4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <sys/socket.h>
23 #include <netinet/in.h>
24 #include <netinet/tcp.h>
36 static int gdbserver_fd;
38 typedef struct GDBState {
46 static int get_char(GDBState *s)
52 ret = read(s->fd, &ch, 1);
54 if (errno != EINTR && errno != EAGAIN)
56 } else if (ret == 0) {
65 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
70 ret = write(s->fd, buf, len);
72 if (errno != EINTR && errno != EAGAIN)
81 static inline int fromhex(int v)
83 if (v >= '0' && v <= '9')
85 else if (v >= 'A' && v <= 'F')
87 else if (v >= 'a' && v <= 'f')
93 static inline int tohex(int v)
101 static void memtohex(char *buf, const uint8_t *mem, int len)
106 for(i = 0; i < len; i++) {
108 *q++ = tohex(c >> 4);
109 *q++ = tohex(c & 0xf);
114 static void hextomem(uint8_t *mem, const char *buf, int len)
118 for(i = 0; i < len; i++) {
119 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
124 /* return -1 if error, 0 if OK */
125 static int put_packet(GDBState *s, char *buf)
128 int len, csum, ch, i;
131 printf("reply='%s'\n", buf);
136 put_buffer(s, buf1, 1);
138 put_buffer(s, buf, len);
140 for(i = 0; i < len; i++) {
144 buf1[1] = tohex((csum >> 4) & 0xf);
145 buf1[2] = tohex((csum) & 0xf);
147 put_buffer(s, buf1, 3);
158 #if defined(TARGET_I386)
160 static void to_le32(uint8_t *p, int v)
168 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
172 for(i = 0; i < 8; i++) {
173 to_le32(mem_buf + i * 4, env->regs[i]);
175 to_le32(mem_buf + 8 * 4, env->eip);
176 to_le32(mem_buf + 9 * 4, env->eflags);
177 to_le32(mem_buf + 10 * 4, env->segs[R_CS].selector);
178 to_le32(mem_buf + 11 * 4, env->segs[R_SS].selector);
179 to_le32(mem_buf + 12 * 4, env->segs[R_DS].selector);
180 to_le32(mem_buf + 13 * 4, env->segs[R_ES].selector);
181 to_le32(mem_buf + 14 * 4, env->segs[R_FS].selector);
182 to_le32(mem_buf + 15 * 4, env->segs[R_GS].selector);
183 /* XXX: convert floats */
184 for(i = 0; i < 8; i++) {
185 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
187 to_le32(mem_buf + 36 * 4, env->fpuc);
188 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
189 to_le32(mem_buf + 37 * 4, fpus);
190 to_le32(mem_buf + 38 * 4, 0); /* XXX: convert tags */
191 to_le32(mem_buf + 39 * 4, 0); /* fiseg */
192 to_le32(mem_buf + 40 * 4, 0); /* fioff */
193 to_le32(mem_buf + 41 * 4, 0); /* foseg */
194 to_le32(mem_buf + 42 * 4, 0); /* fooff */
195 to_le32(mem_buf + 43 * 4, 0); /* fop */
199 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
201 uint32_t *registers = (uint32_t *)mem_buf;
204 for(i = 0; i < 8; i++) {
205 env->regs[i] = tswapl(registers[i]);
207 env->eip = registers[8];
208 env->eflags = registers[9];
209 #if defined(CONFIG_USER_ONLY)
210 #define LOAD_SEG(index, sreg)\
211 if (tswapl(registers[index]) != env->segs[sreg].selector)\
212 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
222 #elif defined (TARGET_PPC)
223 static void to_le32(uint32_t *buf, uint32_t v)
225 uint8_t *p = (uint8_t *)buf;
232 static uint32_t from_le32 (uint32_t *buf)
234 uint8_t *p = (uint8_t *)buf;
236 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
239 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
241 uint32_t *registers = (uint32_t *)mem_buf, tmp;
245 for(i = 0; i < 32; i++) {
246 to_le32(®isters[i], env->gpr[i]);
249 for (i = 0; i < 32; i++) {
250 to_le32(®isters[(i * 2) + 32], *((uint32_t *)&env->fpr[i]));
251 to_le32(®isters[(i * 2) + 33], *((uint32_t *)&env->fpr[i] + 1));
253 /* nip, msr, ccr, lnk, ctr, xer, mq */
254 to_le32(®isters[96], (uint32_t)env->nip/* - 4*/);
255 to_le32(®isters[97], _load_msr(env));
257 for (i = 0; i < 8; i++)
258 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
259 to_le32(®isters[98], tmp);
260 to_le32(®isters[99], env->lr);
261 to_le32(®isters[100], env->ctr);
262 to_le32(®isters[101], _load_xer(env));
263 to_le32(®isters[102], 0);
268 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
270 uint32_t *registers = (uint32_t *)mem_buf;
274 for (i = 0; i < 32; i++) {
275 env->gpr[i] = from_le32(®isters[i]);
278 for (i = 0; i < 32; i++) {
279 *((uint32_t *)&env->fpr[i]) = from_le32(®isters[(i * 2) + 32]);
280 *((uint32_t *)&env->fpr[i] + 1) = from_le32(®isters[(i * 2) + 33]);
282 /* nip, msr, ccr, lnk, ctr, xer, mq */
283 env->nip = from_le32(®isters[96]);
284 _store_msr(env, from_le32(®isters[97]));
285 registers[98] = from_le32(®isters[98]);
286 for (i = 0; i < 8; i++)
287 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
288 env->lr = from_le32(®isters[99]);
289 env->ctr = from_le32(®isters[100]);
290 _store_xer(env, from_le32(®isters[101]));
294 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
299 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
305 /* port = 0 means default port */
306 static int gdb_handle_packet(GDBState *s, const char *line_buf)
308 CPUState *env = cpu_single_env;
310 int ch, reg_size, type;
312 uint8_t mem_buf[2000];
317 printf("command='%s'\n", line_buf);
323 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
328 addr = strtoul(p, (char **)&p, 16);
329 #if defined(TARGET_I386)
331 #elif defined (TARGET_PPC)
339 addr = strtoul(p, (char **)&p, 16);
340 #if defined(TARGET_I386)
342 #elif defined (TARGET_PPC)
346 cpu_single_step(env, 1);
350 reg_size = cpu_gdb_read_registers(env, mem_buf);
351 memtohex(buf, mem_buf, reg_size);
355 registers = (void *)mem_buf;
357 hextomem((uint8_t *)registers, p, len);
358 cpu_gdb_write_registers(env, mem_buf, len);
362 addr = strtoul(p, (char **)&p, 16);
365 len = strtoul(p, NULL, 16);
366 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
367 memset(mem_buf, 0, len);
368 memtohex(buf, mem_buf, len);
372 addr = strtoul(p, (char **)&p, 16);
375 len = strtoul(p, (char **)&p, 16);
378 hextomem(mem_buf, p, len);
379 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
380 put_packet(s, "ENN");
385 type = strtoul(p, (char **)&p, 16);
388 addr = strtoul(p, (char **)&p, 16);
391 len = strtoul(p, (char **)&p, 16);
392 if (type == 0 || type == 1) {
393 if (cpu_breakpoint_insert(env, addr) < 0)
394 goto breakpoint_error;
398 put_packet(s, "ENN");
402 type = strtoul(p, (char **)&p, 16);
405 addr = strtoul(p, (char **)&p, 16);
408 len = strtoul(p, (char **)&p, 16);
409 if (type == 0 || type == 1) {
410 cpu_breakpoint_remove(env, addr);
413 goto breakpoint_error;
418 /* put empty packet */
426 static void gdb_vm_stopped(void *opaque, int reason)
428 GDBState *s = opaque;
432 /* disable single step if it was enable */
433 cpu_single_step(cpu_single_env, 0);
435 if (reason == EXCP_DEBUG)
439 snprintf(buf, sizeof(buf), "S%02x", ret);
443 static void gdb_read_byte(GDBState *s, int ch)
449 /* when the CPU is running, we cannot do anything except stop
450 it when receiving a char */
451 vm_stop(EXCP_INTERRUPT);
456 s->line_buf_index = 0;
457 s->state = RS_GETLINE;
462 s->state = RS_CHKSUM1;
463 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
466 s->line_buf[s->line_buf_index++] = ch;
470 s->line_buf[s->line_buf_index] = '\0';
471 s->line_csum = fromhex(ch) << 4;
472 s->state = RS_CHKSUM2;
475 s->line_csum |= fromhex(ch);
477 for(i = 0; i < s->line_buf_index; i++) {
478 csum += s->line_buf[i];
480 if (s->line_csum != (csum & 0xff)) {
482 put_buffer(s, reply, 1);
486 put_buffer(s, reply, 1);
487 s->state = gdb_handle_packet(s, s->line_buf);
494 static int gdb_can_read(void *opaque)
499 static void gdb_read(void *opaque, const uint8_t *buf, int size)
501 GDBState *s = opaque;
504 /* end of connection */
505 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
506 qemu_del_fd_read_handler(s->fd);
510 for(i = 0; i < size; i++)
511 gdb_read_byte(s, buf[i]);
515 static void gdb_accept(void *opaque, const uint8_t *buf, int size)
518 struct sockaddr_in sockaddr;
523 len = sizeof(sockaddr);
524 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
525 if (fd < 0 && errno != EINTR) {
528 } else if (fd >= 0) {
533 /* set short latency */
535 setsockopt(fd, SOL_TCP, TCP_NODELAY, &val, sizeof(val));
537 s = qemu_mallocz(sizeof(GDBState));
544 fcntl(fd, F_SETFL, O_NONBLOCK);
547 vm_stop(EXCP_INTERRUPT);
549 /* start handling I/O */
550 qemu_add_fd_read_handler(s->fd, gdb_can_read, gdb_read, s);
551 /* when the VM is stopped, the following callback is called */
552 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
555 static int gdbserver_open(int port)
557 struct sockaddr_in sockaddr;
560 fd = socket(PF_INET, SOCK_STREAM, 0);
566 /* allow fast reuse */
568 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
570 sockaddr.sin_family = AF_INET;
571 sockaddr.sin_port = htons(port);
572 sockaddr.sin_addr.s_addr = 0;
573 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
583 fcntl(fd, F_SETFL, O_NONBLOCK);
587 int gdbserver_start(int port)
589 gdbserver_fd = gdbserver_open(port);
590 if (gdbserver_fd < 0)
592 /* accept connections */
593 qemu_add_fd_read_handler(gdbserver_fd, NULL, gdb_accept, NULL);