2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
41 #include "softfloat.h"
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
49 static inline uint16_t tswap16(uint16_t s)
54 static inline uint32_t tswap32(uint32_t s)
59 static inline uint64_t tswap64(uint64_t s)
64 static inline void tswap16s(uint16_t *s)
69 static inline void tswap32s(uint32_t *s)
74 static inline void tswap64s(uint64_t *s)
81 static inline uint16_t tswap16(uint16_t s)
86 static inline uint32_t tswap32(uint32_t s)
91 static inline uint64_t tswap64(uint64_t s)
96 static inline void tswap16s(uint16_t *s)
100 static inline void tswap32s(uint32_t *s)
104 static inline void tswap64s(uint64_t *s)
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
129 #if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147 #if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
174 /* CPU memory access without any memory or io remapping */
177 * the generic syntax for the memory accesses is:
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
184 * (empty): integer access
188 * (empty): for floats or 32 bit size
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
209 static inline int ldub_p(void *ptr)
211 return *(uint8_t *)ptr;
214 static inline int ldsb_p(void *ptr)
216 return *(int8_t *)ptr;
219 static inline void stb_p(void *ptr, int v)
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(void *ptr)
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
238 return p[0] | (p[1] << 8);
242 static inline int ldsw_le_p(void *ptr)
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
250 return (int16_t)(p[0] | (p[1] << 8));
254 static inline int ldl_le_p(void *ptr)
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
266 static inline uint64_t ldq_le_p(void *ptr)
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
275 static inline void stw_le_p(void *ptr, int v)
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
286 static inline void stl_le_p(void *ptr, int v)
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
299 static inline void stq_le_p(void *ptr, uint64_t v)
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
308 static inline float32 ldfl_le_p(void *ptr)
318 static inline void stfl_le_p(void *ptr, float32 v)
328 static inline float64 ldfq_le_p(void *ptr)
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
336 static inline void stfq_le_p(void *ptr, float64 v)
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
346 static inline int lduw_le_p(void *ptr)
348 return *(uint16_t *)ptr;
351 static inline int ldsw_le_p(void *ptr)
353 return *(int16_t *)ptr;
356 static inline int ldl_le_p(void *ptr)
358 return *(uint32_t *)ptr;
361 static inline uint64_t ldq_le_p(void *ptr)
363 return *(uint64_t *)ptr;
366 static inline void stw_le_p(void *ptr, int v)
368 *(uint16_t *)ptr = v;
371 static inline void stl_le_p(void *ptr, int v)
373 *(uint32_t *)ptr = v;
376 static inline void stq_le_p(void *ptr, uint64_t v)
378 *(uint64_t *)ptr = v;
383 static inline float32 ldfl_le_p(void *ptr)
385 return *(float32 *)ptr;
388 static inline float64 ldfq_le_p(void *ptr)
390 return *(float64 *)ptr;
393 static inline void stfl_le_p(void *ptr, float32 v)
398 static inline void stfq_le_p(void *ptr, float64 v)
404 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
406 static inline int lduw_be_p(void *ptr)
408 #if defined(__i386__)
410 asm volatile ("movzwl %1, %0\n"
413 : "m" (*(uint16_t *)ptr));
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
421 static inline int ldsw_be_p(void *ptr)
423 #if defined(__i386__)
425 asm volatile ("movzwl %1, %0\n"
428 : "m" (*(uint16_t *)ptr));
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
436 static inline int ldl_be_p(void *ptr)
438 #if defined(__i386__) || defined(__x86_64__)
440 asm volatile ("movl %1, %0\n"
443 : "m" (*(uint32_t *)ptr));
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
451 static inline uint64_t ldq_be_p(void *ptr)
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
459 static inline void stw_be_p(void *ptr, int v)
461 #if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
465 : "m" (*(uint16_t *)ptr), "0" (v));
467 uint8_t *d = (uint8_t *) ptr;
473 static inline void stl_be_p(void *ptr, int v)
475 #if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
479 : "m" (*(uint32_t *)ptr), "0" (v));
481 uint8_t *d = (uint8_t *) ptr;
489 static inline void stq_be_p(void *ptr, uint64_t v)
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
497 static inline float32 ldfl_be_p(void *ptr)
507 static inline void stfl_be_p(void *ptr, float32 v)
517 static inline float64 ldfq_be_p(void *ptr)
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
525 static inline void stfq_be_p(void *ptr, float64 v)
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
535 static inline int lduw_be_p(void *ptr)
537 return *(uint16_t *)ptr;
540 static inline int ldsw_be_p(void *ptr)
542 return *(int16_t *)ptr;
545 static inline int ldl_be_p(void *ptr)
547 return *(uint32_t *)ptr;
550 static inline uint64_t ldq_be_p(void *ptr)
552 return *(uint64_t *)ptr;
555 static inline void stw_be_p(void *ptr, int v)
557 *(uint16_t *)ptr = v;
560 static inline void stl_be_p(void *ptr, int v)
562 *(uint32_t *)ptr = v;
565 static inline void stq_be_p(void *ptr, uint64_t v)
567 *(uint64_t *)ptr = v;
572 static inline float32 ldfl_be_p(void *ptr)
574 return *(float32 *)ptr;
577 static inline float64 ldfq_be_p(void *ptr)
579 return *(float64 *)ptr;
582 static inline void stfl_be_p(void *ptr, float32 v)
587 static inline void stfq_be_p(void *ptr, float64 v)
594 /* target CPU memory access functions */
595 #if defined(TARGET_WORDS_BIGENDIAN)
596 #define lduw_p(p) lduw_be_p(p)
597 #define ldsw_p(p) ldsw_be_p(p)
598 #define ldl_p(p) ldl_be_p(p)
599 #define ldq_p(p) ldq_be_p(p)
600 #define ldfl_p(p) ldfl_be_p(p)
601 #define ldfq_p(p) ldfq_be_p(p)
602 #define stw_p(p, v) stw_be_p(p, v)
603 #define stl_p(p, v) stl_be_p(p, v)
604 #define stq_p(p, v) stq_be_p(p, v)
605 #define stfl_p(p, v) stfl_be_p(p, v)
606 #define stfq_p(p, v) stfq_be_p(p, v)
608 #define lduw_p(p) lduw_le_p(p)
609 #define ldsw_p(p) ldsw_le_p(p)
610 #define ldl_p(p) ldl_le_p(p)
611 #define ldq_p(p) ldq_le_p(p)
612 #define ldfl_p(p) ldfl_le_p(p)
613 #define ldfq_p(p) ldfq_le_p(p)
614 #define stw_p(p, v) stw_le_p(p, v)
615 #define stl_p(p, v) stl_le_p(p, v)
616 #define stq_p(p, v) stq_le_p(p, v)
617 #define stfl_p(p, v) stfl_le_p(p, v)
618 #define stfq_p(p, v) stfq_le_p(p, v)
621 /* MMU memory access macros */
623 #if defined(CONFIG_USER_ONLY)
624 /* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
627 //#define GUEST_BASE 0x20000000
630 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
632 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
634 #define saddr(x) g2h(x)
635 #define laddr(x) g2h(x)
637 #else /* !CONFIG_USER_ONLY */
638 /* NOTE: we use double casts if pointers and target_ulong have
640 #define saddr(x) (uint8_t *)(long)(x)
641 #define laddr(x) (uint8_t *)(long)(x)
644 #define ldub_raw(p) ldub_p(laddr((p)))
645 #define ldsb_raw(p) ldsb_p(laddr((p)))
646 #define lduw_raw(p) lduw_p(laddr((p)))
647 #define ldsw_raw(p) ldsw_p(laddr((p)))
648 #define ldl_raw(p) ldl_p(laddr((p)))
649 #define ldq_raw(p) ldq_p(laddr((p)))
650 #define ldfl_raw(p) ldfl_p(laddr((p)))
651 #define ldfq_raw(p) ldfq_p(laddr((p)))
652 #define stb_raw(p, v) stb_p(saddr((p)), v)
653 #define stw_raw(p, v) stw_p(saddr((p)), v)
654 #define stl_raw(p, v) stl_p(saddr((p)), v)
655 #define stq_raw(p, v) stq_p(saddr((p)), v)
656 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
657 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
660 #if defined(CONFIG_USER_ONLY)
662 /* if user mode, no other memory access functions */
663 #define ldub(p) ldub_raw(p)
664 #define ldsb(p) ldsb_raw(p)
665 #define lduw(p) lduw_raw(p)
666 #define ldsw(p) ldsw_raw(p)
667 #define ldl(p) ldl_raw(p)
668 #define ldq(p) ldq_raw(p)
669 #define ldfl(p) ldfl_raw(p)
670 #define ldfq(p) ldfq_raw(p)
671 #define stb(p, v) stb_raw(p, v)
672 #define stw(p, v) stw_raw(p, v)
673 #define stl(p, v) stl_raw(p, v)
674 #define stq(p, v) stq_raw(p, v)
675 #define stfl(p, v) stfl_raw(p, v)
676 #define stfq(p, v) stfq_raw(p, v)
678 #define ldub_code(p) ldub_raw(p)
679 #define ldsb_code(p) ldsb_raw(p)
680 #define lduw_code(p) lduw_raw(p)
681 #define ldsw_code(p) ldsw_raw(p)
682 #define ldl_code(p) ldl_raw(p)
683 #define ldq_code(p) ldq_raw(p)
685 #define ldub_kernel(p) ldub_raw(p)
686 #define ldsb_kernel(p) ldsb_raw(p)
687 #define lduw_kernel(p) lduw_raw(p)
688 #define ldsw_kernel(p) ldsw_raw(p)
689 #define ldl_kernel(p) ldl_raw(p)
690 #define ldq_kernel(p) ldq_raw(p)
691 #define ldfl_kernel(p) ldfl_raw(p)
692 #define ldfq_kernel(p) ldfq_raw(p)
693 #define stb_kernel(p, v) stb_raw(p, v)
694 #define stw_kernel(p, v) stw_raw(p, v)
695 #define stl_kernel(p, v) stl_raw(p, v)
696 #define stq_kernel(p, v) stq_raw(p, v)
697 #define stfl_kernel(p, v) stfl_raw(p, v)
698 #define stfq_kernel(p, vt) stfq_raw(p, v)
700 #endif /* defined(CONFIG_USER_ONLY) */
702 /* page related stuff */
704 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
705 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
708 /* ??? These should be the larger of unsigned long and target_ulong. */
709 extern unsigned long qemu_real_host_page_size;
710 extern unsigned long qemu_host_page_bits;
711 extern unsigned long qemu_host_page_size;
712 extern unsigned long qemu_host_page_mask;
714 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
716 /* same as PROT_xxx */
717 #define PAGE_READ 0x0001
718 #define PAGE_WRITE 0x0002
719 #define PAGE_EXEC 0x0004
720 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721 #define PAGE_VALID 0x0008
722 /* original state of the write flag (used when tracking self-modifying
724 #define PAGE_WRITE_ORG 0x0010
725 #define PAGE_RESERVED 0x0020
727 void page_dump(FILE *f);
728 int page_get_flags(target_ulong address);
729 void page_set_flags(target_ulong start, target_ulong end, int flags);
730 int page_check_range(target_ulong start, target_ulong len, int flags);
732 CPUState *cpu_copy(CPUState *env);
734 void cpu_dump_state(CPUState *env, FILE *f,
735 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
737 void cpu_dump_statistics (CPUState *env, FILE *f,
738 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
741 void cpu_abort(CPUState *env, const char *fmt, ...)
742 __attribute__ ((__format__ (__printf__, 2, 3)))
743 __attribute__ ((__noreturn__));
744 extern CPUState *first_cpu;
745 extern CPUState *cpu_single_env;
747 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
748 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
749 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
751 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
752 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
753 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
754 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
755 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
756 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
758 void cpu_interrupt(CPUState *s, int mask);
759 void cpu_reset_interrupt(CPUState *env, int mask);
761 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
762 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
763 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
764 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
766 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
767 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
768 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
770 void cpu_single_step(CPUState *env, int enabled);
771 void cpu_reset(CPUState *s);
773 /* Return the physical page corresponding to a virtual one. Use it
774 only for debugging because no protection checks are done. Return -1
776 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
778 #define CPU_LOG_TB_OUT_ASM (1 << 0)
779 #define CPU_LOG_TB_IN_ASM (1 << 1)
780 #define CPU_LOG_TB_OP (1 << 2)
781 #define CPU_LOG_TB_OP_OPT (1 << 3)
782 #define CPU_LOG_INT (1 << 4)
783 #define CPU_LOG_EXEC (1 << 5)
784 #define CPU_LOG_PCALL (1 << 6)
785 #define CPU_LOG_IOPORT (1 << 7)
786 #define CPU_LOG_TB_CPU (1 << 8)
788 /* define log items */
789 typedef struct CPULogItem {
795 extern CPULogItem cpu_log_items[];
797 void cpu_set_log(int log_flags);
798 void cpu_set_log_filename(const char *filename);
799 int cpu_str_to_log_mask(const char *str);
803 /* NOTE: as these functions may be even used when there is an isa
804 brige on non x86 targets, we always defined them */
805 #ifndef NO_CPU_IO_DEFS
806 void cpu_outb(CPUState *env, int addr, int val);
807 void cpu_outw(CPUState *env, int addr, int val);
808 void cpu_outl(CPUState *env, int addr, int val);
809 int cpu_inb(CPUState *env, int addr);
810 int cpu_inw(CPUState *env, int addr);
811 int cpu_inl(CPUState *env, int addr);
814 /* address in the RAM (different from a physical address) */
816 typedef uint32_t ram_addr_t;
818 typedef unsigned long ram_addr_t;
823 extern ram_addr_t phys_ram_size;
824 extern int phys_ram_fd;
825 extern uint8_t *phys_ram_base;
826 extern uint8_t *phys_ram_dirty;
827 extern ram_addr_t ram_size;
829 /* physical memory access */
830 #define TLB_INVALID_MASK (1 << 3)
831 #define IO_MEM_SHIFT 4
832 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
834 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
835 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
836 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
837 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
838 /* acts like a ROM when read and like a device when written. As an
839 exception, the write memory callback gets the ram offset instead of
840 the physical address */
841 #define IO_MEM_ROMD (1)
842 #define IO_MEM_SUBPAGE (2)
843 #define IO_MEM_SUBWIDTH (4)
845 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
846 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
848 void cpu_register_physical_memory(target_phys_addr_t start_addr,
850 ram_addr_t phys_offset);
851 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
852 ram_addr_t qemu_ram_alloc(ram_addr_t);
853 void qemu_ram_free(ram_addr_t addr);
854 int cpu_register_io_memory(int io_index,
855 CPUReadMemoryFunc **mem_read,
856 CPUWriteMemoryFunc **mem_write,
858 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
859 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
861 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
862 int len, int is_write);
863 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
864 uint8_t *buf, int len)
866 cpu_physical_memory_rw(addr, buf, len, 0);
868 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
869 const uint8_t *buf, int len)
871 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
873 uint32_t ldub_phys(target_phys_addr_t addr);
874 uint32_t lduw_phys(target_phys_addr_t addr);
875 uint32_t ldl_phys(target_phys_addr_t addr);
876 uint64_t ldq_phys(target_phys_addr_t addr);
877 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
878 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
879 void stb_phys(target_phys_addr_t addr, uint32_t val);
880 void stw_phys(target_phys_addr_t addr, uint32_t val);
881 void stl_phys(target_phys_addr_t addr, uint32_t val);
882 void stq_phys(target_phys_addr_t addr, uint64_t val);
884 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
885 const uint8_t *buf, int len);
886 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
887 uint8_t *buf, int len, int is_write);
889 #define VGA_DIRTY_FLAG 0x01
890 #define CODE_DIRTY_FLAG 0x02
892 /* read dirty bit (return 0 or 1) */
893 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
895 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
898 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
901 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
904 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
906 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
909 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
911 void cpu_tlb_update_dirty(CPUState *env);
913 void dump_exec_info(FILE *f,
914 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
916 /*******************************************/
917 /* host CPU ticks (if available) */
919 #if defined(__powerpc__)
921 static inline uint32_t get_tbl(void)
924 asm volatile("mftb %0" : "=r" (tbl));
928 static inline uint32_t get_tbu(void)
931 asm volatile("mftbu %0" : "=r" (tbl));
935 static inline int64_t cpu_get_real_ticks(void)
938 /* NOTE: we test if wrapping has occurred */
944 return ((int64_t)h << 32) | l;
947 #elif defined(__i386__)
949 static inline int64_t cpu_get_real_ticks(void)
952 asm volatile ("rdtsc" : "=A" (val));
956 #elif defined(__x86_64__)
958 static inline int64_t cpu_get_real_ticks(void)
962 asm volatile("rdtsc" : "=a" (low), "=d" (high));
969 #elif defined(__hppa__)
971 static inline int64_t cpu_get_real_ticks(void)
974 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
978 #elif defined(__ia64)
980 static inline int64_t cpu_get_real_ticks(void)
983 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
987 #elif defined(__s390__)
989 static inline int64_t cpu_get_real_ticks(void)
992 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
996 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
998 static inline int64_t cpu_get_real_ticks (void)
1002 asm volatile("rd %%tick,%0" : "=r"(rval));
1012 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1013 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1018 #elif defined(__mips__)
1020 static inline int64_t cpu_get_real_ticks(void)
1022 #if __mips_isa_rev >= 2
1024 static uint32_t cyc_per_count = 0;
1027 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1029 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1030 return (int64_t)(count * cyc_per_count);
1033 static int64_t ticks = 0;
1039 /* The host CPU doesn't have an easily accessible cycle counter.
1040 Just return a monotonically increasing value. This will be
1041 totally wrong, but hopefully better than nothing. */
1042 static inline int64_t cpu_get_real_ticks (void)
1044 static int64_t ticks = 0;
1050 #ifdef CONFIG_PROFILER
1051 static inline int64_t profile_getclock(void)
1053 return cpu_get_real_ticks();
1056 extern int64_t kqemu_time, kqemu_time_start;
1057 extern int64_t qemu_time, qemu_time_start;
1058 extern int64_t tlb_flush_time;
1059 extern int64_t kqemu_exec_count;
1060 extern int64_t dev_time;
1061 extern int64_t kqemu_ret_int_count;
1062 extern int64_t kqemu_ret_excp_count;
1063 extern int64_t kqemu_ret_intr_count;
1065 extern int64_t dyngen_tb_count1;
1066 extern int64_t dyngen_tb_count;
1067 extern int64_t dyngen_op_count;
1068 extern int64_t dyngen_old_op_count;
1069 extern int64_t dyngen_tcg_del_op_count;
1070 extern int dyngen_op_count_max;
1071 extern int64_t dyngen_code_in_len;
1072 extern int64_t dyngen_code_out_len;
1073 extern int64_t dyngen_interm_time;
1074 extern int64_t dyngen_code_time;
1075 extern int64_t dyngen_restore_count;
1076 extern int64_t dyngen_restore_time;
1079 #endif /* CPU_ALL_H */