2 * RISC-V CPU helpers for qemu.
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "exec/exec-all.h"
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 #ifdef CONFIG_USER_ONLY
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41 target_ulong pending = atomic_read(&env->mip) & env->mie;
42 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44 target_ulong irqs = (pending & ~env->mideleg & -mie) |
45 (pending & env->mideleg & -sie);
48 return ctz64(irqs); /* since non-zero */
50 return EXCP_NONE; /* indicates no pending interrupt */
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
57 #if !defined(CONFIG_USER_ONLY)
58 if (interrupt_request & CPU_INTERRUPT_HARD) {
59 RISCVCPU *cpu = RISCV_CPU(cs);
60 CPURISCVState *env = &cpu->env;
61 int interruptno = riscv_cpu_local_irq_pending(env);
62 if (interruptno >= 0) {
63 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64 riscv_cpu_do_interrupt(cs);
72 #if !defined(CONFIG_USER_ONLY)
74 /* Return true is floating point support is currently enabled */
75 bool riscv_cpu_fp_enabled(CPURISCVState *env)
77 if (env->mstatus & MSTATUS_FS) {
84 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
86 CPURISCVState *env = &cpu->env;
87 if (env->miclaim & interrupts) {
90 env->miclaim |= interrupts;
99 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
100 run_on_cpu_data data)
102 struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
105 cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
107 cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
113 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
115 CPURISCVState *env = &cpu->env;
116 CPUState *cs = CPU(cpu);
117 struct CpuAsyncInfo *info;
118 uint32_t old, new, cmp = atomic_read(&env->mip);
122 new = (old & ~mask) | (value & mask);
123 cmp = atomic_cmpxchg(&env->mip, old, new);
124 } while (old != cmp);
126 info = g_new(struct CpuAsyncInfo, 1);
129 async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
130 RUN_ON_CPU_HOST_PTR(info));
135 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
137 if (newpriv > PRV_M) {
138 g_assert_not_reached();
140 if (newpriv == PRV_H) {
143 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
147 * Clear the load reservation - otherwise a reservation placed in one
148 * context/process can be used by another, resulting in an SC succeeding
149 * incorrectly. Version 2.2 of the ISA specification explicitly requires
150 * this behaviour, while later revisions say that the kernel "should" use
151 * an SC instruction to force the yielding of a load reservation on a
152 * preemptive context switch. As a result, do both.
157 /* get_physical_address - get the physical address for this virtual address
159 * Do a page table walk to obtain the physical address corresponding to a
160 * virtual address. Returns 0 if the translation was successful
162 * Adapted from Spike's mmu_t::translate and mmu_t::walk
165 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
166 int *prot, target_ulong addr,
167 int access_type, int mmu_idx)
169 /* NOTE: the env->pc value visible here will not be
170 * correct, but the value visible to the exception handler
171 * (riscv_cpu_do_interrupt) is correct */
175 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
176 if (get_field(env->mstatus, MSTATUS_MPRV)) {
177 mode = get_field(env->mstatus, MSTATUS_MPP);
181 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
183 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
184 return TRANSLATE_SUCCESS;
190 int levels, ptidxbits, ptesize, vm, sum;
191 int mxr = get_field(env->mstatus, MSTATUS_MXR);
193 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
194 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
195 sum = get_field(env->mstatus, MSTATUS_SUM);
196 vm = get_field(env->satp, SATP_MODE);
199 levels = 2; ptidxbits = 10; ptesize = 4; break;
201 levels = 3; ptidxbits = 9; ptesize = 8; break;
203 levels = 4; ptidxbits = 9; ptesize = 8; break;
205 levels = 5; ptidxbits = 9; ptesize = 8; break;
208 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
209 return TRANSLATE_SUCCESS;
211 g_assert_not_reached();
214 base = (hwaddr)(env->sptbr) << PGSHIFT;
215 sum = !get_field(env->mstatus, MSTATUS_PUM);
216 vm = get_field(env->mstatus, MSTATUS_VM);
219 levels = 2; ptidxbits = 10; ptesize = 4; break;
221 levels = 3; ptidxbits = 9; ptesize = 8; break;
223 levels = 4; ptidxbits = 9; ptesize = 8; break;
226 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
227 return TRANSLATE_SUCCESS;
229 g_assert_not_reached();
233 CPUState *cs = env_cpu(env);
234 int va_bits = PGSHIFT + levels * ptidxbits;
235 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
236 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
237 if (masked_msbs != 0 && masked_msbs != mask) {
238 return TRANSLATE_FAIL;
241 int ptshift = (levels - 1) * ptidxbits;
244 #if !TCG_OVERSIZED_GUEST
247 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
248 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
249 ((1 << ptidxbits) - 1);
251 /* check that physical address of PTE is legal */
252 hwaddr pte_addr = base + idx * ptesize;
254 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
255 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
256 1 << MMU_DATA_LOAD, PRV_S)) {
257 return TRANSLATE_PMP_FAIL;
259 #if defined(TARGET_RISCV32)
260 target_ulong pte = ldl_phys(cs->as, pte_addr);
261 #elif defined(TARGET_RISCV64)
262 target_ulong pte = ldq_phys(cs->as, pte_addr);
264 hwaddr ppn = pte >> PTE_PPN_SHIFT;
266 if (!(pte & PTE_V)) {
268 return TRANSLATE_FAIL;
269 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
270 /* Inner PTE, continue walking */
271 base = ppn << PGSHIFT;
272 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
273 /* Reserved leaf PTE flags: PTE_W */
274 return TRANSLATE_FAIL;
275 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
276 /* Reserved leaf PTE flags: PTE_W + PTE_X */
277 return TRANSLATE_FAIL;
278 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
279 (!sum || access_type == MMU_INST_FETCH))) {
280 /* User PTE flags when not U mode and mstatus.SUM is not set,
281 or the access type is an instruction fetch */
282 return TRANSLATE_FAIL;
283 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
284 /* Supervisor PTE flags when not S mode */
285 return TRANSLATE_FAIL;
286 } else if (ppn & ((1ULL << ptshift) - 1)) {
288 return TRANSLATE_FAIL;
289 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
290 ((pte & PTE_X) && mxr))) {
291 /* Read access check failed */
292 return TRANSLATE_FAIL;
293 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
294 /* Write access check failed */
295 return TRANSLATE_FAIL;
296 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
297 /* Fetch access check failed */
298 return TRANSLATE_FAIL;
300 /* if necessary, set accessed and dirty bits. */
301 target_ulong updated_pte = pte | PTE_A |
302 (access_type == MMU_DATA_STORE ? PTE_D : 0);
304 /* Page table updates need to be atomic with MTTCG enabled */
305 if (updated_pte != pte) {
307 * - if accessed or dirty bits need updating, and the PTE is
308 * in RAM, then we do so atomically with a compare and swap.
309 * - if the PTE is in IO space or ROM, then it can't be updated
310 * and we return TRANSLATE_FAIL.
311 * - if the PTE changed by the time we went to update it, then
312 * it is no longer valid and we must re-walk the page table.
315 hwaddr l = sizeof(target_ulong), addr1;
316 mr = address_space_translate(cs->as, pte_addr,
317 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
318 if (memory_region_is_ram(mr)) {
319 target_ulong *pte_pa =
320 qemu_map_ram_ptr(mr->ram_block, addr1);
321 #if TCG_OVERSIZED_GUEST
322 /* MTTCG is not enabled on oversized TCG guests so
323 * page table updates do not need to be atomic */
324 *pte_pa = pte = updated_pte;
326 target_ulong old_pte =
327 atomic_cmpxchg(pte_pa, pte, updated_pte);
328 if (old_pte != pte) {
335 /* misconfigured PTE in ROM (AD bits are not preset) or
336 * PTE is in IO space and can't be updated atomically */
337 return TRANSLATE_FAIL;
341 /* for superpage mappings, make a fake leaf PTE for the TLB's
343 target_ulong vpn = addr >> PGSHIFT;
344 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
346 /* set permissions on the TLB entry */
347 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
353 /* add write permission on stores or if the page is already dirty,
354 so that we TLB miss on later writes to update the dirty bit */
356 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
359 return TRANSLATE_SUCCESS;
362 return TRANSLATE_FAIL;
365 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
366 MMUAccessType access_type, bool pmp_violation)
368 CPUState *cs = env_cpu(env);
369 int page_fault_exceptions =
370 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
371 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
373 switch (access_type) {
375 cs->exception_index = page_fault_exceptions ?
376 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
379 cs->exception_index = page_fault_exceptions ?
380 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
383 cs->exception_index = page_fault_exceptions ?
384 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
387 g_assert_not_reached();
389 env->badaddr = address;
392 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
394 RISCVCPU *cpu = RISCV_CPU(cs);
397 int mmu_idx = cpu_mmu_index(&cpu->env, false);
399 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
405 void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
406 bool is_exec, int unused, unsigned size)
408 RISCVCPU *cpu = RISCV_CPU(cs);
409 CPURISCVState *env = &cpu->env;
412 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
414 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
418 riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
421 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
422 MMUAccessType access_type, int mmu_idx,
425 RISCVCPU *cpu = RISCV_CPU(cs);
426 CPURISCVState *env = &cpu->env;
427 switch (access_type) {
429 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
432 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
435 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
438 g_assert_not_reached();
441 riscv_raise_exception(env, cs->exception_index, retaddr);
445 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
446 MMUAccessType access_type, int mmu_idx,
447 bool probe, uintptr_t retaddr)
449 #ifndef CONFIG_USER_ONLY
450 RISCVCPU *cpu = RISCV_CPU(cs);
451 CPURISCVState *env = &cpu->env;
454 bool pmp_violation = false;
455 int ret = TRANSLATE_FAIL;
458 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
459 __func__, address, access_type, mmu_idx);
461 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
463 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
464 if (get_field(env->mstatus, MSTATUS_MPRV)) {
465 mode = get_field(env->mstatus, MSTATUS_MPP);
469 qemu_log_mask(CPU_LOG_MMU,
470 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
471 " prot %d\n", __func__, address, ret, pa, prot);
473 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
474 (ret == TRANSLATE_SUCCESS) &&
475 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
476 ret = TRANSLATE_PMP_FAIL;
478 if (ret == TRANSLATE_PMP_FAIL) {
479 pmp_violation = true;
481 if (ret == TRANSLATE_SUCCESS) {
482 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
483 prot, mmu_idx, TARGET_PAGE_SIZE);
488 raise_mmu_exception(env, address, access_type, pmp_violation);
489 riscv_raise_exception(env, cs->exception_index, retaddr);
492 switch (access_type) {
494 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
497 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
500 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
503 cpu_loop_exit_restore(cs, retaddr);
510 * Adapted from Spike's processor_t::take_trap.
513 void riscv_cpu_do_interrupt(CPUState *cs)
515 #if !defined(CONFIG_USER_ONLY)
517 RISCVCPU *cpu = RISCV_CPU(cs);
518 CPURISCVState *env = &cpu->env;
520 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
521 * so we mask off the MSB and separate into trap type and cause.
523 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
524 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
525 target_ulong deleg = async ? env->mideleg : env->medeleg;
526 target_ulong tval = 0;
528 static const int ecall_cause_map[] = {
529 [PRV_U] = RISCV_EXCP_U_ECALL,
530 [PRV_S] = RISCV_EXCP_S_ECALL,
531 [PRV_H] = RISCV_EXCP_H_ECALL,
532 [PRV_M] = RISCV_EXCP_M_ECALL
536 /* set tval to badaddr for traps with address information */
538 case RISCV_EXCP_INST_ADDR_MIS:
539 case RISCV_EXCP_INST_ACCESS_FAULT:
540 case RISCV_EXCP_LOAD_ADDR_MIS:
541 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
542 case RISCV_EXCP_LOAD_ACCESS_FAULT:
543 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
544 case RISCV_EXCP_INST_PAGE_FAULT:
545 case RISCV_EXCP_LOAD_PAGE_FAULT:
546 case RISCV_EXCP_STORE_PAGE_FAULT:
552 /* ecall is dispatched as one cause so translate based on mode */
553 if (cause == RISCV_EXCP_U_ECALL) {
554 assert(env->priv <= 3);
555 cause = ecall_cause_map[env->priv];
559 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
560 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
562 if (env->priv <= PRV_S &&
563 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
564 /* handle the trap in S-mode */
565 target_ulong s = env->mstatus;
566 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
567 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
568 s = set_field(s, MSTATUS_SPP, env->priv);
569 s = set_field(s, MSTATUS_SIE, 0);
571 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
573 env->sbadaddr = tval;
574 env->pc = (env->stvec >> 2 << 2) +
575 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
576 riscv_cpu_set_mode(env, PRV_S);
578 /* handle the trap in M-mode */
579 target_ulong s = env->mstatus;
580 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
581 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
582 s = set_field(s, MSTATUS_MPP, env->priv);
583 s = set_field(s, MSTATUS_MIE, 0);
585 env->mcause = cause | ~(((target_ulong)-1) >> async);
587 env->mbadaddr = tval;
588 env->pc = (env->mtvec >> 2 << 2) +
589 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
590 riscv_cpu_set_mode(env, PRV_M);
593 /* NOTE: it is not necessary to yield load reservations here. It is only
594 * necessary for an SC from "another hart" to cause a load reservation
595 * to be yielded. Refer to the memory consistency model section of the
596 * RISC-V ISA Specification.
600 cs->exception_index = EXCP_NONE; /* mark handled to qemu */