2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .instance_init = virt_##major##_##minor##_instance_init, \
77 .class_init = virt_##major##_##minor##_class_init, \
79 static void machvirt_machine_##major##_##minor##_init(void) \
81 type_register_static(&machvirt_##major##_##minor##_info); \
83 type_init(machvirt_machine_##major##_##minor##_init);
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
91 /* Number of external interrupt lines to configure the GIC with */
94 #define PLATFORM_BUS_NUM_IRQS 64
96 static ARMPlatformBusSystemParams platform_bus_params;
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
127 static const MemMapEntry a15memmap[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Second PCIe window, 512GB wide at the 512GB boundary */
153 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
156 static const int a15irqmap[] = {
159 [VIRT_PCIE] = 3, /* ... to 6 */
161 [VIRT_SECURE_UART] = 8,
162 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
167 static const char *valid_cpus[] = {
168 ARM_CPU_TYPE_NAME("cortex-a15"),
169 ARM_CPU_TYPE_NAME("cortex-a53"),
170 ARM_CPU_TYPE_NAME("cortex-a57"),
171 ARM_CPU_TYPE_NAME("host"),
174 static bool cpu_type_valid(const char *cpu)
178 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
179 if (strcmp(cpu, valid_cpus[i]) == 0) {
186 static void create_fdt(VirtMachineState *vms)
188 void *fdt = create_device_tree(&vms->fdt_size);
191 error_report("create_device_tree() failed");
198 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
199 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
200 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
203 * /chosen and /memory nodes must exist for load_dtb
204 * to fill in necessary properties later
206 qemu_fdt_add_subnode(fdt, "/chosen");
207 qemu_fdt_add_subnode(fdt, "/memory");
208 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
210 /* Clock node, for the benefit of the UART. The kernel device tree
211 * binding documentation claims the PL011 node clock properties are
212 * optional but in practice if you omit them the kernel refuses to
213 * probe for the device.
215 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
216 qemu_fdt_add_subnode(fdt, "/apb-pclk");
217 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
220 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 if (have_numa_distance) {
225 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226 uint32_t *matrix = g_malloc0(size);
229 for (i = 0; i < nb_numa_nodes; i++) {
230 for (j = 0; j < nb_numa_nodes; j++) {
231 idx = (i * nb_numa_nodes + j) * 3;
232 matrix[idx + 0] = cpu_to_be32(i);
233 matrix[idx + 1] = cpu_to_be32(j);
234 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
238 qemu_fdt_add_subnode(fdt, "/distance-map");
239 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
240 "numa-distance-map-v1");
241 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
247 static void fdt_add_psci_node(const VirtMachineState *vms)
249 uint32_t cpu_suspend_fn;
253 void *fdt = vms->fdt;
254 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
255 const char *psci_method;
257 switch (vms->psci_conduit) {
258 case QEMU_PSCI_CONDUIT_DISABLED:
260 case QEMU_PSCI_CONDUIT_HVC:
263 case QEMU_PSCI_CONDUIT_SMC:
267 g_assert_not_reached();
270 qemu_fdt_add_subnode(fdt, "/psci");
271 if (armcpu->psci_version == 2) {
272 const char comp[] = "arm,psci-0.2\0arm,psci";
273 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
275 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
276 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
277 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
278 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
279 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
281 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
282 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
283 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
286 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
288 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
289 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
290 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
291 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
294 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
295 * to the instruction that should be used to invoke PSCI functions.
296 * However, the device tree binding uses 'method' instead, so that is
297 * what we should use here.
299 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
301 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
302 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
303 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
304 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
307 static void fdt_add_timer_nodes(const VirtMachineState *vms)
309 /* On real hardware these interrupts are level-triggered.
310 * On KVM they were edge-triggered before host kernel version 4.4,
311 * and level-triggered afterwards.
312 * On emulated QEMU they are level-triggered.
314 * Getting the DTB info about them wrong is awkward for some
316 * pre-4.8 ignore the DT and leave the interrupt configured
317 * with whatever the GIC reset value (or the bootloader) left it at
318 * 4.8 before rc6 honour the incorrect data by programming it back
319 * into the GIC, causing problems
320 * 4.8rc6 and later ignore the DT and always write "level triggered"
323 * For backwards-compatibility, virt-2.8 and earlier will continue
324 * to say these are edge-triggered, but later machines will report
325 * the correct information.
328 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
329 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
331 if (vmc->claim_edge_triggered_timers) {
332 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
335 if (vms->gic_version == 2) {
336 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
337 GIC_FDT_IRQ_PPI_CPU_WIDTH,
338 (1 << vms->smp_cpus) - 1);
341 qemu_fdt_add_subnode(vms->fdt, "/timer");
343 armcpu = ARM_CPU(qemu_get_cpu(0));
344 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
345 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
346 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
347 compat, sizeof(compat));
349 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
352 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
353 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
354 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
355 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
356 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
357 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
360 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
364 const MachineState *ms = MACHINE(vms);
367 * From Documentation/devicetree/bindings/arm/cpus.txt
368 * On ARM v8 64-bit systems value should be set to 2,
369 * that corresponds to the MPIDR_EL1 register size.
370 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
371 * in the system, #address-cells can be set to 1, since
372 * MPIDR_EL1[63:32] bits are not used for CPUs
375 * Here we actually don't know whether our system is 32- or 64-bit one.
376 * The simplest way to go is to examine affinity IDs of all our CPUs. If
377 * at least one of them has Aff3 populated, we set #address-cells to 2.
379 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
380 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
382 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
388 qemu_fdt_add_subnode(vms->fdt, "/cpus");
389 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
390 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
392 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
393 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
394 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
395 CPUState *cs = CPU(armcpu);
397 qemu_fdt_add_subnode(vms->fdt, nodename);
398 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
399 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
400 armcpu->dtb_compatible);
402 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
403 && vms->smp_cpus > 1) {
404 qemu_fdt_setprop_string(vms->fdt, nodename,
405 "enable-method", "psci");
408 if (addr_cells == 2) {
409 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
410 armcpu->mp_affinity);
412 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
413 armcpu->mp_affinity);
416 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
417 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
418 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
425 static void fdt_add_its_gic_node(VirtMachineState *vms)
427 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
428 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
429 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
431 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
432 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
433 2, vms->memmap[VIRT_GIC_ITS].base,
434 2, vms->memmap[VIRT_GIC_ITS].size);
435 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
438 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
440 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
441 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
442 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
443 "arm,gic-v2m-frame");
444 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
445 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
446 2, vms->memmap[VIRT_GIC_V2M].base,
447 2, vms->memmap[VIRT_GIC_V2M].size);
448 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
451 static void fdt_add_gic_node(VirtMachineState *vms)
453 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
454 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
456 qemu_fdt_add_subnode(vms->fdt, "/intc");
457 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
458 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
459 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
460 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
461 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
462 if (vms->gic_version == 3) {
463 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
465 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
466 2, vms->memmap[VIRT_GIC_DIST].base,
467 2, vms->memmap[VIRT_GIC_DIST].size,
468 2, vms->memmap[VIRT_GIC_REDIST].base,
469 2, vms->memmap[VIRT_GIC_REDIST].size);
471 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
472 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
473 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
476 /* 'cortex-a15-gic' means 'GIC v2' */
477 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
478 "arm,cortex-a15-gic");
479 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_CPU].base,
483 2, vms->memmap[VIRT_GIC_CPU].size);
486 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
489 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
493 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
496 armcpu = ARM_CPU(cpu);
497 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
501 if (kvm_irqchip_in_kernel()) {
502 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
504 kvm_arm_pmu_init(cpu);
508 if (vms->gic_version == 2) {
509 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
510 GIC_FDT_IRQ_PPI_CPU_WIDTH,
511 (1 << vms->smp_cpus) - 1);
514 armcpu = ARM_CPU(qemu_get_cpu(0));
515 qemu_fdt_add_subnode(vms->fdt, "/pmu");
516 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
517 const char compat[] = "arm,armv8-pmuv3";
518 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
519 compat, sizeof(compat));
520 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
521 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
525 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
527 const char *itsclass = its_class_name();
531 /* Do nothing if not supported */
535 dev = qdev_create(NULL, itsclass);
537 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
539 qdev_init_nofail(dev);
540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
542 fdt_add_its_gic_node(vms);
545 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
548 int irq = vms->irqmap[VIRT_GIC_V2M];
551 dev = qdev_create(NULL, "arm-gicv2m");
552 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
553 qdev_prop_set_uint32(dev, "base-spi", irq);
554 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
555 qdev_init_nofail(dev);
557 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
558 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
561 fdt_add_v2m_gic_node(vms);
564 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
566 /* We create a standalone GIC */
568 SysBusDevice *gicbusdev;
570 int type = vms->gic_version, i;
572 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
574 gicdev = qdev_create(NULL, gictype);
575 qdev_prop_set_uint32(gicdev, "revision", type);
576 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
577 /* Note that the num-irq property counts both internal and external
578 * interrupts; there are always 32 of the former (mandated by GIC spec).
580 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
581 if (!kvm_irqchip_in_kernel()) {
582 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
584 qdev_init_nofail(gicdev);
585 gicbusdev = SYS_BUS_DEVICE(gicdev);
586 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
588 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
590 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
593 /* Wire the outputs from each CPU's generic timer and the GICv3
594 * maintenance interrupt signal to the appropriate GIC PPI inputs,
595 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
597 for (i = 0; i < smp_cpus; i++) {
598 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
599 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
601 /* Mapping from the output timer irq lines from the CPU to the
602 * GIC PPI inputs we use for the virt board.
604 const int timer_irq[] = {
605 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
606 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
607 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
608 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
611 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
612 qdev_connect_gpio_out(cpudev, irq,
613 qdev_get_gpio_in(gicdev,
614 ppibase + timer_irq[irq]));
617 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
618 qdev_get_gpio_in(gicdev, ppibase
619 + ARCH_GICV3_MAINT_IRQ));
620 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
621 qdev_get_gpio_in(gicdev, ppibase
624 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
625 sysbus_connect_irq(gicbusdev, i + smp_cpus,
626 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
627 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
628 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
629 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
630 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
633 for (i = 0; i < NUM_IRQS; i++) {
634 pic[i] = qdev_get_gpio_in(gicdev, i);
637 fdt_add_gic_node(vms);
639 if (type == 3 && vms->its) {
640 create_its(vms, gicdev);
641 } else if (type == 2) {
642 create_v2m(vms, pic);
646 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
647 MemoryRegion *mem, Chardev *chr)
650 hwaddr base = vms->memmap[uart].base;
651 hwaddr size = vms->memmap[uart].size;
652 int irq = vms->irqmap[uart];
653 const char compat[] = "arm,pl011\0arm,primecell";
654 const char clocknames[] = "uartclk\0apb_pclk";
655 DeviceState *dev = qdev_create(NULL, "pl011");
656 SysBusDevice *s = SYS_BUS_DEVICE(dev);
658 qdev_prop_set_chr(dev, "chardev", chr);
659 qdev_init_nofail(dev);
660 memory_region_add_subregion(mem, base,
661 sysbus_mmio_get_region(s, 0));
662 sysbus_connect_irq(s, 0, pic[irq]);
664 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
665 qemu_fdt_add_subnode(vms->fdt, nodename);
666 /* Note that we can't use setprop_string because of the embedded NUL */
667 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
668 compat, sizeof(compat));
669 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
671 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
672 GIC_FDT_IRQ_TYPE_SPI, irq,
673 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
674 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
675 vms->clock_phandle, vms->clock_phandle);
676 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
677 clocknames, sizeof(clocknames));
679 if (uart == VIRT_UART) {
680 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
682 /* Mark as not usable by the normal world */
683 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
684 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
690 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
693 hwaddr base = vms->memmap[VIRT_RTC].base;
694 hwaddr size = vms->memmap[VIRT_RTC].size;
695 int irq = vms->irqmap[VIRT_RTC];
696 const char compat[] = "arm,pl031\0arm,primecell";
698 sysbus_create_simple("pl031", base, pic[irq]);
700 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
701 qemu_fdt_add_subnode(vms->fdt, nodename);
702 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
703 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
705 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
706 GIC_FDT_IRQ_TYPE_SPI, irq,
707 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
708 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
709 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
713 static DeviceState *gpio_key_dev;
714 static void virt_powerdown_req(Notifier *n, void *opaque)
716 /* use gpio Pin 3 for power button event */
717 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
720 static Notifier virt_system_powerdown_notifier = {
721 .notify = virt_powerdown_req
724 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
727 DeviceState *pl061_dev;
728 hwaddr base = vms->memmap[VIRT_GPIO].base;
729 hwaddr size = vms->memmap[VIRT_GPIO].size;
730 int irq = vms->irqmap[VIRT_GPIO];
731 const char compat[] = "arm,pl061\0arm,primecell";
733 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
735 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
736 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
737 qemu_fdt_add_subnode(vms->fdt, nodename);
738 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
740 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
741 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
742 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
743 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
744 GIC_FDT_IRQ_TYPE_SPI, irq,
745 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
746 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
747 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
748 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
750 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
751 qdev_get_gpio_in(pl061_dev, 3));
752 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
753 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
754 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
755 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
757 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
758 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
759 "label", "GPIO Key Poweroff");
760 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
762 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
763 "gpios", phandle, 3, 0);
765 /* connect powerdown request */
766 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
771 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
774 hwaddr size = vms->memmap[VIRT_MMIO].size;
776 /* We create the transports in forwards order. Since qbus_realize()
777 * prepends (not appends) new child buses, the incrementing loop below will
778 * create a list of virtio-mmio buses with decreasing base addresses.
780 * When a -device option is processed from the command line,
781 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
782 * order. The upshot is that -device options in increasing command line
783 * order are mapped to virtio-mmio buses with decreasing base addresses.
785 * When this code was originally written, that arrangement ensured that the
786 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
787 * the first -device on the command line. (The end-to-end order is a
788 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
789 * guest kernel's name-to-address assignment strategy.)
791 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
792 * the message, if not necessarily the code, of commit 70161ff336.
793 * Therefore the loop now establishes the inverse of the original intent.
795 * Unfortunately, we can't counteract the kernel change by reversing the
796 * loop; it would break existing command lines.
798 * In any case, the kernel makes no guarantee about the stability of
799 * enumeration order of virtio devices (as demonstrated by it changing
800 * between kernel versions). For reliable and stable identification
801 * of disks users must use UUIDs or similar mechanisms.
803 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
804 int irq = vms->irqmap[VIRT_MMIO] + i;
805 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
807 sysbus_create_simple("virtio-mmio", base, pic[irq]);
810 /* We add dtb nodes in reverse order so that they appear in the finished
811 * device tree lowest address first.
813 * Note that this mapping is independent of the loop above. The previous
814 * loop influences virtio device to virtio transport assignment, whereas
815 * this loop controls how virtio transports are laid out in the dtb.
817 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
819 int irq = vms->irqmap[VIRT_MMIO] + i;
820 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
822 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
823 qemu_fdt_add_subnode(vms->fdt, nodename);
824 qemu_fdt_setprop_string(vms->fdt, nodename,
825 "compatible", "virtio,mmio");
826 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
828 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
829 GIC_FDT_IRQ_TYPE_SPI, irq,
830 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
831 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
836 static void create_one_flash(const char *name, hwaddr flashbase,
837 hwaddr flashsize, const char *file,
838 MemoryRegion *sysmem)
840 /* Create and map a single flash device. We use the same
841 * parameters as the flash devices on the Versatile Express board.
843 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
844 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
845 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
846 const uint64_t sectorlength = 256 * 1024;
849 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
853 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
854 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
855 qdev_prop_set_uint8(dev, "width", 4);
856 qdev_prop_set_uint8(dev, "device-width", 2);
857 qdev_prop_set_bit(dev, "big-endian", false);
858 qdev_prop_set_uint16(dev, "id0", 0x89);
859 qdev_prop_set_uint16(dev, "id1", 0x18);
860 qdev_prop_set_uint16(dev, "id2", 0x00);
861 qdev_prop_set_uint16(dev, "id3", 0x00);
862 qdev_prop_set_string(dev, "name", name);
863 qdev_init_nofail(dev);
865 memory_region_add_subregion(sysmem, flashbase,
866 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
872 if (drive_get(IF_PFLASH, 0, 0)) {
873 error_report("The contents of the first flash device may be "
874 "specified with -bios or with -drive if=pflash... "
875 "but you cannot use both options at once");
878 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
880 error_report("Could not find ROM image '%s'", file);
883 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
885 if (image_size < 0) {
886 error_report("Could not load ROM image '%s'", file);
892 static void create_flash(const VirtMachineState *vms,
893 MemoryRegion *sysmem,
894 MemoryRegion *secure_sysmem)
896 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
897 * Any file passed via -bios goes in the first of these.
898 * sysmem is the system memory space. secure_sysmem is the secure view
899 * of the system, and the first flash device should be made visible only
900 * there. The second flash device is visible to both secure and nonsecure.
901 * If sysmem == secure_sysmem this means there is no separate Secure
902 * address space and both flash devices are generally visible.
904 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
905 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
908 create_one_flash("virt.flash0", flashbase, flashsize,
909 bios_name, secure_sysmem);
910 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
913 if (sysmem == secure_sysmem) {
914 /* Report both flash devices as a single node in the DT */
915 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
916 qemu_fdt_add_subnode(vms->fdt, nodename);
917 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
918 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
919 2, flashbase, 2, flashsize,
920 2, flashbase + flashsize, 2, flashsize);
921 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
924 /* Report the devices as separate nodes so we can mark one as
925 * only visible to the secure world.
927 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
928 qemu_fdt_add_subnode(vms->fdt, nodename);
929 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
930 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
931 2, flashbase, 2, flashsize);
932 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
933 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
934 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
937 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
938 qemu_fdt_add_subnode(vms->fdt, nodename);
939 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
940 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
941 2, flashbase + flashsize, 2, flashsize);
942 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
947 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
949 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
950 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
954 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
955 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
957 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
958 qemu_fdt_add_subnode(vms->fdt, nodename);
959 qemu_fdt_setprop_string(vms->fdt, nodename,
960 "compatible", "qemu,fw-cfg-mmio");
961 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
963 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
968 static void create_pcie_irq_map(const VirtMachineState *vms,
969 uint32_t gic_phandle,
970 int first_irq, const char *nodename)
973 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
974 uint32_t *irq_map = full_irq_map;
976 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
977 for (pin = 0; pin < 4; pin++) {
978 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
979 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
980 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
984 devfn << 8, 0, 0, /* devfn */
985 pin + 1, /* PCI pin */
986 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
988 /* Convert map to big endian */
989 for (i = 0; i < 10; i++) {
990 irq_map[i] = cpu_to_be32(map[i]);
996 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
997 full_irq_map, sizeof(full_irq_map));
999 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1000 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1004 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
1006 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1007 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1008 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1009 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1010 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1011 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1012 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1013 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1014 hwaddr base = base_mmio;
1015 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1016 int irq = vms->irqmap[VIRT_PCIE];
1017 MemoryRegion *mmio_alias;
1018 MemoryRegion *mmio_reg;
1019 MemoryRegion *ecam_alias;
1020 MemoryRegion *ecam_reg;
1026 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1027 qdev_init_nofail(dev);
1029 /* Map only the first size_ecam bytes of ECAM space */
1030 ecam_alias = g_new0(MemoryRegion, 1);
1031 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1032 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1033 ecam_reg, 0, size_ecam);
1034 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1036 /* Map the MMIO window into system address space so as to expose
1037 * the section of PCI MMIO space which starts at the same base address
1038 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1041 mmio_alias = g_new0(MemoryRegion, 1);
1042 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1043 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1044 mmio_reg, base_mmio, size_mmio);
1045 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1048 /* Map high MMIO space */
1049 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1051 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1052 mmio_reg, base_mmio_high, size_mmio_high);
1053 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1057 /* Map IO port space */
1058 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1060 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1061 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1062 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1065 pci = PCI_HOST_BRIDGE(dev);
1067 for (i = 0; i < nb_nics; i++) {
1068 NICInfo *nd = &nd_table[i];
1071 nd->model = g_strdup("virtio");
1074 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1078 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1079 qemu_fdt_add_subnode(vms->fdt, nodename);
1080 qemu_fdt_setprop_string(vms->fdt, nodename,
1081 "compatible", "pci-host-ecam-generic");
1082 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1083 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1084 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1085 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1087 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1089 if (vms->msi_phandle) {
1090 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1094 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1095 2, base_ecam, 2, size_ecam);
1098 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1099 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1100 2, base_pio, 2, size_pio,
1101 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1102 2, base_mmio, 2, size_mmio,
1103 1, FDT_PCI_RANGE_MMIO_64BIT,
1105 2, base_mmio_high, 2, size_mmio_high);
1107 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1108 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1109 2, base_pio, 2, size_pio,
1110 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1111 2, base_mmio, 2, size_mmio);
1114 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1115 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1120 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1125 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1126 MemoryRegion *sysmem = get_system_memory();
1128 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1129 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1130 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1131 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1133 fdt_params->system_params = &platform_bus_params;
1134 fdt_params->binfo = &vms->bootinfo;
1135 fdt_params->intc = "/intc";
1137 * register a machine init done notifier that creates the device tree
1138 * nodes of the platform bus and its children dynamic sysbus devices
1140 arm_register_platform_bus_fdt_creator(fdt_params);
1142 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1143 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1144 qdev_prop_set_uint32(dev, "num_irqs",
1145 platform_bus_params.platform_bus_num_irqs);
1146 qdev_prop_set_uint32(dev, "mmio_size",
1147 platform_bus_params.platform_bus_size);
1148 qdev_init_nofail(dev);
1149 s = SYS_BUS_DEVICE(dev);
1151 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1152 int irqn = platform_bus_params.platform_bus_first_irq + i;
1153 sysbus_connect_irq(s, i, pic[irqn]);
1156 memory_region_add_subregion(sysmem,
1157 platform_bus_params.platform_bus_base,
1158 sysbus_mmio_get_region(s, 0));
1161 static void create_secure_ram(VirtMachineState *vms,
1162 MemoryRegion *secure_sysmem)
1164 MemoryRegion *secram = g_new(MemoryRegion, 1);
1166 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1167 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1169 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1171 memory_region_add_subregion(secure_sysmem, base, secram);
1173 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1174 qemu_fdt_add_subnode(vms->fdt, nodename);
1175 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1176 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1177 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1178 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1183 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1185 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1188 *fdt_size = board->fdt_size;
1192 static void virt_build_smbios(VirtMachineState *vms)
1194 uint8_t *smbios_tables, *smbios_anchor;
1195 size_t smbios_tables_len, smbios_anchor_len;
1196 const char *product = "QEMU Virtual Machine";
1202 if (kvm_enabled()) {
1203 product = "KVM Virtual Machine";
1206 smbios_set_defaults("QEMU", product,
1207 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1209 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1210 &smbios_anchor, &smbios_anchor_len);
1212 if (smbios_anchor) {
1213 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1214 smbios_tables, smbios_tables_len);
1215 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1216 smbios_anchor, smbios_anchor_len);
1221 void virt_machine_done(Notifier *notifier, void *data)
1223 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1226 virt_acpi_setup(vms);
1227 virt_build_smbios(vms);
1230 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1232 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1233 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1235 if (!vmc->disallow_affinity_adjustment) {
1236 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1237 * GIC's target-list limitations. 32-bit KVM hosts currently
1238 * always create clusters of 4 CPUs, but that is expected to
1239 * change when they gain support for gicv3. When KVM is enabled
1240 * it will override the changes we make here, therefore our
1241 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1242 * and to improve SGI efficiency.
1244 if (vms->gic_version == 3) {
1245 clustersz = GICV3_TARGETLIST_BITS;
1247 clustersz = GIC_TARGETLIST_BITS;
1250 return arm_cpu_mp_affinity(idx, clustersz);
1253 static void machvirt_init(MachineState *machine)
1255 VirtMachineState *vms = VIRT_MACHINE(machine);
1256 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1257 MachineClass *mc = MACHINE_GET_CLASS(machine);
1258 const CPUArchIdList *possible_cpus;
1259 qemu_irq pic[NUM_IRQS];
1260 MemoryRegion *sysmem = get_system_memory();
1261 MemoryRegion *secure_sysmem = NULL;
1262 int n, virt_max_cpus;
1263 MemoryRegion *ram = g_new(MemoryRegion, 1);
1264 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1266 /* We can probe only here because during property set
1267 * KVM is not available yet
1269 if (!vms->gic_version) {
1270 if (!kvm_enabled()) {
1271 error_report("gic-version=host requires KVM");
1275 vms->gic_version = kvm_arm_vgic_probe();
1276 if (!vms->gic_version) {
1277 error_report("Unable to determine GIC version supported by host");
1282 if (!cpu_type_valid(machine->cpu_type)) {
1283 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1287 /* If we have an EL3 boot ROM then the assumption is that it will
1288 * implement PSCI itself, so disable QEMU's internal implementation
1289 * so it doesn't get in the way. Instead of starting secondary
1290 * CPUs in PSCI powerdown state we will start them all running and
1291 * let the boot ROM sort them out.
1292 * The usual case is that we do use QEMU's PSCI implementation;
1293 * if the guest has EL2 then we will use SMC as the conduit,
1294 * and otherwise we will use HVC (for backwards compatibility and
1295 * because if we're using KVM then we must use HVC).
1297 if (vms->secure && firmware_loaded) {
1298 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1299 } else if (vms->virt) {
1300 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1302 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1305 /* The maximum number of CPUs depends on the GIC version, or on how
1306 * many redistributors we can fit into the memory map.
1308 if (vms->gic_version == 3) {
1309 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1311 virt_max_cpus = GIC_NCPU;
1314 if (max_cpus > virt_max_cpus) {
1315 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1316 "supported by machine 'mach-virt' (%d)",
1317 max_cpus, virt_max_cpus);
1321 vms->smp_cpus = smp_cpus;
1323 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1324 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1328 if (vms->virt && kvm_enabled()) {
1329 error_report("mach-virt: KVM does not support providing "
1330 "Virtualization extensions to the guest CPU");
1335 if (kvm_enabled()) {
1336 error_report("mach-virt: KVM does not support Security extensions");
1340 /* The Secure view of the world is the same as the NonSecure,
1341 * but with a few extra devices. Create it as a container region
1342 * containing the system memory at low priority; any secure-only
1343 * devices go in at higher priority and take precedence.
1345 secure_sysmem = g_new(MemoryRegion, 1);
1346 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1348 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1353 possible_cpus = mc->possible_cpu_arch_ids(machine);
1354 for (n = 0; n < possible_cpus->len; n++) {
1358 if (n >= smp_cpus) {
1362 cpuobj = object_new(possible_cpus->cpus[n].type);
1363 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1364 "mp-affinity", NULL);
1369 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1373 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1376 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1377 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1380 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1381 object_property_set_int(cpuobj, vms->psci_conduit,
1382 "psci-conduit", NULL);
1384 /* Secondary CPUs start in PSCI powered-down state */
1386 object_property_set_bool(cpuobj, true,
1387 "start-powered-off", NULL);
1391 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1392 object_property_set_bool(cpuobj, false, "pmu", NULL);
1395 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1396 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1397 "reset-cbar", &error_abort);
1400 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1403 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1404 "secure-memory", &error_abort);
1407 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1408 object_unref(cpuobj);
1410 fdt_add_timer_nodes(vms);
1411 fdt_add_cpu_nodes(vms);
1412 fdt_add_psci_node(vms);
1414 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1416 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1418 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1420 create_gic(vms, pic);
1422 fdt_add_pmu_nodes(vms);
1424 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1427 create_secure_ram(vms, secure_sysmem);
1428 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1431 create_rtc(vms, pic);
1433 create_pcie(vms, pic);
1435 create_gpio(vms, pic);
1437 /* Create mmio transports, so the user can create virtio backends
1438 * (which will be automatically plugged in to the transports). If
1439 * no backend is created the transport will just sit harmlessly idle.
1441 create_virtio_devices(vms, pic);
1443 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1444 rom_set_fw(vms->fw_cfg);
1446 vms->machine_done.notify = virt_machine_done;
1447 qemu_add_machine_init_done_notifier(&vms->machine_done);
1449 vms->bootinfo.ram_size = machine->ram_size;
1450 vms->bootinfo.kernel_filename = machine->kernel_filename;
1451 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1452 vms->bootinfo.initrd_filename = machine->initrd_filename;
1453 vms->bootinfo.nb_cpus = smp_cpus;
1454 vms->bootinfo.board_id = -1;
1455 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1456 vms->bootinfo.get_dtb = machvirt_dtb;
1457 vms->bootinfo.firmware_loaded = firmware_loaded;
1458 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1461 * arm_load_kernel machine init done notifier registration must
1462 * happen before the platform_bus_create call. In this latter,
1463 * another notifier is registered which adds platform bus nodes.
1464 * Notifiers are executed in registration reverse order.
1466 create_platform_bus(vms, pic);
1469 static bool virt_get_secure(Object *obj, Error **errp)
1471 VirtMachineState *vms = VIRT_MACHINE(obj);
1476 static void virt_set_secure(Object *obj, bool value, Error **errp)
1478 VirtMachineState *vms = VIRT_MACHINE(obj);
1480 vms->secure = value;
1483 static bool virt_get_virt(Object *obj, Error **errp)
1485 VirtMachineState *vms = VIRT_MACHINE(obj);
1490 static void virt_set_virt(Object *obj, bool value, Error **errp)
1492 VirtMachineState *vms = VIRT_MACHINE(obj);
1497 static bool virt_get_highmem(Object *obj, Error **errp)
1499 VirtMachineState *vms = VIRT_MACHINE(obj);
1501 return vms->highmem;
1504 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1506 VirtMachineState *vms = VIRT_MACHINE(obj);
1508 vms->highmem = value;
1511 static bool virt_get_its(Object *obj, Error **errp)
1513 VirtMachineState *vms = VIRT_MACHINE(obj);
1518 static void virt_set_its(Object *obj, bool value, Error **errp)
1520 VirtMachineState *vms = VIRT_MACHINE(obj);
1525 static char *virt_get_gic_version(Object *obj, Error **errp)
1527 VirtMachineState *vms = VIRT_MACHINE(obj);
1528 const char *val = vms->gic_version == 3 ? "3" : "2";
1530 return g_strdup(val);
1533 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1535 VirtMachineState *vms = VIRT_MACHINE(obj);
1537 if (!strcmp(value, "3")) {
1538 vms->gic_version = 3;
1539 } else if (!strcmp(value, "2")) {
1540 vms->gic_version = 2;
1541 } else if (!strcmp(value, "host")) {
1542 vms->gic_version = 0; /* Will probe later */
1544 error_setg(errp, "Invalid gic-version value");
1545 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1549 static CpuInstanceProperties
1550 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1552 MachineClass *mc = MACHINE_GET_CLASS(ms);
1553 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1555 assert(cpu_index < possible_cpus->len);
1556 return possible_cpus->cpus[cpu_index].props;
1559 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1561 return idx % nb_numa_nodes;
1564 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1567 VirtMachineState *vms = VIRT_MACHINE(ms);
1569 if (ms->possible_cpus) {
1570 assert(ms->possible_cpus->len == max_cpus);
1571 return ms->possible_cpus;
1574 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1575 sizeof(CPUArchId) * max_cpus);
1576 ms->possible_cpus->len = max_cpus;
1577 for (n = 0; n < ms->possible_cpus->len; n++) {
1578 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1579 ms->possible_cpus->cpus[n].arch_id =
1580 virt_cpu_mp_affinity(vms, n);
1581 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1582 ms->possible_cpus->cpus[n].props.thread_id = n;
1584 return ms->possible_cpus;
1587 static void virt_machine_class_init(ObjectClass *oc, void *data)
1589 MachineClass *mc = MACHINE_CLASS(oc);
1591 mc->init = machvirt_init;
1592 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1593 * it later in machvirt_init, where we have more information about the
1594 * configuration of the particular instance.
1597 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1598 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1599 mc->block_default_type = IF_VIRTIO;
1601 mc->pci_allow_0_address = true;
1602 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1603 mc->minimum_page_bits = 12;
1604 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1605 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1606 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1607 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1610 static const TypeInfo virt_machine_info = {
1611 .name = TYPE_VIRT_MACHINE,
1612 .parent = TYPE_MACHINE,
1614 .instance_size = sizeof(VirtMachineState),
1615 .class_size = sizeof(VirtMachineClass),
1616 .class_init = virt_machine_class_init,
1619 static void machvirt_machine_init(void)
1621 type_register_static(&virt_machine_info);
1623 type_init(machvirt_machine_init);
1625 static void virt_2_12_instance_init(Object *obj)
1627 VirtMachineState *vms = VIRT_MACHINE(obj);
1628 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1630 /* EL3 is disabled by default on virt: this makes us consistent
1631 * between KVM and TCG for this board, and it also allows us to
1632 * boot UEFI blobs which assume no TrustZone support.
1634 vms->secure = false;
1635 object_property_add_bool(obj, "secure", virt_get_secure,
1636 virt_set_secure, NULL);
1637 object_property_set_description(obj, "secure",
1638 "Set on/off to enable/disable the ARM "
1639 "Security Extensions (TrustZone)",
1642 /* EL2 is also disabled by default, for similar reasons */
1644 object_property_add_bool(obj, "virtualization", virt_get_virt,
1645 virt_set_virt, NULL);
1646 object_property_set_description(obj, "virtualization",
1647 "Set on/off to enable/disable emulating a "
1648 "guest CPU which implements the ARM "
1649 "Virtualization Extensions",
1652 /* High memory is enabled by default */
1653 vms->highmem = true;
1654 object_property_add_bool(obj, "highmem", virt_get_highmem,
1655 virt_set_highmem, NULL);
1656 object_property_set_description(obj, "highmem",
1657 "Set on/off to enable/disable using "
1658 "physical address space above 32 bits",
1660 /* Default GIC type is v2 */
1661 vms->gic_version = 2;
1662 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1663 virt_set_gic_version, NULL);
1664 object_property_set_description(obj, "gic-version",
1666 "Valid values are 2, 3 and host", NULL);
1671 /* Default allows ITS instantiation */
1673 object_property_add_bool(obj, "its", virt_get_its,
1674 virt_set_its, NULL);
1675 object_property_set_description(obj, "its",
1676 "Set on/off to enable/disable "
1677 "ITS instantiation",
1681 vms->memmap = a15memmap;
1682 vms->irqmap = a15irqmap;
1685 static void virt_machine_2_12_options(MachineClass *mc)
1688 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1690 #define VIRT_COMPAT_2_11 \
1693 static void virt_2_11_instance_init(Object *obj)
1695 virt_2_12_instance_init(obj);
1698 static void virt_machine_2_11_options(MachineClass *mc)
1700 virt_machine_2_12_options(mc);
1701 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1703 DEFINE_VIRT_MACHINE(2, 11)
1705 #define VIRT_COMPAT_2_10 \
1708 static void virt_2_10_instance_init(Object *obj)
1710 virt_2_11_instance_init(obj);
1713 static void virt_machine_2_10_options(MachineClass *mc)
1715 virt_machine_2_11_options(mc);
1716 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1718 DEFINE_VIRT_MACHINE(2, 10)
1720 #define VIRT_COMPAT_2_9 \
1723 static void virt_2_9_instance_init(Object *obj)
1725 virt_2_10_instance_init(obj);
1728 static void virt_machine_2_9_options(MachineClass *mc)
1730 virt_machine_2_10_options(mc);
1731 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1733 DEFINE_VIRT_MACHINE(2, 9)
1735 #define VIRT_COMPAT_2_8 \
1738 static void virt_2_8_instance_init(Object *obj)
1740 virt_2_9_instance_init(obj);
1743 static void virt_machine_2_8_options(MachineClass *mc)
1745 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1747 virt_machine_2_9_options(mc);
1748 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1749 /* For 2.8 and earlier we falsely claimed in the DT that
1750 * our timers were edge-triggered, not level-triggered.
1752 vmc->claim_edge_triggered_timers = true;
1754 DEFINE_VIRT_MACHINE(2, 8)
1756 #define VIRT_COMPAT_2_7 \
1759 static void virt_2_7_instance_init(Object *obj)
1761 virt_2_8_instance_init(obj);
1764 static void virt_machine_2_7_options(MachineClass *mc)
1766 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1768 virt_machine_2_8_options(mc);
1769 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1770 /* ITS was introduced with 2.8 */
1772 /* Stick with 1K pages for migration compatibility */
1773 mc->minimum_page_bits = 0;
1775 DEFINE_VIRT_MACHINE(2, 7)
1777 #define VIRT_COMPAT_2_6 \
1780 static void virt_2_6_instance_init(Object *obj)
1782 virt_2_7_instance_init(obj);
1785 static void virt_machine_2_6_options(MachineClass *mc)
1787 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1789 virt_machine_2_7_options(mc);
1790 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1791 vmc->disallow_affinity_adjustment = true;
1792 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1795 DEFINE_VIRT_MACHINE(2, 6)