addr &= TARGET_PAGE_MASK;
2650 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2651 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2652 RAMBlock *block = ram_block_from_stream(f, flags);
2654 host = host_from_ram_block_offset(block, addr);
2656 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2662 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2663 case RAM_SAVE_FLAG_MEM_SIZE:
2664 /* Synchronize RAM block list */
2665 total_ram_bytes = addr;
2666 while (!ret && total_ram_bytes) {
2671 len = qemu_get_byte(f);
2672 qemu_get_buffer(f, (uint8_t *)id, len);
2674 length = qemu_get_be64(f);
2676 block = qemu_ram_block_by_name(id);
2678 if (length != block->used_length) {
2679 Error *local_err = NULL;
2681 ret = qemu_ram_resize(block, length,
2684 error_report_err(local_err);
2687 /* For postcopy we need to check hugepage sizes match */
2688 if (postcopy_advised &&
2689 block->page_size != qemu_host_page_size) {
2690 uint64_t remote_page_size = qemu_get_be64(f);
2691 if (remote_page_size != block->page_size) {
2692 error_report("Mismatched RAM page size %s "
2693 "(local) %zd != %" PRId64,
2694 id, block->page_size,
2699 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2702 error_report("Unknown ramblock \"%s\", cannot "
2703 "accept migration", id);
2707 total_ram_bytes -= length;
2711 case RAM_SAVE_FLAG_COMPRESS:
2712 ch = qemu_get_byte(f);
2713 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2716 case RAM_SAVE_FLAG_PAGE:
2717 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2720 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2721 len = qemu_get_be32(f);
2722 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2723 error_report("Invalid compressed data length: %d", len);
2727 decompress_data_with_multi_threads(f, host, len);
2730 case RAM_SAVE_FLAG_XBZRLE:
2731 if (load_xbzrle(f, addr, host) < 0) {
2732 error_report("Failed to decompress XBZRLE page at "
2733 RAM_ADDR_FMT, addr);
2738 case RAM_SAVE_FLAG_EOS:
2742 if (flags & RAM_SAVE_FLAG_HOOK) {
2743 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2745 error_report("Unknown combination of migration flags: %#x",
2751 ret = qemu_file_get_error(f);
2755 wait_for_decompress_done();
2757 trace_ram_load_complete(ret, seq_iter);
2761 static SaveVMHandlers savevm_ram_handlers = {
2762 .save_live_setup = ram_save_setup,
2763 .save_live_iterate = ram_save_iterate,
2764 .save_live_complete_postcopy = ram_save_complete,
2765 .save_live_complete_precopy = ram_save_complete,
2766 .save_live_pending = ram_save_pending,
2767 .load_state = ram_load,
2768 .cleanup = ram_migration_cleanup,
2771 void ram_mig_init(void)
2773 qemu_mutex_init(&XBZRLE.lock);
2774 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);