4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 static void switch_mode(CPUARMState *env, int mode);
44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 assert(ri->fieldoffset);
47 if (cpreg_field_is_64bit(ri)) {
48 return CPREG_FIELD64(env, ri);
50 return CPREG_FIELD32(env, ri);
54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
56 assert(ri->fieldoffset);
57 if (cpreg_field_is_64bit(ri)) {
58 CPREG_FIELD64(env, ri) = value;
60 CPREG_FIELD32(env, ri) = value;
64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
66 return (char *)env + ri->fieldoffset;
69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
71 /* Raw read of a coprocessor register (as needed for migration, etc). */
72 if (ri->type & ARM_CP_CONST) {
73 return ri->resetvalue;
74 } else if (ri->raw_readfn) {
75 return ri->raw_readfn(env, ri);
76 } else if (ri->readfn) {
77 return ri->readfn(env, ri);
79 return raw_read(env, ri);
83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
86 /* Raw write of a coprocessor register (as needed for migration, etc).
87 * Note that constant registers are treated as write-ignored; the
88 * caller should check for success by whether a readback gives the
91 if (ri->type & ARM_CP_CONST) {
93 } else if (ri->raw_writefn) {
94 ri->raw_writefn(env, ri, v);
95 } else if (ri->writefn) {
96 ri->writefn(env, ri, v);
98 raw_write(env, ri, v);
102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
104 /* Return true if the regdef would cause an assertion if you called
105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
106 * program bug for it not to have the NO_RAW flag).
107 * NB that returning false here doesn't necessarily mean that calling
108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
109 * read/write access functions which are safe for raw use" from "has
110 * read/write access functions which have side effects but has forgotten
111 * to provide raw access functions".
112 * The tests here line up with the conditions in read/write_raw_cp_reg()
113 * and assertions in raw_read()/raw_write().
115 if ((ri->type & ARM_CP_CONST) ||
117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
125 /* Write the coprocessor state from cpu->env to the (index,value) list. */
129 for (i = 0; i < cpu->cpreg_array_len; i++) {
130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
131 const ARMCPRegInfo *ri;
134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
139 if (ri->type & ARM_CP_NO_RAW) {
143 newval = read_raw_cp_reg(&cpu->env, ri);
146 * Only sync if the previous list->cpustate sync succeeded.
147 * Rather than tracking the success/failure state for every
148 * item in the list, we just recheck "does the raw write we must
149 * have made in write_list_to_cpustate() read back OK" here.
151 uint64_t oldval = cpu->cpreg_values[i];
153 if (oldval == newval) {
157 write_raw_cp_reg(&cpu->env, ri, oldval);
158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
162 write_raw_cp_reg(&cpu->env, ri, newval);
164 cpu->cpreg_values[i] = newval;
169 bool write_list_to_cpustate(ARMCPU *cpu)
174 for (i = 0; i < cpu->cpreg_array_len; i++) {
175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
176 uint64_t v = cpu->cpreg_values[i];
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
184 if (ri->type & ARM_CP_NO_RAW) {
187 /* Write value and confirm it reads back as written
188 * (to catch read-only registers and partially read-only
189 * registers where the incoming migration value doesn't match)
191 write_raw_cp_reg(&cpu->env, ri, v);
192 if (read_raw_cp_reg(&cpu->env, ri) != v) {
199 static void add_cpreg_to_list(gpointer key, gpointer opaque)
201 ARMCPU *cpu = opaque;
202 uint32_t regidx = (uintptr_t)key;
203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 const ARMCPRegInfo *ri;
217 ri = g_hash_table_lookup(cpu->cp_regs, key);
219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220 cpu->cpreg_array_len++;
224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
238 void init_cpreg_list(ARMCPU *cpu)
240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
241 * Note that we require cpreg_tuples[] to be sorted by key ID.
246 keys = g_hash_table_get_keys(cpu->cp_regs);
247 keys = g_list_sort(keys, cpreg_key_compare);
249 cpu->cpreg_array_len = 0;
251 g_list_foreach(keys, count_cpreg, cpu);
253 arraylen = cpu->cpreg_array_len;
254 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, add_cpreg_to_list, cpu);
263 assert(cpu->cpreg_array_len == arraylen);
269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
271 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
272 const ARMCPRegInfo *ri,
275 if (!is_a64(env) && arm_current_el(env) == 3 &&
276 arm_is_secure_below_el3(env)) {
277 return CP_ACCESS_TRAP_UNCATEGORIZED;
282 /* Some secure-only AArch32 registers trap to EL3 if used from
283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
285 * We assume that the .access field is set to PL1_RW.
287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
288 const ARMCPRegInfo *ri,
291 if (arm_current_el(env) == 3) {
294 if (arm_is_secure_below_el3(env)) {
295 if (env->cp15.scr_el3 & SCR_EEL2) {
296 return CP_ACCESS_TRAP_EL2;
298 return CP_ACCESS_TRAP_EL3;
300 /* This will be EL1 NS and EL2 NS, which just UNDEF */
301 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 /* Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
367 ARMCPU *cpu = env_archcpu(env);
369 raw_write(env, ri, value);
370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 ARMCPU *cpu = env_archcpu(env);
377 if (raw_read(env, ri) != value) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
382 raw_write(env, ri, value);
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
389 ARMCPU *cpu = env_archcpu(env);
391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
392 && !extended_addresses_enabled(env)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
399 raw_write(env, ri, value);
402 /* IS variants of TLB operations must affect all cores */
403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
406 CPUState *cs = env_cpu(env);
408 tlb_flush_all_cpus_synced(cs);
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 CPUState *cs = env_cpu(env);
416 tlb_flush_all_cpus_synced(cs);
419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
422 CPUState *cs = env_cpu(env);
424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 CPUState *cs = env_cpu(env);
432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
436 * Non-IS variants of TLB operations are upgraded to
437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
438 * force broadcast of these operations.
440 static bool tlb_force_broadcast(CPUARMState *env)
442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 /* Invalidate all (TLBIALL) */
449 CPUState *cs = env_cpu(env);
451 if (tlb_force_broadcast(env)) {
452 tlb_flush_all_cpus_synced(cs);
458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
462 CPUState *cs = env_cpu(env);
464 value &= TARGET_PAGE_MASK;
465 if (tlb_force_broadcast(env)) {
466 tlb_flush_page_all_cpus_synced(cs, value);
468 tlb_flush_page(cs, value);
472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
475 /* Invalidate by ASID (TLBIASID) */
476 CPUState *cs = env_cpu(env);
478 if (tlb_force_broadcast(env)) {
479 tlb_flush_all_cpus_synced(cs);
485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
489 CPUState *cs = env_cpu(env);
491 value &= TARGET_PAGE_MASK;
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_page_all_cpus_synced(cs, value);
495 tlb_flush_page(cs, value);
499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
502 CPUState *cs = env_cpu(env);
504 tlb_flush_by_mmuidx(cs,
506 ARMMMUIdxBit_E10_1_PAN |
510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 CPUState *cs = env_cpu(env);
515 tlb_flush_by_mmuidx_all_cpus_synced(cs,
517 ARMMMUIdxBit_E10_1_PAN |
522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 CPUState *cs = env_cpu(env);
527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
533 CPUState *cs = env_cpu(env);
535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 CPUState *cs = env_cpu(env);
542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
550 CPUState *cs = env_cpu(env);
551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
557 static const ARMCPRegInfo cp_reginfo[] = {
558 /* Define the secure and non-secure FCSE identifier CP registers
559 * separately because there is no secure bank in V8 (no _EL3). This allows
560 * the secure register to be properly reset and migrated. There is also no
561 * v8 EL1 version of the register so the non-secure instance stands alone.
564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
568 { .name = "FCSEIDR_S",
569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
573 /* Define the secure and non-secure context identifier CP registers
574 * separately because there is no secure bank in V8 (no _EL3). This allows
575 * the secure register to be properly reset and migrated. In the
576 * non-secure case, the 32-bit register will have reset and migration
577 * disabled during registration as it is handled by the 64-bit instance.
579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
581 .access = PL1_RW, .accessfn = access_tvm_trvm,
582 .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
587 .access = PL1_RW, .accessfn = access_tvm_trvm,
588 .secure = ARM_CP_SECSTATE_S,
589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
593 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
594 /* NB: Some of these registers exist in v8 but with more precise
595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
597 /* MMU Domain access control / MPU write buffer control */
599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
601 .writefn = dacr_write, .raw_writefn = raw_write,
602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
603 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
605 * For v6 and v5, these mappings are overly broad.
607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
615 /* Cache maintenance ops; some of this space may be overridden later. */
616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
621 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
622 /* Not all pre-v6 cores implemented this WFI, so this is slightly
625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
626 .access = PL1_W, .type = ARM_CP_WFI },
629 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634 .access = PL1_W, .type = ARM_CP_WFI },
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
661 .type = ARM_CP_NO_RAW },
662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
664 .type = ARM_CP_NO_RAW },
665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
667 .type = ARM_CP_NO_RAW },
668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
670 .type = ARM_CP_NO_RAW },
671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
683 if (!arm_feature(env, ARM_FEATURE_V8)) {
684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
689 /* VFP coprocessor: cp10 & cp11 [23:20] */
690 mask |= R_CPACR_ASEDIS_MASK |
691 R_CPACR_D32DIS_MASK |
695 if (!arm_feature(env, ARM_FEATURE_NEON)) {
696 /* ASEDIS [31] bit is RAO/WI */
697 value |= R_CPACR_ASEDIS_MASK;
700 /* VFPv3 and upwards with NEON implement 32 double precision
701 * registers (D0-D31).
703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
705 value |= R_CPACR_D32DIS_MASK;
712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
721 env->cp15.cpacr_el1 = value;
724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
730 uint64_t value = env->cp15.cpacr_el1;
732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
742 /* Call cpacr_write() so that we reset with the correct RAO bits set
743 * for our CPU features.
745 cpacr_write(env, ri, 0);
748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
751 if (arm_feature(env, ARM_FEATURE_V8)) {
752 /* Check if CPACR accesses are to be trapped to EL2 */
753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
755 return CP_ACCESS_TRAP_EL2;
756 /* Check if CPACR accesses are to be trapped to EL3 */
757 } else if (arm_current_el(env) < 3 &&
758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
759 return CP_ACCESS_TRAP_EL3;
766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
769 /* Check if CPTR accesses are set to trap to EL3 */
770 if (arm_current_el(env) == 2 &&
771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
772 return CP_ACCESS_TRAP_EL3;
778 static const ARMCPRegInfo v6_cp_reginfo[] = {
779 /* prefetch by MVA in v6, NOP in v7 */
780 { .name = "MVA_prefetch",
781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
782 .access = PL1_W, .type = ARM_CP_NOP },
783 /* We need to break the TB after ISB to execute self-modifying code
784 * correctly and also to take any pending interrupts immediately.
785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
790 .access = PL0_W, .type = ARM_CP_NOP },
791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
792 .access = PL0_W, .type = ARM_CP_NOP },
793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
794 .access = PL1_RW, .accessfn = access_tvm_trvm,
795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
796 offsetof(CPUARMState, cp15.ifar_ns) },
798 /* Watchpoint Fault Address Register : should actually only be present
799 * for 1136, 1176, 11MPCore.
801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
809 typedef struct pm_event {
810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
812 bool (*supported)(CPUARMState *);
814 * Retrieve the current count of the underlying event. The programmed
815 * counters hold a difference from the return value from this function
817 uint64_t (*get_count)(CPUARMState *);
819 * Return how many nanoseconds it will take (at a minimum) for count events
820 * to occur. A negative value indicates the counter will never overflow, or
821 * that the counter has otherwise arranged for the overflow bit to be set
822 * and the PMU interrupt to be raised on overflow.
824 int64_t (*ns_per_count)(uint64_t);
827 static bool event_always_supported(CPUARMState *env)
832 static uint64_t swinc_get_count(CPUARMState *env)
835 * SW_INCR events are written directly to the pmevcntr's by writes to
836 * PMSWINC, so there is no underlying count maintained by the PMU itself
841 static int64_t swinc_ns_per(uint64_t ignored)
847 * Return the underlying cycle count for the PMU cycle counters. If we're in
848 * usermode, simply return 0.
850 static uint64_t cycles_get_count(CPUARMState *env)
852 #ifndef CONFIG_USER_ONLY
853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
856 return cpu_get_host_ticks();
860 #ifndef CONFIG_USER_ONLY
861 static int64_t cycles_ns_per(uint64_t cycles)
863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
866 static bool instructions_supported(CPUARMState *env)
868 return icount_enabled() == 1; /* Precise instruction counting */
871 static uint64_t instructions_get_count(CPUARMState *env)
873 return (uint64_t)icount_get_raw();
876 static int64_t instructions_ns_per(uint64_t icount)
878 return icount_to_ns((int64_t)icount);
882 static bool pmuv3p1_events_supported(CPUARMState *env)
884 /* For events which are supported in any v8.1 PMU */
885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
888 static bool pmuv3p4_events_supported(CPUARMState *env)
890 /* For events which are supported in any v8.1 PMU */
891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
894 static uint64_t zero_event_get_count(CPUARMState *env)
896 /* For events which on QEMU never fire, so their count is always zero */
900 static int64_t zero_event_ns_per(uint64_t cycles)
902 /* An event which never fires can never overflow */
906 static const pm_event pm_events[] = {
907 { .number = 0x000, /* SW_INCR */
908 .supported = event_always_supported,
909 .get_count = swinc_get_count,
910 .ns_per_count = swinc_ns_per,
912 #ifndef CONFIG_USER_ONLY
913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
914 .supported = instructions_supported,
915 .get_count = instructions_get_count,
916 .ns_per_count = instructions_ns_per,
918 { .number = 0x011, /* CPU_CYCLES, Cycle */
919 .supported = event_always_supported,
920 .get_count = cycles_get_count,
921 .ns_per_count = cycles_ns_per,
924 { .number = 0x023, /* STALL_FRONTEND */
925 .supported = pmuv3p1_events_supported,
926 .get_count = zero_event_get_count,
927 .ns_per_count = zero_event_ns_per,
929 { .number = 0x024, /* STALL_BACKEND */
930 .supported = pmuv3p1_events_supported,
931 .get_count = zero_event_get_count,
932 .ns_per_count = zero_event_ns_per,
934 { .number = 0x03c, /* STALL */
935 .supported = pmuv3p4_events_supported,
936 .get_count = zero_event_get_count,
937 .ns_per_count = zero_event_ns_per,
942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
943 * events (i.e. the statistical profiling extension), this implementation
944 * should first be updated to something sparse instead of the current
945 * supported_event_map[] array.
947 #define MAX_EVENT_ID 0x3c
948 #define UNSUPPORTED_EVENT UINT16_MAX
949 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
953 * of ARM event numbers to indices in our pm_events array.
955 * Note: Events in the 0x40XX range are not currently supported.
957 void pmu_init(ARMCPU *cpu)
962 * Empty supported_event_map and cpu->pmceid[01] before adding supported
965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
966 supported_event_map[i] = UNSUPPORTED_EVENT;
971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
972 const pm_event *cnt = &pm_events[i];
973 assert(cnt->number <= MAX_EVENT_ID);
974 /* We do not currently support events in the 0x40xx range */
975 assert(cnt->number <= 0x3f);
977 if (cnt->supported(&cpu->env)) {
978 supported_event_map[cnt->number] = i;
979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
980 if (cnt->number & 0x20) {
981 cpu->pmceid1 |= event_mask;
983 cpu->pmceid0 |= event_mask;
990 * Check at runtime whether a PMU event is supported for the current machine
992 static bool event_supported(uint16_t number)
994 if (number > MAX_EVENT_ID) {
997 return supported_event_map[number] != UNSUPPORTED_EVENT;
1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1003 /* Performance monitor registers user accessibility is controlled
1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1005 * trapping to EL2 or EL3 for other accesses.
1007 int el = arm_current_el(env);
1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1011 return CP_ACCESS_TRAP;
1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1014 return CP_ACCESS_TRAP_EL2;
1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1017 return CP_ACCESS_TRAP_EL3;
1020 return CP_ACCESS_OK;
1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1024 const ARMCPRegInfo *ri,
1027 /* ER: event counter read trap control */
1028 if (arm_feature(env, ARM_FEATURE_V8)
1029 && arm_current_el(env) == 0
1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1032 return CP_ACCESS_OK;
1035 return pmreg_access(env, ri, isread);
1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1039 const ARMCPRegInfo *ri,
1042 /* SW: software increment write trap control */
1043 if (arm_feature(env, ARM_FEATURE_V8)
1044 && arm_current_el(env) == 0
1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1047 return CP_ACCESS_OK;
1050 return pmreg_access(env, ri, isread);
1053 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1054 const ARMCPRegInfo *ri,
1057 /* ER: event counter read trap control */
1058 if (arm_feature(env, ARM_FEATURE_V8)
1059 && arm_current_el(env) == 0
1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1061 return CP_ACCESS_OK;
1064 return pmreg_access(env, ri, isread);
1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1068 const ARMCPRegInfo *ri,
1071 /* CR: cycle counter read trap control */
1072 if (arm_feature(env, ARM_FEATURE_V8)
1073 && arm_current_el(env) == 0
1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1076 return CP_ACCESS_OK;
1079 return pmreg_access(env, ri, isread);
1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1084 * We use these to decide whether we need to wrap a write to MDCR_EL2
1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1087 #define MDCR_EL2_PMU_ENABLE_BITS \
1088 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1092 * the current EL, security state, and register configuration.
1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1097 bool e, p, u, nsk, nsu, nsh, m;
1098 bool enabled, prohibited = false, filtered;
1099 bool secure = arm_is_secure(env);
1100 int el = arm_current_el(env);
1101 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1102 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1104 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1108 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1109 (counter < hpmn || counter == 31)) {
1110 e = env->cp15.c9_pmcr & PMCRE;
1112 e = mdcr_el2 & MDCR_HPME;
1114 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1116 /* Is event counting prohibited? */
1117 if (el == 2 && (counter < hpmn || counter == 31)) {
1118 prohibited = mdcr_el2 & MDCR_HPMD;
1121 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1124 if (counter == 31) {
1126 * The cycle counter defaults to running. PMCR.DP says "disable
1127 * the cycle counter when event counting is prohibited".
1128 * Some MDCR bits disable the cycle counter specifically.
1130 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1131 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1133 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1136 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1141 if (counter == 31) {
1142 filter = env->cp15.pmccfiltr_el0;
1144 filter = env->cp15.c14_pmevtyper[counter];
1147 p = filter & PMXEVTYPER_P;
1148 u = filter & PMXEVTYPER_U;
1149 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1150 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1151 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1152 m = arm_el_is_aa64(env, 1) &&
1153 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1156 filtered = secure ? u : u != nsu;
1157 } else if (el == 1) {
1158 filtered = secure ? p : p != nsk;
1159 } else if (el == 2) {
1165 if (counter != 31) {
1167 * If not checking PMCCNTR, ensure the counter is setup to an event we
1170 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1171 if (!event_supported(event)) {
1176 return enabled && !prohibited && !filtered;
1179 static void pmu_update_irq(CPUARMState *env)
1181 ARMCPU *cpu = env_archcpu(env);
1182 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1183 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1189 * Return true if the clock divider is enabled and the cycle counter
1190 * is supposed to tick only once every 64 clock cycles. This is
1191 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1192 * (64-bit) cycle counter PMCR.D has no effect.
1194 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1199 /* Return true if the specified event counter is configured to be 64 bit */
1201 /* This isn't intended to be used with the cycle counter */
1202 assert(counter < 31);
1204 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1208 if (arm_feature(env, ARM_FEATURE_EL2)) {
1210 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1211 * current security state, so we don't use arm_mdcr_el2_eff() here.
1213 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1214 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1216 if (hpmn != 0 && counter >= hpmn) {
1220 return env->cp15.c9_pmcr & PMCRLP;
1224 * Ensure c15_ccnt is the guest-visible count so that operations such as
1225 * enabling/disabling the counter or filtering, modifying the count itself,
1226 * etc. can be done logically. This is essentially a no-op if the counter is
1227 * not enabled at the time of the call.
1229 static void pmccntr_op_start(CPUARMState *env)
1231 uint64_t cycles = cycles_get_count(env);
1233 if (pmu_counter_enabled(env, 31)) {
1234 uint64_t eff_cycles = cycles;
1235 if (pmccntr_clockdiv_enabled(env)) {
1239 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1241 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1242 1ull << 63 : 1ull << 31;
1243 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1244 env->cp15.c9_pmovsr |= (1ULL << 31);
1245 pmu_update_irq(env);
1248 env->cp15.c15_ccnt = new_pmccntr;
1250 env->cp15.c15_ccnt_delta = cycles;
1254 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1255 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1258 static void pmccntr_op_finish(CPUARMState *env)
1260 if (pmu_counter_enabled(env, 31)) {
1261 #ifndef CONFIG_USER_ONLY
1262 /* Calculate when the counter will next overflow */
1263 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1264 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1265 remaining_cycles = (uint32_t)remaining_cycles;
1267 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1269 if (overflow_in > 0) {
1270 int64_t overflow_at;
1272 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1273 overflow_in, &overflow_at)) {
1274 ARMCPU *cpu = env_archcpu(env);
1275 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1280 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1281 if (pmccntr_clockdiv_enabled(env)) {
1284 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1291 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1293 if (event_supported(event)) {
1294 uint16_t event_idx = supported_event_map[event];
1295 count = pm_events[event_idx].get_count(env);
1298 if (pmu_counter_enabled(env, counter)) {
1299 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1300 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1301 1ULL << 63 : 1ULL << 31;
1303 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1304 env->cp15.c9_pmovsr |= (1 << counter);
1305 pmu_update_irq(env);
1307 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1309 env->cp15.c14_pmevcntr_delta[counter] = count;
1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1314 if (pmu_counter_enabled(env, counter)) {
1315 #ifndef CONFIG_USER_ONLY
1316 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1317 uint16_t event_idx = supported_event_map[event];
1318 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1319 int64_t overflow_in;
1321 if (!pmevcntr_is_64_bit(env, counter)) {
1322 delta = (uint32_t)delta;
1324 overflow_in = pm_events[event_idx].ns_per_count(delta);
1326 if (overflow_in > 0) {
1327 int64_t overflow_at;
1329 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1330 overflow_in, &overflow_at)) {
1331 ARMCPU *cpu = env_archcpu(env);
1332 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1337 env->cp15.c14_pmevcntr_delta[counter] -=
1338 env->cp15.c14_pmevcntr[counter];
1342 void pmu_op_start(CPUARMState *env)
1345 pmccntr_op_start(env);
1346 for (i = 0; i < pmu_num_counters(env); i++) {
1347 pmevcntr_op_start(env, i);
1351 void pmu_op_finish(CPUARMState *env)
1354 pmccntr_op_finish(env);
1355 for (i = 0; i < pmu_num_counters(env); i++) {
1356 pmevcntr_op_finish(env, i);
1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1362 pmu_op_start(&cpu->env);
1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1367 pmu_op_finish(&cpu->env);
1370 void arm_pmu_timer_cb(void *opaque)
1372 ARMCPU *cpu = opaque;
1375 * Update all the counter values based on the current underlying counts,
1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1378 * counter may expire.
1380 pmu_op_start(&cpu->env);
1381 pmu_op_finish(&cpu->env);
1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1389 if (value & PMCRC) {
1390 /* The counter has been reset */
1391 env->cp15.c15_ccnt = 0;
1394 if (value & PMCRP) {
1396 for (i = 0; i < pmu_num_counters(env); i++) {
1397 env->cp15.c14_pmevcntr[i] = 0;
1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1411 uint64_t overflow_mask, new_pmswinc;
1413 for (i = 0; i < pmu_num_counters(env); i++) {
1414 /* Increment a counter's count iff: */
1415 if ((value & (1 << i)) && /* counter's bit is set */
1416 /* counter is enabled and not filtered */
1417 pmu_counter_enabled(env, i) &&
1418 /* counter is SW_INCR */
1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1420 pmevcntr_op_start(env, i);
1423 * Detect if this write causes an overflow since we can't predict
1424 * PMSWINC overflows like we can for other events
1426 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1428 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1429 1ULL << 63 : 1ULL << 31;
1431 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1432 env->cp15.c9_pmovsr |= (1 << i);
1433 pmu_update_irq(env);
1436 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1438 pmevcntr_op_finish(env, i);
1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1446 pmccntr_op_start(env);
1447 ret = env->cp15.c15_ccnt;
1448 pmccntr_op_finish(env);
1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1456 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1457 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1460 env->cp15.c9_pmselr = value & 0x1f;
1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1466 pmccntr_op_start(env);
1467 env->cp15.c15_ccnt = value;
1468 pmccntr_op_finish(env);
1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1474 uint64_t cur_val = pmccntr_read(env, NULL);
1476 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 pmccntr_op_start(env);
1483 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1484 pmccntr_op_finish(env);
1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1490 pmccntr_op_start(env);
1491 /* M is not accessible from AArch32 */
1492 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1493 (value & PMCCFILTR);
1494 pmccntr_op_finish(env);
1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1499 /* M is not visible in AArch32 */
1500 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1507 value &= pmu_counter_mask(env);
1508 env->cp15.c9_pmcnten |= value;
1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516 value &= pmu_counter_mask(env);
1517 env->cp15.c9_pmcnten &= ~value;
1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 value &= pmu_counter_mask(env);
1525 env->cp15.c9_pmovsr &= ~value;
1526 pmu_update_irq(env);
1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1532 value &= pmu_counter_mask(env);
1533 env->cp15.c9_pmovsr |= value;
1534 pmu_update_irq(env);
1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1538 uint64_t value, const uint8_t counter)
1540 if (counter == 31) {
1541 pmccfiltr_write(env, ri, value);
1542 } else if (counter < pmu_num_counters(env)) {
1543 pmevcntr_op_start(env, counter);
1546 * If this counter's event type is changing, store the current
1547 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1548 * pmevcntr_op_finish has the correct baseline when it converts back to
1551 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1552 PMXEVTYPER_EVTCOUNT;
1553 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1554 if (old_event != new_event) {
1556 if (event_supported(new_event)) {
1557 uint16_t event_idx = supported_event_map[new_event];
1558 count = pm_events[event_idx].get_count(env);
1560 env->cp15.c14_pmevcntr_delta[counter] = count;
1563 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1564 pmevcntr_op_finish(env, counter);
1566 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1567 * PMSELR value is equal to or greater than the number of implemented
1568 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1573 const uint8_t counter)
1575 if (counter == 31) {
1576 return env->cp15.pmccfiltr_el0;
1577 } else if (counter < pmu_num_counters(env)) {
1578 return env->cp15.c14_pmevtyper[counter];
1581 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1582 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1592 pmevtyper_write(env, ri, value, counter);
1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1599 env->cp15.c14_pmevtyper[counter] = value;
1602 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1603 * pmu_op_finish calls when loading saved state for a migration. Because
1604 * we're potentially updating the type of event here, the value written to
1605 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1606 * different counter type. Therefore, we need to set this value to the
1607 * current count for the counter type we're writing so that pmu_op_finish
1608 * has the correct count for its calculation.
1610 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1611 if (event_supported(event)) {
1612 uint16_t event_idx = supported_event_map[event];
1613 env->cp15.c14_pmevcntr_delta[counter] =
1614 pm_events[event_idx].get_count(env);
1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1620 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1621 return pmevtyper_read(env, ri, counter);
1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1632 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value, uint8_t counter)
1638 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1639 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1640 value &= MAKE_64BIT_MASK(0, 32);
1642 if (counter < pmu_num_counters(env)) {
1643 pmevcntr_op_start(env, counter);
1644 env->cp15.c14_pmevcntr[counter] = value;
1645 pmevcntr_op_finish(env, counter);
1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1649 * are CONSTRAINED UNPREDICTABLE.
1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1656 if (counter < pmu_num_counters(env)) {
1658 pmevcntr_op_start(env, counter);
1659 ret = env->cp15.c14_pmevcntr[counter];
1660 pmevcntr_op_finish(env, counter);
1661 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1662 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1663 ret &= MAKE_64BIT_MASK(0, 32);
1667 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1668 * are CONSTRAINED UNPREDICTABLE. */
1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1676 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1677 pmevcntr_write(env, ri, value, counter);
1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1683 return pmevcntr_read(env, ri, counter);
1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1689 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1690 assert(counter < pmu_num_counters(env));
1691 env->cp15.c14_pmevcntr[counter] = value;
1692 pmevcntr_write(env, ri, value, counter);
1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1698 assert(counter < pmu_num_counters(env));
1699 return env->cp15.c14_pmevcntr[counter];
1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1705 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1716 if (arm_feature(env, ARM_FEATURE_V8)) {
1717 env->cp15.c9_pmuserenr = value & 0xf;
1719 env->cp15.c9_pmuserenr = value & 1;
1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 /* We have no event counters so only the C bit can be changed */
1727 value &= pmu_counter_mask(env);
1728 env->cp15.c9_pminten |= value;
1729 pmu_update_irq(env);
1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735 value &= pmu_counter_mask(env);
1736 env->cp15.c9_pminten &= ~value;
1737 pmu_update_irq(env);
1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743 /* Note that even though the AArch64 view of this register has bits
1744 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1745 * architectural requirements for bits which are RES0 only in some
1746 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1747 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1749 raw_write(env, ri, value & ~0x1FULL);
1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1754 /* Begin with base v8.0 state. */
1755 uint64_t valid_mask = 0x3fff;
1756 ARMCPU *cpu = env_archcpu(env);
1759 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1760 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1761 * Instead, choose the format based on the mode of EL3.
1763 if (arm_el_is_aa64(env, 3)) {
1764 value |= SCR_FW | SCR_AW; /* RES1 */
1765 valid_mask &= ~SCR_NET; /* RES0 */
1767 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1768 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1769 value |= SCR_RW; /* RAO/WI */
1771 if (cpu_isar_feature(aa64_ras, cpu)) {
1772 valid_mask |= SCR_TERR;
1774 if (cpu_isar_feature(aa64_lor, cpu)) {
1775 valid_mask |= SCR_TLOR;
1777 if (cpu_isar_feature(aa64_pauth, cpu)) {
1778 valid_mask |= SCR_API | SCR_APK;
1780 if (cpu_isar_feature(aa64_sel2, cpu)) {
1781 valid_mask |= SCR_EEL2;
1783 if (cpu_isar_feature(aa64_mte, cpu)) {
1784 valid_mask |= SCR_ATA;
1786 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1787 valid_mask |= SCR_ENSCXT;
1789 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1790 valid_mask |= SCR_EASE | SCR_NMEA;
1792 if (cpu_isar_feature(aa64_sme, cpu)) {
1793 valid_mask |= SCR_ENTP2;
1796 valid_mask &= ~(SCR_RW | SCR_ST);
1797 if (cpu_isar_feature(aa32_ras, cpu)) {
1798 valid_mask |= SCR_TERR;
1802 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1803 valid_mask &= ~SCR_HCE;
1805 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1806 * supported if EL2 exists. The bit is UNK/SBZP when
1807 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1808 * when EL2 is unavailable.
1809 * On ARMv8, this bit is always available.
1811 if (arm_feature(env, ARM_FEATURE_V7) &&
1812 !arm_feature(env, ARM_FEATURE_V8)) {
1813 valid_mask &= ~SCR_SMD;
1817 /* Clear all-context RES0 bits. */
1818 value &= valid_mask;
1819 raw_write(env, ri, value);
1822 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825 * scr_write will set the RES1 bits on an AArch64-only CPU.
1826 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1828 scr_write(env, ri, 0);
1831 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1832 const ARMCPRegInfo *ri,
1835 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1836 return CP_ACCESS_TRAP_EL2;
1839 return CP_ACCESS_OK;
1842 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 ARMCPU *cpu = env_archcpu(env);
1846 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1849 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1850 ri->secure & ARM_CP_SECSTATE_S);
1852 return cpu->ccsidr[index];
1855 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 raw_write(env, ri, value & 0xf);
1861 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1863 CPUState *cs = env_cpu(env);
1864 bool el1 = arm_current_el(env) == 1;
1865 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1868 if (hcr_el2 & HCR_IMO) {
1869 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1873 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1878 if (hcr_el2 & HCR_FMO) {
1879 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1883 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1888 if (hcr_el2 & HCR_AMO) {
1889 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1897 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1900 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1901 return CP_ACCESS_TRAP_EL2;
1904 return CP_ACCESS_OK;
1907 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1910 if (arm_feature(env, ARM_FEATURE_V8)) {
1911 return access_aa64_tid1(env, ri, isread);
1914 return CP_ACCESS_OK;
1917 static const ARMCPRegInfo v7_cp_reginfo[] = {
1918 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1919 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1920 .access = PL1_W, .type = ARM_CP_NOP },
1921 /* Performance monitors are implementation defined in v7,
1922 * but with an ARM recommended set of registers, which we
1925 * Performance registers fall into three categories:
1926 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1927 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1928 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1929 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1930 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1932 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1933 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1935 .writefn = pmcntenset_write,
1936 .accessfn = pmreg_access,
1937 .raw_writefn = raw_write },
1938 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1940 .access = PL0_RW, .accessfn = pmreg_access,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1942 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1943 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1945 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1946 .accessfn = pmreg_access,
1947 .writefn = pmcntenclr_write,
1948 .type = ARM_CP_ALIAS | ARM_CP_IO },
1949 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1951 .access = PL0_RW, .accessfn = pmreg_access,
1952 .type = ARM_CP_ALIAS | ARM_CP_IO,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1954 .writefn = pmcntenclr_write },
1955 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1956 .access = PL0_RW, .type = ARM_CP_IO,
1957 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1958 .accessfn = pmreg_access,
1959 .writefn = pmovsr_write,
1960 .raw_writefn = raw_write },
1961 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1962 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1963 .access = PL0_RW, .accessfn = pmreg_access,
1964 .type = ARM_CP_ALIAS | ARM_CP_IO,
1965 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1966 .writefn = pmovsr_write,
1967 .raw_writefn = raw_write },
1968 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1969 .access = PL0_W, .accessfn = pmreg_access_swinc,
1970 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1971 .writefn = pmswinc_write },
1972 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1973 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1974 .access = PL0_W, .accessfn = pmreg_access_swinc,
1975 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1976 .writefn = pmswinc_write },
1977 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1978 .access = PL0_RW, .type = ARM_CP_ALIAS,
1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1980 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1981 .raw_writefn = raw_write},
1982 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1983 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1984 .access = PL0_RW, .accessfn = pmreg_access_selr,
1985 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1986 .writefn = pmselr_write, .raw_writefn = raw_write, },
1987 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1988 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1989 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1990 .accessfn = pmreg_access_ccntr },
1991 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1993 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1995 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1996 .readfn = pmccntr_read, .writefn = pmccntr_write,
1997 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1998 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1999 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2000 .access = PL0_RW, .accessfn = pmreg_access,
2001 .type = ARM_CP_ALIAS | ARM_CP_IO,
2003 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2004 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2005 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2006 .access = PL0_RW, .accessfn = pmreg_access,
2008 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2010 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2011 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012 .accessfn = pmreg_access,
2013 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2014 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2015 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2016 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2017 .accessfn = pmreg_access,
2018 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2019 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2020 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .accessfn = pmreg_access_xevcntr,
2022 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2023 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2024 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2025 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = pmreg_access_xevcntr,
2027 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2028 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2029 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2030 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2032 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2033 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2034 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2035 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2038 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2039 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2040 .access = PL1_RW, .accessfn = access_tpm,
2041 .type = ARM_CP_ALIAS | ARM_CP_IO,
2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2044 .writefn = pmintenset_write, .raw_writefn = raw_write },
2045 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2046 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2047 .access = PL1_RW, .accessfn = access_tpm,
2049 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2050 .writefn = pmintenset_write, .raw_writefn = raw_write,
2051 .resetvalue = 0x0 },
2052 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2053 .access = PL1_RW, .accessfn = access_tpm,
2054 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2055 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2056 .writefn = pmintenclr_write, },
2057 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2058 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2059 .access = PL1_RW, .accessfn = access_tpm,
2060 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2061 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2062 .writefn = pmintenclr_write },
2063 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2064 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2066 .accessfn = access_aa64_tid2,
2067 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2068 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2069 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2071 .accessfn = access_aa64_tid2,
2072 .writefn = csselr_write, .resetvalue = 0,
2073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2074 offsetof(CPUARMState, cp15.csselr_ns) } },
2075 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2076 * just RAZ for all cores:
2078 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2079 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2080 .access = PL1_R, .type = ARM_CP_CONST,
2081 .accessfn = access_aa64_tid1,
2083 /* Auxiliary fault status registers: these also are IMPDEF, and we
2084 * choose to RAZ/WI for all cores.
2086 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2087 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2088 .access = PL1_RW, .accessfn = access_tvm_trvm,
2089 .type = ARM_CP_CONST, .resetvalue = 0 },
2090 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2091 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2092 .access = PL1_RW, .accessfn = access_tvm_trvm,
2093 .type = ARM_CP_CONST, .resetvalue = 0 },
2094 /* MAIR can just read-as-written because we don't implement caches
2095 * and so don't need to care about memory attributes.
2097 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2098 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2099 .access = PL1_RW, .accessfn = access_tvm_trvm,
2100 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2102 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2104 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2106 /* For non-long-descriptor page tables these are PRRR and NMRR;
2107 * regardless they still act as reads-as-written for QEMU.
2109 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2110 * allows them to assign the correct fieldoffset based on the endianness
2111 * handled in the field definitions.
2113 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2114 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2115 .access = PL1_RW, .accessfn = access_tvm_trvm,
2116 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2117 offsetof(CPUARMState, cp15.mair0_ns) },
2118 .resetfn = arm_cp_reset_ignore },
2119 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2120 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2121 .access = PL1_RW, .accessfn = access_tvm_trvm,
2122 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2123 offsetof(CPUARMState, cp15.mair1_ns) },
2124 .resetfn = arm_cp_reset_ignore },
2125 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2126 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2127 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2128 /* 32 bit ITLB invalidates */
2129 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131 .writefn = tlbiall_write },
2132 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134 .writefn = tlbimva_write },
2135 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2137 .writefn = tlbiasid_write },
2138 /* 32 bit DTLB invalidates */
2139 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2141 .writefn = tlbiall_write },
2142 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2144 .writefn = tlbimva_write },
2145 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2147 .writefn = tlbiasid_write },
2148 /* 32 bit TLB invalidates */
2149 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151 .writefn = tlbiall_write },
2152 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154 .writefn = tlbimva_write },
2155 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2157 .writefn = tlbiasid_write },
2158 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2159 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2160 .writefn = tlbimvaa_write },
2163 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2164 /* 32 bit TLB invalidates, Inner Shareable */
2165 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2167 .writefn = tlbiall_is_write },
2168 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2170 .writefn = tlbimva_is_write },
2171 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2173 .writefn = tlbiasid_is_write },
2174 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2176 .writefn = tlbimvaa_is_write },
2179 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2180 /* PMOVSSET is not implemented in v7 before v7ve */
2181 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2182 .access = PL0_RW, .accessfn = pmreg_access,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO,
2184 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2185 .writefn = pmovsset_write,
2186 .raw_writefn = raw_write },
2187 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2189 .access = PL0_RW, .accessfn = pmreg_access,
2190 .type = ARM_CP_ALIAS | ARM_CP_IO,
2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2192 .writefn = pmovsset_write,
2193 .raw_writefn = raw_write },
2196 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2203 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2207 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2208 * at all, so we don't need to check whether we're v8A.
2210 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2211 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2212 return CP_ACCESS_TRAP_EL2;
2214 return CP_ACCESS_OK;
2217 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2220 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2221 return CP_ACCESS_TRAP;
2223 return teecr_access(env, ri, isread);
2226 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2227 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2228 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2230 .writefn = teecr_write, .accessfn = teecr_access },
2231 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2232 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2233 .accessfn = teehbr_access, .resetvalue = 0 },
2236 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2237 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2238 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2241 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2244 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2245 .resetfn = arm_cp_reset_ignore },
2246 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2248 .access = PL0_R|PL1_W,
2249 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2251 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2252 .access = PL0_R|PL1_W,
2253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2254 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2255 .resetfn = arm_cp_reset_ignore },
2256 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2257 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2259 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2260 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2262 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2263 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2267 #ifndef CONFIG_USER_ONLY
2269 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2272 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2273 * Writable only at the highest implemented exception level.
2275 int el = arm_current_el(env);
2281 hcr = arm_hcr_el2_eff(env);
2282 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2283 cntkctl = env->cp15.cnthctl_el2;
2285 cntkctl = env->cp15.c14_cntkctl;
2287 if (!extract32(cntkctl, 0, 2)) {
2288 return CP_ACCESS_TRAP;
2292 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2293 arm_is_secure_below_el3(env)) {
2294 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2295 return CP_ACCESS_TRAP_UNCATEGORIZED;
2303 if (!isread && el < arm_highest_el(env)) {
2304 return CP_ACCESS_TRAP_UNCATEGORIZED;
2307 return CP_ACCESS_OK;
2310 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2313 unsigned int cur_el = arm_current_el(env);
2314 bool has_el2 = arm_is_el2_enabled(env);
2315 uint64_t hcr = arm_hcr_el2_eff(env);
2319 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2320 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2321 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2322 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2325 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2326 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2327 return CP_ACCESS_TRAP;
2330 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2331 if (hcr & HCR_E2H) {
2332 if (timeridx == GTIMER_PHYS &&
2333 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2334 return CP_ACCESS_TRAP_EL2;
2337 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2338 if (has_el2 && timeridx == GTIMER_PHYS &&
2339 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2340 return CP_ACCESS_TRAP_EL2;
2346 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2347 if (has_el2 && timeridx == GTIMER_PHYS &&
2349 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2350 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2351 return CP_ACCESS_TRAP_EL2;
2355 return CP_ACCESS_OK;
2358 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2361 unsigned int cur_el = arm_current_el(env);
2362 bool has_el2 = arm_is_el2_enabled(env);
2363 uint64_t hcr = arm_hcr_el2_eff(env);
2367 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2368 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2369 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2370 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2374 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2375 * EL0 if EL0[PV]TEN is zero.
2377 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2378 return CP_ACCESS_TRAP;
2383 if (has_el2 && timeridx == GTIMER_PHYS) {
2384 if (hcr & HCR_E2H) {
2385 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2386 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2387 return CP_ACCESS_TRAP_EL2;
2390 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2391 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2392 return CP_ACCESS_TRAP_EL2;
2398 return CP_ACCESS_OK;
2401 static CPAccessResult gt_pct_access(CPUARMState *env,
2402 const ARMCPRegInfo *ri,
2405 return gt_counter_access(env, GTIMER_PHYS, isread);
2408 static CPAccessResult gt_vct_access(CPUARMState *env,
2409 const ARMCPRegInfo *ri,
2412 return gt_counter_access(env, GTIMER_VIRT, isread);
2415 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 return gt_timer_access(env, GTIMER_PHYS, isread);
2421 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2424 return gt_timer_access(env, GTIMER_VIRT, isread);
2427 static CPAccessResult gt_stimer_access(CPUARMState *env,
2428 const ARMCPRegInfo *ri,
2431 /* The AArch64 register view of the secure physical timer is
2432 * always accessible from EL3, and configurably accessible from
2435 switch (arm_current_el(env)) {
2437 if (!arm_is_secure(env)) {
2438 return CP_ACCESS_TRAP;
2440 if (!(env->cp15.scr_el3 & SCR_ST)) {
2441 return CP_ACCESS_TRAP_EL3;
2443 return CP_ACCESS_OK;
2446 return CP_ACCESS_TRAP;
2448 return CP_ACCESS_OK;
2450 g_assert_not_reached();
2454 static uint64_t gt_get_countervalue(CPUARMState *env)
2456 ARMCPU *cpu = env_archcpu(env);
2458 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2461 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2463 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2466 /* Timer enabled: calculate and set current ISTATUS, irq, and
2467 * reset timer to when ISTATUS next has to change
2469 uint64_t offset = timeridx == GTIMER_VIRT ?
2470 cpu->env.cp15.cntvoff_el2 : 0;
2471 uint64_t count = gt_get_countervalue(&cpu->env);
2472 /* Note that this must be unsigned 64 bit arithmetic: */
2473 int istatus = count - offset >= gt->cval;
2477 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2479 irqstate = (istatus && !(gt->ctl & 2));
2480 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2483 /* Next transition is when count rolls back over to zero */
2484 nexttick = UINT64_MAX;
2486 /* Next transition is when we hit cval */
2487 nexttick = gt->cval + offset;
2489 /* Note that the desired next expiry time might be beyond the
2490 * signed-64-bit range of a QEMUTimer -- in this case we just
2491 * set the timer for as far in the future as possible. When the
2492 * timer expires we will reset the timer for any remaining period.
2494 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2495 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2497 timer_mod(cpu->gt_timer[timeridx], nexttick);
2499 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2501 /* Timer disabled: ISTATUS and timer output always clear */
2503 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2504 timer_del(cpu->gt_timer[timeridx]);
2505 trace_arm_gt_recalc_disabled(timeridx);
2509 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2512 ARMCPU *cpu = env_archcpu(env);
2514 timer_del(cpu->gt_timer[timeridx]);
2517 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2519 return gt_get_countervalue(env);
2522 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2526 switch (arm_current_el(env)) {
2528 hcr = arm_hcr_el2_eff(env);
2529 if (hcr & HCR_E2H) {
2534 hcr = arm_hcr_el2_eff(env);
2535 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2541 return env->cp15.cntvoff_el2;
2544 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2546 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2549 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553 trace_arm_gt_cval_write(timeridx, value);
2554 env->cp15.c14_timer[timeridx].cval = value;
2555 gt_recalc_timer(env_archcpu(env), timeridx);
2558 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2561 uint64_t offset = 0;
2565 case GTIMER_HYPVIRT:
2566 offset = gt_virt_cnt_offset(env);
2570 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2571 (gt_get_countervalue(env) - offset));
2574 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578 uint64_t offset = 0;
2582 case GTIMER_HYPVIRT:
2583 offset = gt_virt_cnt_offset(env);
2587 trace_arm_gt_tval_write(timeridx, value);
2588 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2589 sextract64(value, 0, 32);
2590 gt_recalc_timer(env_archcpu(env), timeridx);
2593 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597 ARMCPU *cpu = env_archcpu(env);
2598 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2600 trace_arm_gt_ctl_write(timeridx, value);
2601 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2602 if ((oldval ^ value) & 1) {
2603 /* Enable toggled */
2604 gt_recalc_timer(cpu, timeridx);
2605 } else if ((oldval ^ value) & 2) {
2606 /* IMASK toggled: don't need to recalculate,
2607 * just set the interrupt line based on ISTATUS
2609 int irqstate = (oldval & 4) && !(value & 2);
2611 trace_arm_gt_imask_toggle(timeridx, irqstate);
2612 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2618 gt_timer_reset(env, ri, GTIMER_PHYS);
2621 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2624 gt_cval_write(env, ri, GTIMER_PHYS, value);
2627 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2629 return gt_tval_read(env, ri, GTIMER_PHYS);
2632 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2635 gt_tval_write(env, ri, GTIMER_PHYS, value);
2638 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2641 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2644 static int gt_phys_redir_timeridx(CPUARMState *env)
2646 switch (arm_mmu_idx(env)) {
2647 case ARMMMUIdx_E20_0:
2648 case ARMMMUIdx_E20_2:
2649 case ARMMMUIdx_E20_2_PAN:
2650 case ARMMMUIdx_SE20_0:
2651 case ARMMMUIdx_SE20_2:
2652 case ARMMMUIdx_SE20_2_PAN:
2659 static int gt_virt_redir_timeridx(CPUARMState *env)
2661 switch (arm_mmu_idx(env)) {
2662 case ARMMMUIdx_E20_0:
2663 case ARMMMUIdx_E20_2:
2664 case ARMMMUIdx_E20_2_PAN:
2665 case ARMMMUIdx_SE20_0:
2666 case ARMMMUIdx_SE20_2:
2667 case ARMMMUIdx_SE20_2_PAN:
2668 return GTIMER_HYPVIRT;
2674 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2675 const ARMCPRegInfo *ri)
2677 int timeridx = gt_phys_redir_timeridx(env);
2678 return env->cp15.c14_timer[timeridx].cval;
2681 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2684 int timeridx = gt_phys_redir_timeridx(env);
2685 gt_cval_write(env, ri, timeridx, value);
2688 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2689 const ARMCPRegInfo *ri)
2691 int timeridx = gt_phys_redir_timeridx(env);
2692 return gt_tval_read(env, ri, timeridx);
2695 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2698 int timeridx = gt_phys_redir_timeridx(env);
2699 gt_tval_write(env, ri, timeridx, value);
2702 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2703 const ARMCPRegInfo *ri)
2705 int timeridx = gt_phys_redir_timeridx(env);
2706 return env->cp15.c14_timer[timeridx].ctl;
2709 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2712 int timeridx = gt_phys_redir_timeridx(env);
2713 gt_ctl_write(env, ri, timeridx, value);
2716 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2718 gt_timer_reset(env, ri, GTIMER_VIRT);
2721 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724 gt_cval_write(env, ri, GTIMER_VIRT, value);
2727 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2729 return gt_tval_read(env, ri, GTIMER_VIRT);
2732 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2735 gt_tval_write(env, ri, GTIMER_VIRT, value);
2738 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2741 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2744 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2747 ARMCPU *cpu = env_archcpu(env);
2749 trace_arm_gt_cntvoff_write(value);
2750 raw_write(env, ri, value);
2751 gt_recalc_timer(cpu, GTIMER_VIRT);
2754 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2755 const ARMCPRegInfo *ri)
2757 int timeridx = gt_virt_redir_timeridx(env);
2758 return env->cp15.c14_timer[timeridx].cval;
2761 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2764 int timeridx = gt_virt_redir_timeridx(env);
2765 gt_cval_write(env, ri, timeridx, value);
2768 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2769 const ARMCPRegInfo *ri)
2771 int timeridx = gt_virt_redir_timeridx(env);
2772 return gt_tval_read(env, ri, timeridx);
2775 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2778 int timeridx = gt_virt_redir_timeridx(env);
2779 gt_tval_write(env, ri, timeridx, value);
2782 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2783 const ARMCPRegInfo *ri)
2785 int timeridx = gt_virt_redir_timeridx(env);
2786 return env->cp15.c14_timer[timeridx].ctl;
2789 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792 int timeridx = gt_virt_redir_timeridx(env);
2793 gt_ctl_write(env, ri, timeridx, value);
2796 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2798 gt_timer_reset(env, ri, GTIMER_HYP);
2801 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804 gt_cval_write(env, ri, GTIMER_HYP, value);
2807 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2809 return gt_tval_read(env, ri, GTIMER_HYP);
2812 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2815 gt_tval_write(env, ri, GTIMER_HYP, value);
2818 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821 gt_ctl_write(env, ri, GTIMER_HYP, value);
2824 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2826 gt_timer_reset(env, ri, GTIMER_SEC);
2829 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2832 gt_cval_write(env, ri, GTIMER_SEC, value);
2835 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2837 return gt_tval_read(env, ri, GTIMER_SEC);
2840 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843 gt_tval_write(env, ri, GTIMER_SEC, value);
2846 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849 gt_ctl_write(env, ri, GTIMER_SEC, value);
2852 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2854 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2857 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2860 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2863 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2865 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2868 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2871 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2874 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2877 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2880 void arm_gt_ptimer_cb(void *opaque)
2882 ARMCPU *cpu = opaque;
2884 gt_recalc_timer(cpu, GTIMER_PHYS);
2887 void arm_gt_vtimer_cb(void *opaque)
2889 ARMCPU *cpu = opaque;
2891 gt_recalc_timer(cpu, GTIMER_VIRT);
2894 void arm_gt_htimer_cb(void *opaque)
2896 ARMCPU *cpu = opaque;
2898 gt_recalc_timer(cpu, GTIMER_HYP);
2901 void arm_gt_stimer_cb(void *opaque)
2903 ARMCPU *cpu = opaque;
2905 gt_recalc_timer(cpu, GTIMER_SEC);
2908 void arm_gt_hvtimer_cb(void *opaque)
2910 ARMCPU *cpu = opaque;
2912 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2915 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2917 ARMCPU *cpu = env_archcpu(env);
2919 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2922 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2923 /* Note that CNTFRQ is purely reads-as-written for the benefit
2924 * of software; writing it doesn't actually change the timer frequency.
2925 * Our reset value matches the fixed frequency we implement the timer at.
2927 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2928 .type = ARM_CP_ALIAS,
2929 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2930 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2932 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2933 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2934 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2935 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2936 .resetfn = arm_gt_cntfrq_reset,
2938 /* overall control: mostly access permissions */
2939 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2940 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2942 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2945 /* per-timer control */
2946 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2947 .secure = ARM_CP_SECSTATE_NS,
2948 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2949 .accessfn = gt_ptimer_access,
2950 .fieldoffset = offsetoflow32(CPUARMState,
2951 cp15.c14_timer[GTIMER_PHYS].ctl),
2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2955 { .name = "CNTP_CTL_S",
2956 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2957 .secure = ARM_CP_SECSTATE_S,
2958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2959 .accessfn = gt_ptimer_access,
2960 .fieldoffset = offsetoflow32(CPUARMState,
2961 cp15.c14_timer[GTIMER_SEC].ctl),
2962 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2964 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2966 .type = ARM_CP_IO, .access = PL0_RW,
2967 .accessfn = gt_ptimer_access,
2968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2970 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2971 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2973 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2974 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2975 .accessfn = gt_vtimer_access,
2976 .fieldoffset = offsetoflow32(CPUARMState,
2977 cp15.c14_timer[GTIMER_VIRT].ctl),
2978 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2979 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2981 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2982 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2983 .type = ARM_CP_IO, .access = PL0_RW,
2984 .accessfn = gt_vtimer_access,
2985 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2987 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2988 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2990 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2991 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2992 .secure = ARM_CP_SECSTATE_NS,
2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994 .accessfn = gt_ptimer_access,
2995 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2997 { .name = "CNTP_TVAL_S",
2998 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2999 .secure = ARM_CP_SECSTATE_S,
3000 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3001 .accessfn = gt_ptimer_access,
3002 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3004 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3005 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3006 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3007 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3008 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3010 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3011 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3012 .accessfn = gt_vtimer_access,
3013 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3015 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3016 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3017 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3018 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3019 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3021 /* The counter itself */
3022 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3023 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3024 .accessfn = gt_pct_access,
3025 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3027 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3028 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3029 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3030 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3032 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3033 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3034 .accessfn = gt_vct_access,
3035 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3037 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3038 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3039 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3040 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3042 /* Comparison value, indicating when the timer goes off */
3043 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3044 .secure = ARM_CP_SECSTATE_NS,
3046 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3047 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3048 .accessfn = gt_ptimer_access,
3049 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3050 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3052 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3053 .secure = ARM_CP_SECSTATE_S,
3055 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3056 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3057 .accessfn = gt_ptimer_access,
3058 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3060 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3061 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3064 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3065 .resetvalue = 0, .accessfn = gt_ptimer_access,
3066 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3067 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3073 .accessfn = gt_vtimer_access,
3074 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3075 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3077 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3078 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3082 .resetvalue = 0, .accessfn = gt_vtimer_access,
3083 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3084 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3086 /* Secure timer -- this is actually restricted to only EL3
3087 * and configurably Secure-EL1 via the accessfn.
3089 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3090 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3091 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3092 .accessfn = gt_stimer_access,
3093 .readfn = gt_sec_tval_read,
3094 .writefn = gt_sec_tval_write,
3095 .resetfn = gt_sec_timer_reset,
3097 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3098 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3099 .type = ARM_CP_IO, .access = PL1_RW,
3100 .accessfn = gt_stimer_access,
3101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3103 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3106 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3107 .type = ARM_CP_IO, .access = PL1_RW,
3108 .accessfn = gt_stimer_access,
3109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3110 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3114 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3117 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3118 return CP_ACCESS_TRAP;
3120 return CP_ACCESS_OK;
3125 /* In user-mode most of the generic timer registers are inaccessible
3126 * however modern kernels (4.12+) allow access to cntvct_el0
3129 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3131 ARMCPU *cpu = env_archcpu(env);
3133 /* Currently we have no support for QEMUTimer in linux-user so we
3134 * can't call gt_get_countervalue(env), instead we directly
3135 * call the lower level functions.
3137 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3140 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3141 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3143 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3145 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3147 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3148 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3149 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3150 .readfn = gt_virt_cnt_read,
3156 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3158 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3159 raw_write(env, ri, value);
3160 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3161 raw_write(env, ri, value & 0xfffff6ff);
3163 raw_write(env, ri, value & 0xfffff1ff);
3167 #ifndef CONFIG_USER_ONLY
3168 /* get_phys_addr() isn't present for user-mode-only targets */
3170 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3174 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3175 * Secure EL1 (which can only happen if EL3 is AArch64).
3176 * They are simply UNDEF if executed from NS EL1.
3177 * They function normally from EL2 or EL3.
3179 if (arm_current_el(env) == 1) {
3180 if (arm_is_secure_below_el3(env)) {
3181 if (env->cp15.scr_el3 & SCR_EEL2) {
3182 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3184 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3186 return CP_ACCESS_TRAP_UNCATEGORIZED;
3189 return CP_ACCESS_OK;
3193 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3194 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3198 bool format64 = false;
3199 ARMMMUFaultInfo fi = {};
3200 GetPhysAddrResult res = {};
3202 ret = get_phys_addr(env, value, access_type, mmu_idx, &res, &fi);
3205 * ATS operations only do S1 or S1+S2 translations, so we never
3206 * have to deal with the ARMCacheAttrs format for S2 only.
3208 assert(!res.cacheattrs.is_s2_format);
3212 * Some kinds of translation fault must cause exceptions rather
3213 * than being reported in the PAR.
3215 int current_el = arm_current_el(env);
3217 uint32_t syn, fsr, fsc;
3218 bool take_exc = false;
3220 if (fi.s1ptw && current_el == 1
3221 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3223 * Synchronous stage 2 fault on an access made as part of the
3224 * translation table walk for AT S1E0* or AT S1E1* insn
3225 * executed from NS EL1. If this is a synchronous external abort
3226 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3227 * to EL3. Otherwise the fault is taken as an exception to EL2,
3228 * and HPFAR_EL2 holds the faulting IPA.
3230 if (fi.type == ARMFault_SyncExternalOnWalk &&
3231 (env->cp15.scr_el3 & SCR_EA)) {
3234 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3235 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3236 env->cp15.hpfar_el2 |= HPFAR_NS;
3241 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3243 * Synchronous external aborts during a translation table walk
3244 * are taken as Data Abort exceptions.
3247 if (current_el == 3) {
3253 target_el = exception_target_el(env);
3259 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3260 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3261 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3262 fsr = arm_fi_to_lfsc(&fi);
3263 fsc = extract32(fsr, 0, 6);
3265 fsr = arm_fi_to_sfsc(&fi);
3269 * Report exception with ESR indicating a fault due to a
3270 * translation table walk for a cache maintenance instruction.
3272 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3273 fi.ea, 1, fi.s1ptw, 1, fsc);
3274 env->exception.vaddress = value;
3275 env->exception.fsr = fsr;
3276 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3282 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3285 * * TTBCR.EAE determines whether the result is returned using the
3286 * 32-bit or the 64-bit PAR format
3287 * * Instructions executed in Hyp mode always use the 64bit format
3289 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3290 * * The Non-secure TTBCR.EAE bit is set to 1
3291 * * The implementation includes EL2, and the value of HCR.VM is 1
3293 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3295 * ATS1Hx always uses the 64bit format.
3297 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3299 if (arm_feature(env, ARM_FEATURE_EL2)) {
3300 if (mmu_idx == ARMMMUIdx_E10_0 ||
3301 mmu_idx == ARMMMUIdx_E10_1 ||
3302 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3303 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3305 format64 |= arm_current_el(env) == 2;
3311 /* Create a 64-bit PAR */
3312 par64 = (1 << 11); /* LPAE bit always set */
3314 par64 |= res.phys & ~0xfffULL;
3315 if (!res.attrs.secure) {
3316 par64 |= (1 << 9); /* NS */
3318 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3319 par64 |= res.cacheattrs.shareability << 7; /* SH */
3321 uint32_t fsr = arm_fi_to_lfsc(&fi);
3324 par64 |= (fsr & 0x3f) << 1; /* FS */
3326 par64 |= (1 << 9); /* S */
3329 par64 |= (1 << 8); /* PTW */
3333 /* fsr is a DFSR/IFSR value for the short descriptor
3334 * translation table format (with WnR always clear).
3335 * Convert it to a 32-bit PAR.
3338 /* We do not set any attribute bits in the PAR */
3339 if (res.page_size == (1 << 24)
3340 && arm_feature(env, ARM_FEATURE_V7)) {
3341 par64 = (res.phys & 0xff000000) | (1 << 1);
3343 par64 = res.phys & 0xfffff000;
3345 if (!res.attrs.secure) {
3346 par64 |= (1 << 9); /* NS */
3349 uint32_t fsr = arm_fi_to_sfsc(&fi);
3351 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3352 ((fsr & 0xf) << 1) | 1;
3357 #endif /* CONFIG_TCG */
3359 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3362 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3365 int el = arm_current_el(env);
3366 bool secure = arm_is_secure_below_el3(env);
3368 switch (ri->opc2 & 6) {
3370 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3373 mmu_idx = ARMMMUIdx_SE3;
3376 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3379 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3380 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3381 : ARMMMUIdx_Stage1_E1_PAN);
3383 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3387 g_assert_not_reached();
3391 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3394 mmu_idx = ARMMMUIdx_SE10_0;
3397 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3398 mmu_idx = ARMMMUIdx_Stage1_E0;
3401 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3404 g_assert_not_reached();
3408 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3409 mmu_idx = ARMMMUIdx_E10_1;
3412 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3413 mmu_idx = ARMMMUIdx_E10_0;
3416 g_assert_not_reached();
3419 par64 = do_ats_write(env, value, access_type, mmu_idx);
3421 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3423 /* Handled by hardware accelerator. */
3424 g_assert_not_reached();
3425 #endif /* CONFIG_TCG */
3428 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3432 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3435 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3437 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3439 /* Handled by hardware accelerator. */
3440 g_assert_not_reached();
3441 #endif /* CONFIG_TCG */
3444 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3447 if (arm_current_el(env) == 3 &&
3448 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3449 return CP_ACCESS_TRAP;
3451 return CP_ACCESS_OK;
3454 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3458 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3460 int secure = arm_is_secure_below_el3(env);
3462 switch (ri->opc2 & 6) {
3465 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3466 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3467 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3468 : ARMMMUIdx_Stage1_E1_PAN);
3470 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3473 case 4: /* AT S1E2R, AT S1E2W */
3474 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3476 case 6: /* AT S1E3R, AT S1E3W */
3477 mmu_idx = ARMMMUIdx_SE3;
3480 g_assert_not_reached();
3483 case 2: /* AT S1E0R, AT S1E0W */
3484 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3486 case 4: /* AT S12E1R, AT S12E1W */
3487 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3489 case 6: /* AT S12E0R, AT S12E0W */
3490 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3493 g_assert_not_reached();
3496 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3498 /* Handled by hardware accelerator. */
3499 g_assert_not_reached();
3500 #endif /* CONFIG_TCG */
3504 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3505 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3506 .access = PL1_RW, .resetvalue = 0,
3507 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3508 offsetoflow32(CPUARMState, cp15.par_ns) },
3509 .writefn = par_write },
3510 #ifndef CONFIG_USER_ONLY
3511 /* This underdecoding is safe because the reginfo is NO_RAW. */
3512 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3513 .access = PL1_W, .accessfn = ats_access,
3514 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3518 /* Return basic MPU access permission bits. */
3519 static uint32_t simple_mpu_ap_bits(uint32_t val)
3526 for (i = 0; i < 16; i += 2) {
3527 ret |= (val >> i) & mask;
3533 /* Pad basic MPU access permission bits to extended format. */
3534 static uint32_t extended_mpu_ap_bits(uint32_t val)
3541 for (i = 0; i < 16; i += 2) {
3542 ret |= (val & mask) << i;
3548 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3551 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3554 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3556 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3559 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3562 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3565 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3567 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3570 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3572 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3578 u32p += env->pmsav7.rnr[M_REG_NS];
3582 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3585 ARMCPU *cpu = env_archcpu(env);
3586 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3592 u32p += env->pmsav7.rnr[M_REG_NS];
3593 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3597 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3600 ARMCPU *cpu = env_archcpu(env);
3601 uint32_t nrgs = cpu->pmsav7_dregion;
3603 if (value >= nrgs) {
3604 qemu_log_mask(LOG_GUEST_ERROR,
3605 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3606 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3610 raw_write(env, ri, value);
3613 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3614 /* Reset for all these registers is handled in arm_cpu_reset(),
3615 * because the PMSAv7 is also used by M-profile CPUs, which do
3616 * not register cpregs but still need the state to be reset.
3618 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3619 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3620 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3621 .readfn = pmsav7_read, .writefn = pmsav7_write,
3622 .resetfn = arm_cp_reset_ignore },
3623 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3624 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3625 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3626 .readfn = pmsav7_read, .writefn = pmsav7_write,
3627 .resetfn = arm_cp_reset_ignore },
3628 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3629 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3630 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3631 .readfn = pmsav7_read, .writefn = pmsav7_write,
3632 .resetfn = arm_cp_reset_ignore },
3633 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3635 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3636 .writefn = pmsav7_rgnr_write,
3637 .resetfn = arm_cp_reset_ignore },
3640 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3641 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3642 .access = PL1_RW, .type = ARM_CP_ALIAS,
3643 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3644 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3645 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3646 .access = PL1_RW, .type = ARM_CP_ALIAS,
3647 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3648 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3649 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3651 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3653 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3655 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3657 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3659 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3660 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3662 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3663 /* Protection region base and size registers */
3664 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3667 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3670 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3673 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3674 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3675 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3676 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3677 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3678 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3679 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3680 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3681 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3682 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3683 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3684 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3685 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3686 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3687 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3690 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3693 ARMCPU *cpu = env_archcpu(env);
3695 if (!arm_feature(env, ARM_FEATURE_V8)) {
3696 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3698 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3699 * using Long-descriptor translation table format
3701 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3702 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3704 * In an implementation that includes the Security Extensions
3705 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3706 * Short-descriptor translation table format.
3708 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3714 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3715 /* With LPAE the TTBCR could result in a change of ASID
3716 * via the TTBCR.A1 bit, so do a TLB flush.
3718 tlb_flush(CPU(cpu));
3720 raw_write(env, ri, value);
3723 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3726 ARMCPU *cpu = env_archcpu(env);
3728 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3729 tlb_flush(CPU(cpu));
3730 raw_write(env, ri, value);
3733 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3736 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3737 if (cpreg_field_is_64bit(ri) &&
3738 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3739 ARMCPU *cpu = env_archcpu(env);
3740 tlb_flush(CPU(cpu));
3742 raw_write(env, ri, value);
3745 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3749 * If we are running with E2&0 regime, then an ASID is active.
3750 * Flush if that might be changing. Note we're not checking
3751 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3752 * holds the active ASID, only checking the field that might.
3754 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3755 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3756 uint16_t mask = ARMMMUIdxBit_E20_2 |
3757 ARMMMUIdxBit_E20_2_PAN |
3760 if (arm_is_secure_below_el3(env)) {
3761 mask >>= ARM_MMU_IDX_A_NS;
3764 tlb_flush_by_mmuidx(env_cpu(env), mask);
3766 raw_write(env, ri, value);
3769 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3772 ARMCPU *cpu = env_archcpu(env);
3773 CPUState *cs = CPU(cpu);
3776 * A change in VMID to the stage2 page table (Stage2) invalidates
3777 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3779 if (raw_read(env, ri) != value) {
3780 uint16_t mask = ARMMMUIdxBit_E10_1 |
3781 ARMMMUIdxBit_E10_1_PAN |
3784 if (arm_is_secure_below_el3(env)) {
3785 mask >>= ARM_MMU_IDX_A_NS;
3788 tlb_flush_by_mmuidx(cs, mask);
3789 raw_write(env, ri, value);
3793 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3794 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3795 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3796 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3797 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3798 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3799 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3800 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3801 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3802 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3803 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3804 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3805 offsetof(CPUARMState, cp15.dfar_ns) } },
3806 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3807 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3808 .access = PL1_RW, .accessfn = access_tvm_trvm,
3809 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3813 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3814 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3815 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3816 .access = PL1_RW, .accessfn = access_tvm_trvm,
3817 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3818 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3820 .access = PL1_RW, .accessfn = access_tvm_trvm,
3821 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3822 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3823 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3824 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3826 .access = PL1_RW, .accessfn = access_tvm_trvm,
3827 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3828 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3829 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3830 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3831 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3832 .access = PL1_RW, .accessfn = access_tvm_trvm,
3833 .writefn = vmsa_tcr_el12_write,
3834 .raw_writefn = raw_write,
3836 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3837 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3838 .access = PL1_RW, .accessfn = access_tvm_trvm,
3839 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3840 .raw_writefn = raw_write,
3841 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3842 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3845 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3846 * qemu tlbs nor adjusting cached masks.
3848 static const ARMCPRegInfo ttbcr2_reginfo = {
3849 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3850 .access = PL1_RW, .accessfn = access_tvm_trvm,
3851 .type = ARM_CP_ALIAS,
3852 .bank_fieldoffsets = {
3853 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3854 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
3858 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3861 env->cp15.c15_ticonfig = value & 0xe7;
3862 /* The OS_TYPE bit in this register changes the reported CPUID! */
3863 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3864 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3867 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3870 env->cp15.c15_threadid = value & 0xffff;
3873 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876 /* Wait-for-interrupt (deprecated) */
3877 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3880 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3883 /* On OMAP there are registers indicating the max/min index of dcache lines
3884 * containing a dirty line; cache flush operations have to reset these.
3886 env->cp15.c15_i_max = 0x000;
3887 env->cp15.c15_i_min = 0xff0;
3890 static const ARMCPRegInfo omap_cp_reginfo[] = {
3891 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3892 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3893 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3895 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3896 .access = PL1_RW, .type = ARM_CP_NOP },
3897 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3899 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3900 .writefn = omap_ticonfig_write },
3901 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3903 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3904 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3905 .access = PL1_RW, .resetvalue = 0xff0,
3906 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3907 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3909 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3910 .writefn = omap_threadid_write },
3911 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3912 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3913 .type = ARM_CP_NO_RAW,
3914 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3915 /* TODO: Peripheral port remap register:
3916 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3917 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3920 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3921 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3922 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3923 .writefn = omap_cachemaint_write },
3924 { .name = "C9", .cp = 15, .crn = 9,
3925 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3926 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3929 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3932 env->cp15.c15_cpar = value & 0x3fff;
3935 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3936 { .name = "XSCALE_CPAR",
3937 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3938 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3939 .writefn = xscale_cpar_write, },
3940 { .name = "XSCALE_AUXCR",
3941 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3942 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3944 /* XScale specific cache-lockdown: since we have no cache we NOP these
3945 * and hope the guest does not really rely on cache behaviour.
3947 { .name = "XSCALE_LOCK_ICACHE_LINE",
3948 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3949 .access = PL1_W, .type = ARM_CP_NOP },
3950 { .name = "XSCALE_UNLOCK_ICACHE",
3951 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3952 .access = PL1_W, .type = ARM_CP_NOP },
3953 { .name = "XSCALE_DCACHE_LOCK",
3954 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3955 .access = PL1_RW, .type = ARM_CP_NOP },
3956 { .name = "XSCALE_UNLOCK_DCACHE",
3957 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3958 .access = PL1_W, .type = ARM_CP_NOP },
3961 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3962 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3963 * implementation of this implementation-defined space.
3964 * Ideally this should eventually disappear in favour of actually
3965 * implementing the correct behaviour for all cores.
3967 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3968 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3970 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3974 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3975 /* Cache status: RAZ because we have no cache so it's always clean */
3976 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3977 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3981 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3982 /* We never have a block transfer operation in progress */
3983 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3984 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3986 /* The cache ops themselves: these all NOP for QEMU */
3987 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3988 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3989 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3990 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3991 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3992 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3993 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3994 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3995 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3996 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3997 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3998 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4001 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4002 /* The cache test-and-clean instructions always return (1 << 30)
4003 * to indicate that there are no dirty cache lines.
4005 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007 .resetvalue = (1 << 30) },
4008 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4009 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4010 .resetvalue = (1 << 30) },
4013 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4014 /* Ignore ReadBuffer accesses */
4015 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4016 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4017 .access = PL1_RW, .resetvalue = 0,
4018 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4021 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4023 unsigned int cur_el = arm_current_el(env);
4025 if (arm_is_el2_enabled(env) && cur_el == 1) {
4026 return env->cp15.vpidr_el2;
4028 return raw_read(env, ri);
4031 static uint64_t mpidr_read_val(CPUARMState *env)
4033 ARMCPU *cpu = env_archcpu(env);
4034 uint64_t mpidr = cpu->mp_affinity;
4036 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4037 mpidr |= (1U << 31);
4038 /* Cores which are uniprocessor (non-coherent)
4039 * but still implement the MP extensions set
4040 * bit 30. (For instance, Cortex-R5).
4042 if (cpu->mp_is_up) {
4043 mpidr |= (1u << 30);
4049 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4051 unsigned int cur_el = arm_current_el(env);
4053 if (arm_is_el2_enabled(env) && cur_el == 1) {
4054 return env->cp15.vmpidr_el2;
4056 return mpidr_read_val(env);
4059 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4061 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4062 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4063 .access = PL1_RW, .accessfn = access_tvm_trvm,
4064 .type = ARM_CP_CONST, .resetvalue = 0 },
4065 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4066 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_tvm_trvm,
4068 .type = ARM_CP_CONST, .resetvalue = 0 },
4069 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4070 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4071 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4072 offsetof(CPUARMState, cp15.par_ns)} },
4073 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4074 .access = PL1_RW, .accessfn = access_tvm_trvm,
4075 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4076 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4077 offsetof(CPUARMState, cp15.ttbr0_ns) },
4078 .writefn = vmsa_ttbr_write, },
4079 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4080 .access = PL1_RW, .accessfn = access_tvm_trvm,
4081 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4082 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4083 offsetof(CPUARMState, cp15.ttbr1_ns) },
4084 .writefn = vmsa_ttbr_write, },
4087 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4089 return vfp_get_fpcr(env);
4092 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095 vfp_set_fpcr(env, value);
4098 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4100 return vfp_get_fpsr(env);
4103 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106 vfp_set_fpsr(env, value);
4109 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4112 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4113 return CP_ACCESS_TRAP;
4115 return CP_ACCESS_OK;
4118 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121 env->daif = value & PSTATE_DAIF;
4124 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4126 return env->pstate & PSTATE_PAN;
4129 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4132 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4135 static const ARMCPRegInfo pan_reginfo = {
4136 .name = "PAN", .state = ARM_CP_STATE_AA64,
4137 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4138 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4139 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4142 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4144 return env->pstate & PSTATE_UAO;
4147 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4150 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4153 static const ARMCPRegInfo uao_reginfo = {
4154 .name = "UAO", .state = ARM_CP_STATE_AA64,
4155 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4156 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4157 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4160 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4162 return env->pstate & PSTATE_DIT;
4165 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4168 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4171 static const ARMCPRegInfo dit_reginfo = {
4172 .name = "DIT", .state = ARM_CP_STATE_AA64,
4173 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4174 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4175 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4178 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4180 return env->pstate & PSTATE_SSBS;
4183 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4186 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4189 static const ARMCPRegInfo ssbs_reginfo = {
4190 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4191 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4192 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4193 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4196 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4197 const ARMCPRegInfo *ri,
4200 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4201 switch (arm_current_el(env)) {
4203 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4204 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4205 return CP_ACCESS_TRAP;
4209 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4210 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4211 return CP_ACCESS_TRAP_EL2;
4215 return CP_ACCESS_OK;
4218 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4219 const ARMCPRegInfo *ri,
4222 /* Cache invalidate/clean to Point of Unification... */
4223 switch (arm_current_el(env)) {
4225 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4226 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4227 return CP_ACCESS_TRAP;
4231 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4232 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4233 return CP_ACCESS_TRAP_EL2;
4237 return CP_ACCESS_OK;
4240 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4241 * Page D4-1736 (DDI0487A.b)
4244 static int vae1_tlbmask(CPUARMState *env)
4246 uint64_t hcr = arm_hcr_el2_eff(env);
4249 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4250 mask = ARMMMUIdxBit_E20_2 |
4251 ARMMMUIdxBit_E20_2_PAN |
4254 mask = ARMMMUIdxBit_E10_1 |
4255 ARMMMUIdxBit_E10_1_PAN |
4259 if (arm_is_secure_below_el3(env)) {
4260 mask >>= ARM_MMU_IDX_A_NS;
4266 /* Return 56 if TBI is enabled, 64 otherwise. */
4267 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4270 uint64_t tcr = regime_tcr(env, mmu_idx);
4271 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4272 int select = extract64(addr, 55, 1);
4274 return (tbi >> select) & 1 ? 56 : 64;
4277 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4279 uint64_t hcr = arm_hcr_el2_eff(env);
4282 /* Only the regime of the mmu_idx below is significant. */
4283 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4284 mmu_idx = ARMMMUIdx_E20_0;
4286 mmu_idx = ARMMMUIdx_E10_0;
4289 if (arm_is_secure_below_el3(env)) {
4290 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4293 return tlbbits_for_regime(env, mmu_idx, addr);
4296 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4299 CPUState *cs = env_cpu(env);
4300 int mask = vae1_tlbmask(env);
4302 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4305 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308 CPUState *cs = env_cpu(env);
4309 int mask = vae1_tlbmask(env);
4311 if (tlb_force_broadcast(env)) {
4312 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4314 tlb_flush_by_mmuidx(cs, mask);
4318 static int alle1_tlbmask(CPUARMState *env)
4321 * Note that the 'ALL' scope must invalidate both stage 1 and
4322 * stage 2 translations, whereas most other scopes only invalidate
4323 * stage 1 translations.
4325 if (arm_is_secure_below_el3(env)) {
4326 return ARMMMUIdxBit_SE10_1 |
4327 ARMMMUIdxBit_SE10_1_PAN |
4328 ARMMMUIdxBit_SE10_0;
4330 return ARMMMUIdxBit_E10_1 |
4331 ARMMMUIdxBit_E10_1_PAN |
4336 static int e2_tlbmask(CPUARMState *env)
4338 if (arm_is_secure_below_el3(env)) {
4339 return ARMMMUIdxBit_SE20_0 |
4340 ARMMMUIdxBit_SE20_2 |
4341 ARMMMUIdxBit_SE20_2_PAN |
4344 return ARMMMUIdxBit_E20_0 |
4345 ARMMMUIdxBit_E20_2 |
4346 ARMMMUIdxBit_E20_2_PAN |
4351 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4354 CPUState *cs = env_cpu(env);
4355 int mask = alle1_tlbmask(env);
4357 tlb_flush_by_mmuidx(cs, mask);
4360 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 CPUState *cs = env_cpu(env);
4364 int mask = e2_tlbmask(env);
4366 tlb_flush_by_mmuidx(cs, mask);
4369 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4372 ARMCPU *cpu = env_archcpu(env);
4373 CPUState *cs = CPU(cpu);
4375 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4378 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381 CPUState *cs = env_cpu(env);
4382 int mask = alle1_tlbmask(env);
4384 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4387 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4390 CPUState *cs = env_cpu(env);
4391 int mask = e2_tlbmask(env);
4393 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4396 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4399 CPUState *cs = env_cpu(env);
4401 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4404 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4407 /* Invalidate by VA, EL2
4408 * Currently handles both VAE2 and VALE2, since we don't support
4409 * flush-last-level-only.
4411 CPUState *cs = env_cpu(env);
4412 int mask = e2_tlbmask(env);
4413 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4415 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4418 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421 /* Invalidate by VA, EL3
4422 * Currently handles both VAE3 and VALE3, since we don't support
4423 * flush-last-level-only.
4425 ARMCPU *cpu = env_archcpu(env);
4426 CPUState *cs = CPU(cpu);
4427 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4429 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4432 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4435 CPUState *cs = env_cpu(env);
4436 int mask = vae1_tlbmask(env);
4437 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4438 int bits = vae1_tlbbits(env, pageaddr);
4440 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4443 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4446 /* Invalidate by VA, EL1&0 (AArch64 version).
4447 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4448 * since we don't support flush-for-specific-ASID-only or
4449 * flush-last-level-only.
4451 CPUState *cs = env_cpu(env);
4452 int mask = vae1_tlbmask(env);
4453 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4454 int bits = vae1_tlbbits(env, pageaddr);
4456 if (tlb_force_broadcast(env)) {
4457 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4459 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4463 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4466 CPUState *cs = env_cpu(env);
4467 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4468 bool secure = arm_is_secure_below_el3(env);
4469 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4470 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4473 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4476 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479 CPUState *cs = env_cpu(env);
4480 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4481 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4484 ARMMMUIdxBit_SE3, bits);
4487 #ifdef TARGET_AARCH64
4493 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4496 unsigned int page_size_granule, page_shift, num, scale, exponent;
4497 /* Extract one bit to represent the va selector in use. */
4498 uint64_t select = sextract64(value, 36, 1);
4499 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4500 TLBIRange ret = { };
4502 page_size_granule = extract64(value, 46, 2);
4504 /* The granule encoded in value must match the granule in use. */
4505 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4506 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4511 page_shift = (page_size_granule - 1) * 2 + 12;
4512 num = extract64(value, 39, 5);
4513 scale = extract64(value, 44, 2);
4514 exponent = (5 * scale) + 1;
4516 ret.length = (num + 1) << (exponent + page_shift);
4519 ret.base = sextract64(value, 0, 37);
4521 ret.base = extract64(value, 0, 37);
4525 * With DS=1, BaseADDR is always shifted 16 so that it is able
4526 * to address all 52 va bits. The input address is perforce
4527 * aligned on a 64k boundary regardless of translation granule.
4531 ret.base <<= page_shift;
4536 static void do_rvae_write(CPUARMState *env, uint64_t value,
4537 int idxmap, bool synced)
4539 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4543 range = tlbi_aa64_get_range(env, one_idx, value);
4544 bits = tlbbits_for_regime(env, one_idx, range.base);
4547 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4553 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4554 range.length, idxmap, bits);
4558 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4559 const ARMCPRegInfo *ri,
4563 * Invalidate by VA range, EL1&0.
4564 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4565 * since we don't support flush-for-specific-ASID-only or
4566 * flush-last-level-only.
4569 do_rvae_write(env, value, vae1_tlbmask(env),
4570 tlb_force_broadcast(env));
4573 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4574 const ARMCPRegInfo *ri,
4578 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4579 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4580 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4581 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4582 * shareable specific flushes.
4585 do_rvae_write(env, value, vae1_tlbmask(env), true);
4588 static int vae2_tlbmask(CPUARMState *env)
4590 return (arm_is_secure_below_el3(env)
4591 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4594 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4595 const ARMCPRegInfo *ri,
4599 * Invalidate by VA range, EL2.
4600 * Currently handles all of RVAE2 and RVALE2,
4601 * since we don't support flush-for-specific-ASID-only or
4602 * flush-last-level-only.
4605 do_rvae_write(env, value, vae2_tlbmask(env),
4606 tlb_force_broadcast(env));
4611 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4612 const ARMCPRegInfo *ri,
4616 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4617 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4618 * since we don't support flush-for-specific-ASID-only,
4619 * flush-last-level-only or inner/outer shareable specific flushes.
4622 do_rvae_write(env, value, vae2_tlbmask(env), true);
4626 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4627 const ARMCPRegInfo *ri,
4631 * Invalidate by VA range, EL3.
4632 * Currently handles all of RVAE3 and RVALE3,
4633 * since we don't support flush-for-specific-ASID-only or
4634 * flush-last-level-only.
4637 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4638 tlb_force_broadcast(env));
4641 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4642 const ARMCPRegInfo *ri,
4646 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4647 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4648 * since we don't support flush-for-specific-ASID-only,
4649 * flush-last-level-only or inner/outer specific flushes.
4652 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4656 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4659 int cur_el = arm_current_el(env);
4662 uint64_t hcr = arm_hcr_el2_eff(env);
4665 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4666 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4667 return CP_ACCESS_TRAP_EL2;
4670 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4671 return CP_ACCESS_TRAP;
4673 if (hcr & HCR_TDZ) {
4674 return CP_ACCESS_TRAP_EL2;
4677 } else if (hcr & HCR_TDZ) {
4678 return CP_ACCESS_TRAP_EL2;
4681 return CP_ACCESS_OK;
4684 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4686 ARMCPU *cpu = env_archcpu(env);
4687 int dzp_bit = 1 << 4;
4689 /* DZP indicates whether DC ZVA access is allowed */
4690 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4693 return cpu->dcz_blocksize | dzp_bit;
4696 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4699 if (!(env->pstate & PSTATE_SP)) {
4700 /* Access to SP_EL0 is undefined if it's being used as
4701 * the stack pointer.
4703 return CP_ACCESS_TRAP_UNCATEGORIZED;
4705 return CP_ACCESS_OK;
4708 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4710 return env->pstate & PSTATE_SP;
4713 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4715 update_spsel(env, val);
4718 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4721 ARMCPU *cpu = env_archcpu(env);
4723 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4724 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4728 /* ??? Lots of these bits are not implemented. */
4730 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4731 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4732 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4734 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4735 SCTLR_ATA0 | SCTLR_ATA);
4739 if (raw_read(env, ri) == value) {
4740 /* Skip the TLB flush if nothing actually changed; Linux likes
4741 * to do a lot of pointless SCTLR writes.
4746 raw_write(env, ri, value);
4748 /* This may enable/disable the MMU, so do a TLB flush. */
4749 tlb_flush(CPU(cpu));
4751 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4753 * Normally we would always end the TB on an SCTLR write; see the
4754 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4755 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4756 * of hflags from the translator, so do it here.
4758 arm_rebuild_hflags(env);
4762 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4766 * Some MDCR_EL3 bits affect whether PMU counters are running:
4767 * if we are trying to change any of those then we must
4768 * bracket this update with PMU start/finish calls.
4770 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
4775 env->cp15.mdcr_el3 = value;
4781 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4784 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
4785 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
4788 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4792 * Some MDCR_EL2 bits affect whether PMU counters are running:
4793 * if we are trying to change any of those then we must
4794 * bracket this update with PMU start/finish calls.
4796 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
4801 env->cp15.mdcr_el2 = value;
4807 static const ARMCPRegInfo v8_cp_reginfo[] = {
4808 /* Minimal set of EL0-visible registers. This will need to be expanded
4809 * significantly for system emulation of AArch64 CPUs.
4811 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4813 .access = PL0_RW, .type = ARM_CP_NZCV },
4814 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4816 .type = ARM_CP_NO_RAW,
4817 .access = PL0_RW, .accessfn = aa64_daif_access,
4818 .fieldoffset = offsetof(CPUARMState, daif),
4819 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4820 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4821 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4822 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4823 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4824 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4825 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4826 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4827 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4828 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4830 .access = PL0_R, .type = ARM_CP_NO_RAW,
4831 .readfn = aa64_dczid_read },
4832 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4834 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4835 #ifndef CONFIG_USER_ONLY
4836 /* Avoid overhead of an access check that always passes in user-mode */
4837 .accessfn = aa64_zva_access,
4840 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4841 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4842 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4843 /* Cache ops: all NOPs since we don't emulate caches */
4844 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4846 .access = PL1_W, .type = ARM_CP_NOP,
4847 .accessfn = aa64_cacheop_pou_access },
4848 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4850 .access = PL1_W, .type = ARM_CP_NOP,
4851 .accessfn = aa64_cacheop_pou_access },
4852 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4854 .access = PL0_W, .type = ARM_CP_NOP,
4855 .accessfn = aa64_cacheop_pou_access },
4856 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4858 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4859 .type = ARM_CP_NOP },
4860 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4861 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4862 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4863 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4865 .access = PL0_W, .type = ARM_CP_NOP,
4866 .accessfn = aa64_cacheop_poc_access },
4867 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4869 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4870 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4872 .access = PL0_W, .type = ARM_CP_NOP,
4873 .accessfn = aa64_cacheop_pou_access },
4874 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4876 .access = PL0_W, .type = ARM_CP_NOP,
4877 .accessfn = aa64_cacheop_poc_access },
4878 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4880 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4881 /* TLBI operations */
4882 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vmalle1is_write },
4886 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4889 .writefn = tlbi_aa64_vae1is_write },
4890 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4893 .writefn = tlbi_aa64_vmalle1is_write },
4894 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4897 .writefn = tlbi_aa64_vae1is_write },
4898 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4901 .writefn = tlbi_aa64_vae1is_write },
4902 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4905 .writefn = tlbi_aa64_vae1is_write },
4906 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4909 .writefn = tlbi_aa64_vmalle1_write },
4910 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4912 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4913 .writefn = tlbi_aa64_vae1_write },
4914 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4916 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4917 .writefn = tlbi_aa64_vmalle1_write },
4918 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4920 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4921 .writefn = tlbi_aa64_vae1_write },
4922 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4924 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4925 .writefn = tlbi_aa64_vae1_write },
4926 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4927 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4928 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4929 .writefn = tlbi_aa64_vae1_write },
4930 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4932 .access = PL2_W, .type = ARM_CP_NOP },
4933 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4935 .access = PL2_W, .type = ARM_CP_NOP },
4936 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4938 .access = PL2_W, .type = ARM_CP_NO_RAW,
4939 .writefn = tlbi_aa64_alle1is_write },
4940 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4942 .access = PL2_W, .type = ARM_CP_NO_RAW,
4943 .writefn = tlbi_aa64_alle1is_write },
4944 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4946 .access = PL2_W, .type = ARM_CP_NOP },
4947 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4948 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4949 .access = PL2_W, .type = ARM_CP_NOP },
4950 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4952 .access = PL2_W, .type = ARM_CP_NO_RAW,
4953 .writefn = tlbi_aa64_alle1_write },
4954 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4956 .access = PL2_W, .type = ARM_CP_NO_RAW,
4957 .writefn = tlbi_aa64_alle1is_write },
4958 #ifndef CONFIG_USER_ONLY
4959 /* 64 bit address translation operations */
4960 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4962 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4963 .writefn = ats_write64 },
4964 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4966 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4967 .writefn = ats_write64 },
4968 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4969 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4970 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4971 .writefn = ats_write64 },
4972 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4973 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4974 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4975 .writefn = ats_write64 },
4976 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4978 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4979 .writefn = ats_write64 },
4980 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4982 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4983 .writefn = ats_write64 },
4984 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4986 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4987 .writefn = ats_write64 },
4988 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4989 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4990 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4991 .writefn = ats_write64 },
4992 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4993 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4995 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4996 .writefn = ats_write64 },
4997 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4999 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5000 .writefn = ats_write64 },
5001 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5002 .type = ARM_CP_ALIAS,
5003 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5004 .access = PL1_RW, .resetvalue = 0,
5005 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5006 .writefn = par_write },
5008 /* TLB invalidate last level of translation table walk */
5009 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5010 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5011 .writefn = tlbimva_is_write },
5012 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5013 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5014 .writefn = tlbimvaa_is_write },
5015 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5016 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5017 .writefn = tlbimva_write },
5018 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5019 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5020 .writefn = tlbimvaa_write },
5021 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5022 .type = ARM_CP_NO_RAW, .access = PL2_W,
5023 .writefn = tlbimva_hyp_write },
5024 { .name = "TLBIMVALHIS",
5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5026 .type = ARM_CP_NO_RAW, .access = PL2_W,
5027 .writefn = tlbimva_hyp_is_write },
5028 { .name = "TLBIIPAS2",
5029 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5030 .type = ARM_CP_NOP, .access = PL2_W },
5031 { .name = "TLBIIPAS2IS",
5032 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5033 .type = ARM_CP_NOP, .access = PL2_W },
5034 { .name = "TLBIIPAS2L",
5035 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5036 .type = ARM_CP_NOP, .access = PL2_W },
5037 { .name = "TLBIIPAS2LIS",
5038 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5039 .type = ARM_CP_NOP, .access = PL2_W },
5040 /* 32 bit cache operations */
5041 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5043 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5044 .type = ARM_CP_NOP, .access = PL1_W },
5045 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5047 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5049 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5050 .type = ARM_CP_NOP, .access = PL1_W },
5051 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5052 .type = ARM_CP_NOP, .access = PL1_W },
5053 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5055 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5057 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5059 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5061 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5063 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5064 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5065 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5066 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5067 /* MMU Domain access control / MPU write buffer control */
5068 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5069 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5070 .writefn = dacr_write, .raw_writefn = raw_write,
5071 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5072 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5073 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5074 .type = ARM_CP_ALIAS,
5075 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5077 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5078 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5079 .type = ARM_CP_ALIAS,
5080 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5082 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5083 /* We rely on the access checks not allowing the guest to write to the
5084 * state field when SPSel indicates that it's being used as the stack
5087 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5088 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5089 .access = PL1_RW, .accessfn = sp_el0_access,
5090 .type = ARM_CP_ALIAS,
5091 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5092 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5094 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5095 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5096 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5097 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5098 .type = ARM_CP_NO_RAW,
5099 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5100 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5101 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5103 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5104 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5105 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5106 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5107 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5108 .writefn = dacr_write, .raw_writefn = raw_write,
5109 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5110 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5111 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5112 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5113 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5114 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5115 .type = ARM_CP_ALIAS,
5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5119 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5120 .type = ARM_CP_ALIAS,
5121 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5123 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5124 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5125 .type = ARM_CP_ALIAS,
5126 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5128 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5129 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5130 .type = ARM_CP_ALIAS,
5131 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5133 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5134 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5136 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5139 .writefn = mdcr_el3_write,
5140 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5141 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5142 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5143 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5144 .writefn = sdcr_write,
5145 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5148 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5150 ARMCPU *cpu = env_archcpu(env);
5152 if (arm_feature(env, ARM_FEATURE_V8)) {
5153 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5155 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5158 if (arm_feature(env, ARM_FEATURE_EL3)) {
5159 valid_mask &= ~HCR_HCD;
5160 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5161 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5162 * However, if we're using the SMC PSCI conduit then QEMU is
5163 * effectively acting like EL3 firmware and so the guest at
5164 * EL2 should retain the ability to prevent EL1 from being
5165 * able to make SMC calls into the ersatz firmware, so in
5166 * that case HCR.TSC should be read/write.
5168 valid_mask &= ~HCR_TSC;
5171 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5172 if (cpu_isar_feature(aa64_vh, cpu)) {
5173 valid_mask |= HCR_E2H;
5175 if (cpu_isar_feature(aa64_ras, cpu)) {
5176 valid_mask |= HCR_TERR | HCR_TEA;
5178 if (cpu_isar_feature(aa64_lor, cpu)) {
5179 valid_mask |= HCR_TLOR;
5181 if (cpu_isar_feature(aa64_pauth, cpu)) {
5182 valid_mask |= HCR_API | HCR_APK;
5184 if (cpu_isar_feature(aa64_mte, cpu)) {
5185 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5187 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5188 valid_mask |= HCR_ENSCXT;
5190 if (cpu_isar_feature(aa64_fwb, cpu)) {
5191 valid_mask |= HCR_FWB;
5195 /* Clear RES0 bits. */
5196 value &= valid_mask;
5199 * These bits change the MMU setup:
5200 * HCR_VM enables stage 2 translation
5201 * HCR_PTW forbids certain page-table setups
5202 * HCR_DC disables stage1 and enables stage2 translation
5203 * HCR_DCT enables tagging on (disabled) stage1 translation
5204 * HCR_FWB changes the interpretation of stage2 descriptor bits
5206 if ((env->cp15.hcr_el2 ^ value) &
5207 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5208 tlb_flush(CPU(cpu));
5210 env->cp15.hcr_el2 = value;
5213 * Updates to VI and VF require us to update the status of
5214 * virtual interrupts, which are the logical OR of these bits
5215 * and the state of the input lines from the GIC. (This requires
5216 * that we have the iothread lock, which is done by marking the
5217 * reginfo structs as ARM_CP_IO.)
5218 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5219 * possible for it to be taken immediately, because VIRQ and
5220 * VFIQ are masked unless running at EL0 or EL1, and HCR
5221 * can only be written at EL2.
5223 g_assert(qemu_mutex_iothread_locked());
5224 arm_cpu_update_virq(cpu);
5225 arm_cpu_update_vfiq(cpu);
5226 arm_cpu_update_vserr(cpu);
5229 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5231 do_hcr_write(env, value, 0);
5234 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5237 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5238 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5239 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5242 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5245 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5246 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5247 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5251 * Return the effective value of HCR_EL2.
5252 * Bits that are not included here:
5253 * RW (read from SCR_EL3.RW as needed)
5255 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5257 uint64_t ret = env->cp15.hcr_el2;
5259 if (!arm_is_el2_enabled(env)) {
5261 * "This register has no effect if EL2 is not enabled in the
5262 * current Security state". This is ARMv8.4-SecEL2 speak for
5263 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5265 * Prior to that, the language was "In an implementation that
5266 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5267 * as if this field is 0 for all purposes other than a direct
5268 * read or write access of HCR_EL2". With lots of enumeration
5269 * on a per-field basis. In current QEMU, this is condition
5270 * is arm_is_secure_below_el3.
5272 * Since the v8.4 language applies to the entire register, and
5273 * appears to be backward compatible, use that.
5279 * For a cpu that supports both aarch64 and aarch32, we can set bits
5280 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5281 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5283 if (!arm_el_is_aa64(env, 2)) {
5284 uint64_t aa32_valid;
5287 * These bits are up-to-date as of ARMv8.6.
5288 * For HCR, it's easiest to list just the 2 bits that are invalid.
5289 * For HCR2, list those that are valid.
5291 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5292 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5293 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5297 if (ret & HCR_TGE) {
5298 /* These bits are up-to-date as of ARMv8.6. */
5299 if (ret & HCR_E2H) {
5300 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5301 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5302 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5303 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5304 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5305 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5307 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5309 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5310 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5311 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5319 * Corresponds to ARM pseudocode function ELIsInHost().
5321 bool el_is_in_host(CPUARMState *env, int el)
5326 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5327 * Perform the simplest bit tests first, and validate EL2 afterward.
5330 return false; /* EL1 or EL3 */
5334 * Note that hcr_write() checks isar_feature_aa64_vh(),
5335 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5337 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5338 if ((env->cp15.hcr_el2 & mask) != mask) {
5342 /* TGE and/or E2H set: double check those bits are currently legal. */
5343 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5346 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5349 uint64_t valid_mask = 0;
5351 /* No features adding bits to HCRX are implemented. */
5353 /* Clear RES0 bits. */
5354 env->cp15.hcrx_el2 = value & valid_mask;
5357 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5360 if (arm_current_el(env) < 3
5361 && arm_feature(env, ARM_FEATURE_EL3)
5362 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5363 return CP_ACCESS_TRAP_EL3;
5365 return CP_ACCESS_OK;
5368 static const ARMCPRegInfo hcrx_el2_reginfo = {
5369 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5370 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5371 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5372 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5375 /* Return the effective value of HCRX_EL2. */
5376 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5379 * The bits in this register behave as 0 for all purposes other than
5380 * direct reads of the register if:
5381 * - EL2 is not enabled in the current security state,
5382 * - SCR_EL3.HXEn is 0.
5384 if (!arm_is_el2_enabled(env)
5385 || (arm_feature(env, ARM_FEATURE_EL3)
5386 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5389 return env->cp15.hcrx_el2;
5392 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5396 * For A-profile AArch32 EL3, if NSACR.CP10
5397 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5399 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5400 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5401 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5402 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5404 env->cp15.cptr_el[2] = value;
5407 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5410 * For A-profile AArch32 EL3, if NSACR.CP10
5411 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5413 uint64_t value = env->cp15.cptr_el[2];
5415 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5416 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5417 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5422 static const ARMCPRegInfo el2_cp_reginfo[] = {
5423 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5425 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5426 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5427 .writefn = hcr_write },
5428 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5429 .type = ARM_CP_ALIAS | ARM_CP_IO,
5430 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5431 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5432 .writefn = hcr_writelow },
5433 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5434 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5435 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5436 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5437 .type = ARM_CP_ALIAS,
5438 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5440 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5441 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5442 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5443 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5444 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5445 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5446 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5447 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5448 .type = ARM_CP_ALIAS,
5449 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5451 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5452 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5453 .type = ARM_CP_ALIAS,
5454 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5456 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5457 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5458 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5459 .access = PL2_RW, .writefn = vbar_write,
5460 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5462 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5463 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5464 .access = PL3_RW, .type = ARM_CP_ALIAS,
5465 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5466 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5467 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5468 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5469 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5470 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5471 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5472 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5473 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5475 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5476 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5477 .access = PL2_RW, .type = ARM_CP_ALIAS,
5478 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5479 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5480 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5481 .access = PL2_RW, .type = ARM_CP_CONST,
5483 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5484 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5485 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5486 .access = PL2_RW, .type = ARM_CP_CONST,
5488 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5489 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5490 .access = PL2_RW, .type = ARM_CP_CONST,
5492 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5493 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5494 .access = PL2_RW, .type = ARM_CP_CONST,
5496 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5497 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5498 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5499 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5500 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5501 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5502 .type = ARM_CP_ALIAS,
5503 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5504 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5505 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5506 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5508 /* no .writefn needed as this can't cause an ASID change */
5509 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5510 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5511 .cp = 15, .opc1 = 6, .crm = 2,
5512 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5513 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5514 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5515 .writefn = vttbr_write },
5516 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5517 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5518 .access = PL2_RW, .writefn = vttbr_write,
5519 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5520 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5521 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5522 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5523 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5524 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5525 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5526 .access = PL2_RW, .resetvalue = 0,
5527 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5528 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5529 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5530 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5531 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5532 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5533 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5534 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5535 { .name = "TLBIALLNSNH",
5536 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5537 .type = ARM_CP_NO_RAW, .access = PL2_W,
5538 .writefn = tlbiall_nsnh_write },
5539 { .name = "TLBIALLNSNHIS",
5540 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5541 .type = ARM_CP_NO_RAW, .access = PL2_W,
5542 .writefn = tlbiall_nsnh_is_write },
5543 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5544 .type = ARM_CP_NO_RAW, .access = PL2_W,
5545 .writefn = tlbiall_hyp_write },
5546 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5547 .type = ARM_CP_NO_RAW, .access = PL2_W,
5548 .writefn = tlbiall_hyp_is_write },
5549 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5550 .type = ARM_CP_NO_RAW, .access = PL2_W,
5551 .writefn = tlbimva_hyp_write },
5552 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5553 .type = ARM_CP_NO_RAW, .access = PL2_W,
5554 .writefn = tlbimva_hyp_is_write },
5555 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5557 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5558 .writefn = tlbi_aa64_alle2_write },
5559 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5560 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5561 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5562 .writefn = tlbi_aa64_vae2_write },
5563 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5564 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5565 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5566 .writefn = tlbi_aa64_vae2_write },
5567 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5568 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5569 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5570 .writefn = tlbi_aa64_alle2is_write },
5571 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5572 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5574 .writefn = tlbi_aa64_vae2is_write },
5575 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5578 .writefn = tlbi_aa64_vae2is_write },
5579 #ifndef CONFIG_USER_ONLY
5580 /* Unlike the other EL2-related AT operations, these must
5581 * UNDEF from EL3 if EL2 is not implemented, which is why we
5582 * define them here rather than with the rest of the AT ops.
5584 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5585 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5586 .access = PL2_W, .accessfn = at_s1e2_access,
5587 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5588 .writefn = ats_write64 },
5589 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5591 .access = PL2_W, .accessfn = at_s1e2_access,
5592 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5593 .writefn = ats_write64 },
5594 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5595 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5596 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5597 * to behave as if SCR.NS was 1.
5599 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5601 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5602 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5604 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5605 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5606 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5607 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5608 * reset values as IMPDEF. We choose to reset to 3 to comply with
5609 * both ARMv7 and ARMv8.
5611 .access = PL2_RW, .resetvalue = 3,
5612 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5613 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5615 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5616 .writefn = gt_cntvoff_write,
5617 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5618 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5619 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5620 .writefn = gt_cntvoff_write,
5621 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5622 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5623 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5624 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5625 .type = ARM_CP_IO, .access = PL2_RW,
5626 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5627 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5629 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5630 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5631 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5632 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5633 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5634 .resetfn = gt_hyp_timer_reset,
5635 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5636 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5638 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5642 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5644 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5645 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5646 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5647 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5648 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5649 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5651 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5652 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5653 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5655 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5658 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5659 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5660 .type = ARM_CP_ALIAS | ARM_CP_IO,
5661 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5663 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5664 .writefn = hcr_writehigh },
5667 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5670 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5671 return CP_ACCESS_OK;
5673 return CP_ACCESS_TRAP_UNCATEGORIZED;
5676 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5677 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5679 .access = PL2_RW, .accessfn = sel2_access,
5680 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5681 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5682 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5683 .access = PL2_RW, .accessfn = sel2_access,
5684 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5687 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5690 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5691 * At Secure EL1 it traps to EL3 or EL2.
5693 if (arm_current_el(env) == 3) {
5694 return CP_ACCESS_OK;
5696 if (arm_is_secure_below_el3(env)) {
5697 if (env->cp15.scr_el3 & SCR_EEL2) {
5698 return CP_ACCESS_TRAP_EL2;
5700 return CP_ACCESS_TRAP_EL3;
5702 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5704 return CP_ACCESS_OK;
5706 return CP_ACCESS_TRAP_UNCATEGORIZED;
5709 static const ARMCPRegInfo el3_cp_reginfo[] = {
5710 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5711 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5712 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5713 .resetfn = scr_reset, .writefn = scr_write },
5714 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5715 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5716 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5717 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5718 .writefn = scr_write },
5719 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5721 .access = PL3_RW, .resetvalue = 0,
5722 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5724 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5725 .access = PL3_RW, .resetvalue = 0,
5726 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5727 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5728 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5729 .writefn = vbar_write, .resetvalue = 0,
5730 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5731 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5732 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5733 .access = PL3_RW, .resetvalue = 0,
5734 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5735 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5736 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5738 /* no .writefn needed as this can't cause an ASID change */
5740 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5741 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5742 .type = ARM_CP_ALIAS,
5743 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5745 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5746 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5748 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5749 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5750 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5751 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5752 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5753 .type = ARM_CP_ALIAS,
5754 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5756 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5757 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5758 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5759 .access = PL3_RW, .writefn = vbar_write,
5760 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5762 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5764 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5765 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5766 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5767 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5768 .access = PL3_RW, .resetvalue = 0,
5769 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5770 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5771 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5772 .access = PL3_RW, .type = ARM_CP_CONST,
5774 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5775 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5776 .access = PL3_RW, .type = ARM_CP_CONST,
5778 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5779 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5780 .access = PL3_RW, .type = ARM_CP_CONST,
5782 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5784 .access = PL3_W, .type = ARM_CP_NO_RAW,
5785 .writefn = tlbi_aa64_alle3is_write },
5786 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5787 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5788 .access = PL3_W, .type = ARM_CP_NO_RAW,
5789 .writefn = tlbi_aa64_vae3is_write },
5790 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5791 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5792 .access = PL3_W, .type = ARM_CP_NO_RAW,
5793 .writefn = tlbi_aa64_vae3is_write },
5794 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5795 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5796 .access = PL3_W, .type = ARM_CP_NO_RAW,
5797 .writefn = tlbi_aa64_alle3_write },
5798 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5799 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5800 .access = PL3_W, .type = ARM_CP_NO_RAW,
5801 .writefn = tlbi_aa64_vae3_write },
5802 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5803 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5804 .access = PL3_W, .type = ARM_CP_NO_RAW,
5805 .writefn = tlbi_aa64_vae3_write },
5808 #ifndef CONFIG_USER_ONLY
5809 /* Test if system register redirection is to occur in the current state. */
5810 static bool redirect_for_e2h(CPUARMState *env)
5812 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5815 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5819 if (redirect_for_e2h(env)) {
5820 /* Switch to the saved EL2 version of the register. */
5822 readfn = ri->readfn;
5824 readfn = ri->orig_readfn;
5826 if (readfn == NULL) {
5829 return readfn(env, ri);
5832 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5837 if (redirect_for_e2h(env)) {
5838 /* Switch to the saved EL2 version of the register. */
5840 writefn = ri->writefn;
5842 writefn = ri->orig_writefn;
5844 if (writefn == NULL) {
5845 writefn = raw_write;
5847 writefn(env, ri, value);
5850 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5853 uint32_t src_key, dst_key, new_key;
5854 const char *src_name, *dst_name, *new_name;
5855 bool (*feature)(const ARMISARegisters *id);
5858 #define K(op0, op1, crn, crm, op2) \
5859 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5861 static const struct E2HAlias aliases[] = {
5862 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5863 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5864 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5865 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5866 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5867 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5868 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5869 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5870 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5871 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5872 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5873 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5874 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5875 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5876 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5877 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5878 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5879 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5880 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5881 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5882 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5883 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5884 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5885 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5886 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5887 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5888 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5889 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5890 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5891 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5892 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5893 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5896 * Note that redirection of ZCR is mentioned in the description
5897 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5898 * not in the summary table.
5900 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5901 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5902 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
5903 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
5905 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5906 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5908 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5909 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5910 isar_feature_aa64_scxtnum },
5912 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5913 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5919 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5920 const struct E2HAlias *a = &aliases[i];
5921 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5924 if (a->feature && !a->feature(&cpu->isar)) {
5928 src_reg = g_hash_table_lookup(cpu->cp_regs,
5929 (gpointer)(uintptr_t)a->src_key);
5930 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5931 (gpointer)(uintptr_t)a->dst_key);
5932 g_assert(src_reg != NULL);
5933 g_assert(dst_reg != NULL);
5935 /* Cross-compare names to detect typos in the keys. */
5936 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5937 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5939 /* None of the core system registers use opaque; we will. */
5940 g_assert(src_reg->opaque == NULL);
5942 /* Create alias before redirection so we dup the right data. */
5943 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5945 new_reg->name = a->new_name;
5946 new_reg->type |= ARM_CP_ALIAS;
5947 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5948 new_reg->access &= PL2_RW | PL3_RW;
5950 ok = g_hash_table_insert(cpu->cp_regs,
5951 (gpointer)(uintptr_t)a->new_key, new_reg);
5954 src_reg->opaque = dst_reg;
5955 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5956 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5957 if (!src_reg->raw_readfn) {
5958 src_reg->raw_readfn = raw_read;
5960 if (!src_reg->raw_writefn) {
5961 src_reg->raw_writefn = raw_write;
5963 src_reg->readfn = el2_e2h_read;
5964 src_reg->writefn = el2_e2h_write;
5969 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5972 int cur_el = arm_current_el(env);
5975 uint64_t hcr = arm_hcr_el2_eff(env);
5978 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5979 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5980 return CP_ACCESS_TRAP_EL2;
5983 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5984 return CP_ACCESS_TRAP;
5986 if (hcr & HCR_TID2) {
5987 return CP_ACCESS_TRAP_EL2;
5990 } else if (hcr & HCR_TID2) {
5991 return CP_ACCESS_TRAP_EL2;
5995 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5996 return CP_ACCESS_TRAP_EL2;
5999 return CP_ACCESS_OK;
6003 * Check for traps to RAS registers, which are controlled
6004 * by HCR_EL2.TERR and SCR_EL3.TERR.
6006 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6009 int el = arm_current_el(env);
6011 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6012 return CP_ACCESS_TRAP_EL2;
6014 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6015 return CP_ACCESS_TRAP_EL3;
6017 return CP_ACCESS_OK;
6020 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6022 int el = arm_current_el(env);
6024 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6025 return env->cp15.vdisr_el2;
6027 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6028 return 0; /* RAZ/WI */
6030 return env->cp15.disr_el1;
6033 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6035 int el = arm_current_el(env);
6037 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6038 env->cp15.vdisr_el2 = val;
6041 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6042 return; /* RAZ/WI */
6044 env->cp15.disr_el1 = val;
6048 * Minimal RAS implementation with no Error Records.
6049 * Which means that all of the Error Record registers:
6057 * ERXPFGCDN_EL1 (RASv1p1)
6058 * ERXPFGCTL_EL1 (RASv1p1)
6059 * ERXPFGF_EL1 (RASv1p1)
6063 * may generate UNDEFINED, which is the effect we get by not
6064 * listing them at all.
6066 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6067 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6068 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6069 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6070 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6071 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6073 .access = PL1_R, .accessfn = access_terr,
6074 .type = ARM_CP_CONST, .resetvalue = 0 },
6075 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6076 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6077 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6078 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6079 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6080 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6084 * Return the exception level to which exceptions should be taken
6085 * via SVEAccessTrap. This excludes the check for whether the exception
6086 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6087 * be found by testing 0 < fp_exception_el < sve_exception_el.
6089 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6090 * pseudocode does *not* separate out the FP trap checks, but has them
6091 * all in one function.
6093 int sve_exception_el(CPUARMState *env, int el)
6095 #ifndef CONFIG_USER_ONLY
6096 if (el <= 1 && !el_is_in_host(env, el)) {
6097 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6109 if (el <= 2 && arm_is_el2_enabled(env)) {
6110 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6111 if (env->cp15.hcr_el2 & HCR_E2H) {
6112 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6114 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6123 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6129 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6130 if (arm_feature(env, ARM_FEATURE_EL3)
6131 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6139 * Return the exception level to which exceptions should be taken for SME.
6140 * C.f. the ARM pseudocode function CheckSMEAccess.
6142 int sme_exception_el(CPUARMState *env, int el)
6144 #ifndef CONFIG_USER_ONLY
6145 if (el <= 1 && !el_is_in_host(env, el)) {
6146 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6158 if (el <= 2 && arm_is_el2_enabled(env)) {
6159 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6160 if (env->cp15.hcr_el2 & HCR_E2H) {
6161 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6163 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6172 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6178 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6179 if (arm_feature(env, ARM_FEATURE_EL3)
6180 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6187 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6188 static bool sme_fa64(CPUARMState *env, int el)
6190 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6194 if (el <= 1 && !el_is_in_host(env, el)) {
6195 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6199 if (el <= 2 && arm_is_el2_enabled(env)) {
6200 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6204 if (arm_feature(env, ARM_FEATURE_EL3)) {
6205 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6214 * Given that SVE is enabled, return the vector length for EL.
6216 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6218 ARMCPU *cpu = env_archcpu(env);
6219 uint64_t *cr = env->vfp.zcr_el;
6220 uint32_t map = cpu->sve_vq.map;
6221 uint32_t len = ARM_MAX_VQ - 1;
6224 cr = env->vfp.smcr_el;
6225 map = cpu->sme_vq.map;
6228 if (el <= 1 && !el_is_in_host(env, el)) {
6229 len = MIN(len, 0xf & (uint32_t)cr[1]);
6231 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6232 len = MIN(len, 0xf & (uint32_t)cr[2]);
6234 if (arm_feature(env, ARM_FEATURE_EL3)) {
6235 len = MIN(len, 0xf & (uint32_t)cr[3]);
6238 map &= MAKE_64BIT_MASK(0, len + 1);
6240 return 31 - clz32(map);
6243 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6245 return ctz32(cpu->sme_vq.map);
6248 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6250 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6253 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6256 int cur_el = arm_current_el(env);
6257 int old_len = sve_vqm1_for_el(env, cur_el);
6260 /* Bits other than [3:0] are RAZ/WI. */
6261 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6262 raw_write(env, ri, value & 0xf);
6265 * Because we arrived here, we know both FP and SVE are enabled;
6266 * otherwise we would have trapped access to the ZCR_ELn register.
6268 new_len = sve_vqm1_for_el(env, cur_el);
6269 if (new_len < old_len) {
6270 aarch64_sve_narrow_vq(env, new_len + 1);
6274 static const ARMCPRegInfo zcr_reginfo[] = {
6275 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6276 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6277 .access = PL1_RW, .type = ARM_CP_SVE,
6278 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6279 .writefn = zcr_write, .raw_writefn = raw_write },
6280 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6281 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6282 .access = PL2_RW, .type = ARM_CP_SVE,
6283 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6284 .writefn = zcr_write, .raw_writefn = raw_write },
6285 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6287 .access = PL3_RW, .type = ARM_CP_SVE,
6288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6289 .writefn = zcr_write, .raw_writefn = raw_write },
6292 #ifdef TARGET_AARCH64
6293 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6296 int el = arm_current_el(env);
6299 uint64_t sctlr = arm_sctlr(env, el);
6300 if (!(sctlr & SCTLR_EnTP2)) {
6301 return CP_ACCESS_TRAP;
6304 /* TODO: FEAT_FGT */
6306 && arm_feature(env, ARM_FEATURE_EL3)
6307 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6308 return CP_ACCESS_TRAP_EL3;
6310 return CP_ACCESS_OK;
6313 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6316 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6317 if (arm_current_el(env) < 3
6318 && arm_feature(env, ARM_FEATURE_EL3)
6319 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6320 return CP_ACCESS_TRAP_EL3;
6322 return CP_ACCESS_OK;
6325 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6328 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6329 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6330 arm_rebuild_hflags(env);
6333 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6336 int cur_el = arm_current_el(env);
6337 int old_len = sve_vqm1_for_el(env, cur_el);
6340 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6341 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6342 raw_write(env, ri, value);
6345 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6346 * when SVL is widened (old values kept, or zeros). Choose to keep the
6347 * current values for simplicity. But for QEMU internals, we must still
6348 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6349 * above aarch64_sve_narrow_vq.
6351 new_len = sve_vqm1_for_el(env, cur_el);
6352 if (new_len < old_len) {
6353 aarch64_sve_narrow_vq(env, new_len + 1);
6357 static const ARMCPRegInfo sme_reginfo[] = {
6358 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6359 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6360 .access = PL0_RW, .accessfn = access_tpidr2,
6361 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6362 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6363 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6364 .access = PL0_RW, .type = ARM_CP_SME,
6365 .fieldoffset = offsetof(CPUARMState, svcr),
6366 .writefn = svcr_write, .raw_writefn = raw_write },
6367 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6368 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6369 .access = PL1_RW, .type = ARM_CP_SME,
6370 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6371 .writefn = smcr_write, .raw_writefn = raw_write },
6372 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6373 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6374 .access = PL2_RW, .type = ARM_CP_SME,
6375 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6376 .writefn = smcr_write, .raw_writefn = raw_write },
6377 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6378 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6379 .access = PL3_RW, .type = ARM_CP_SME,
6380 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6381 .writefn = smcr_write, .raw_writefn = raw_write },
6382 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6384 .access = PL1_R, .accessfn = access_aa64_tid1,
6386 * IMPLEMENTOR = 0 (software)
6387 * REVISION = 0 (implementation defined)
6388 * SMPS = 0 (no streaming execution priority in QEMU)
6389 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6391 .type = ARM_CP_CONST, .resetvalue = 0, },
6393 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6395 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6396 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6397 .access = PL1_RW, .accessfn = access_esm,
6398 .type = ARM_CP_CONST, .resetvalue = 0 },
6399 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6400 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6401 .access = PL2_RW, .accessfn = access_esm,
6402 .type = ARM_CP_CONST, .resetvalue = 0 },
6404 #endif /* TARGET_AARCH64 */
6406 static void define_pmu_regs(ARMCPU *cpu)
6409 * v7 performance monitor control register: same implementor
6410 * field as main ID register, and we implement four counters in
6411 * addition to the cycle count register.
6413 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6414 ARMCPRegInfo pmcr = {
6415 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6417 .type = ARM_CP_IO | ARM_CP_ALIAS,
6418 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6419 .accessfn = pmreg_access, .writefn = pmcr_write,
6420 .raw_writefn = raw_write,
6422 ARMCPRegInfo pmcr64 = {
6423 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6424 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6425 .access = PL0_RW, .accessfn = pmreg_access,
6427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6428 .resetvalue = cpu->isar.reset_pmcr_el0,
6429 .writefn = pmcr_write, .raw_writefn = raw_write,
6432 define_one_arm_cp_reg(cpu, &pmcr);
6433 define_one_arm_cp_reg(cpu, &pmcr64);
6434 for (i = 0; i < pmcrn; i++) {
6435 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6436 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6437 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6438 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6439 ARMCPRegInfo pmev_regs[] = {
6440 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6441 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6442 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6443 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6444 .accessfn = pmreg_access_xevcntr },
6445 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6446 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6447 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6449 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6450 .raw_readfn = pmevcntr_rawread,
6451 .raw_writefn = pmevcntr_rawwrite },
6452 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6453 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6454 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6455 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6456 .accessfn = pmreg_access },
6457 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6459 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6461 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6462 .raw_writefn = pmevtyper_rawwrite },
6464 define_arm_cp_regs(cpu, pmev_regs);
6465 g_free(pmevcntr_name);
6466 g_free(pmevcntr_el0_name);
6467 g_free(pmevtyper_name);
6468 g_free(pmevtyper_el0_name);
6470 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6471 ARMCPRegInfo v81_pmu_regs[] = {
6472 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6473 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6474 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6475 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6476 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6477 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6478 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6479 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6481 define_arm_cp_regs(cpu, v81_pmu_regs);
6483 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6484 static const ARMCPRegInfo v84_pmmir = {
6485 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6486 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6487 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6490 define_one_arm_cp_reg(cpu, &v84_pmmir);
6494 /* We don't know until after realize whether there's a GICv3
6495 * attached, and that is what registers the gicv3 sysregs.
6496 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6499 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6501 ARMCPU *cpu = env_archcpu(env);
6502 uint64_t pfr1 = cpu->isar.id_pfr1;
6504 if (env->gicv3state) {
6510 #ifndef CONFIG_USER_ONLY
6511 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6513 ARMCPU *cpu = env_archcpu(env);
6514 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6516 if (env->gicv3state) {
6523 /* Shared logic between LORID and the rest of the LOR* registers.
6524 * Secure state exclusion has already been dealt with.
6526 static CPAccessResult access_lor_ns(CPUARMState *env,
6527 const ARMCPRegInfo *ri, bool isread)
6529 int el = arm_current_el(env);
6531 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6532 return CP_ACCESS_TRAP_EL2;
6534 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6535 return CP_ACCESS_TRAP_EL3;
6537 return CP_ACCESS_OK;
6540 static CPAccessResult access_lor_other(CPUARMState *env,
6541 const ARMCPRegInfo *ri, bool isread)
6543 if (arm_is_secure_below_el3(env)) {
6544 /* Access denied in secure mode. */
6545 return CP_ACCESS_TRAP;
6547 return access_lor_ns(env, ri, isread);
6551 * A trivial implementation of ARMv8.1-LOR leaves all of these
6552 * registers fixed at 0, which indicates that there are zero
6553 * supported Limited Ordering regions.
6555 static const ARMCPRegInfo lor_reginfo[] = {
6556 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6558 .access = PL1_RW, .accessfn = access_lor_other,
6559 .type = ARM_CP_CONST, .resetvalue = 0 },
6560 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6561 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6562 .access = PL1_RW, .accessfn = access_lor_other,
6563 .type = ARM_CP_CONST, .resetvalue = 0 },
6564 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6565 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6566 .access = PL1_RW, .accessfn = access_lor_other,
6567 .type = ARM_CP_CONST, .resetvalue = 0 },
6568 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6569 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6570 .access = PL1_RW, .accessfn = access_lor_other,
6571 .type = ARM_CP_CONST, .resetvalue = 0 },
6572 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6573 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6574 .access = PL1_R, .accessfn = access_lor_ns,
6575 .type = ARM_CP_CONST, .resetvalue = 0 },
6578 #ifdef TARGET_AARCH64
6579 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6582 int el = arm_current_el(env);
6585 arm_is_el2_enabled(env) &&
6586 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6587 return CP_ACCESS_TRAP_EL2;
6590 arm_feature(env, ARM_FEATURE_EL3) &&
6591 !(env->cp15.scr_el3 & SCR_APK)) {
6592 return CP_ACCESS_TRAP_EL3;
6594 return CP_ACCESS_OK;
6597 static const ARMCPRegInfo pauth_reginfo[] = {
6598 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6599 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6600 .access = PL1_RW, .accessfn = access_pauth,
6601 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6602 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6603 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6604 .access = PL1_RW, .accessfn = access_pauth,
6605 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6606 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6607 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6608 .access = PL1_RW, .accessfn = access_pauth,
6609 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6610 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6611 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6612 .access = PL1_RW, .accessfn = access_pauth,
6613 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6614 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6615 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6616 .access = PL1_RW, .accessfn = access_pauth,
6617 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6618 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6619 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6620 .access = PL1_RW, .accessfn = access_pauth,
6621 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6622 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6623 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6624 .access = PL1_RW, .accessfn = access_pauth,
6625 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6626 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6627 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6628 .access = PL1_RW, .accessfn = access_pauth,
6629 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6630 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6631 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6632 .access = PL1_RW, .accessfn = access_pauth,
6633 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6634 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6635 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6636 .access = PL1_RW, .accessfn = access_pauth,
6637 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6640 static const ARMCPRegInfo tlbirange_reginfo[] = {
6641 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6642 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6643 .access = PL1_W, .type = ARM_CP_NO_RAW,
6644 .writefn = tlbi_aa64_rvae1is_write },
6645 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6646 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6647 .access = PL1_W, .type = ARM_CP_NO_RAW,
6648 .writefn = tlbi_aa64_rvae1is_write },
6649 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6650 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6651 .access = PL1_W, .type = ARM_CP_NO_RAW,
6652 .writefn = tlbi_aa64_rvae1is_write },
6653 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6654 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6655 .access = PL1_W, .type = ARM_CP_NO_RAW,
6656 .writefn = tlbi_aa64_rvae1is_write },
6657 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6658 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6659 .access = PL1_W, .type = ARM_CP_NO_RAW,
6660 .writefn = tlbi_aa64_rvae1is_write },
6661 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6662 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6663 .access = PL1_W, .type = ARM_CP_NO_RAW,
6664 .writefn = tlbi_aa64_rvae1is_write },
6665 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6666 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6667 .access = PL1_W, .type = ARM_CP_NO_RAW,
6668 .writefn = tlbi_aa64_rvae1is_write },
6669 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6670 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6671 .access = PL1_W, .type = ARM_CP_NO_RAW,
6672 .writefn = tlbi_aa64_rvae1is_write },
6673 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6674 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6675 .access = PL1_W, .type = ARM_CP_NO_RAW,
6676 .writefn = tlbi_aa64_rvae1_write },
6677 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6678 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6679 .access = PL1_W, .type = ARM_CP_NO_RAW,
6680 .writefn = tlbi_aa64_rvae1_write },
6681 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6682 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6683 .access = PL1_W, .type = ARM_CP_NO_RAW,
6684 .writefn = tlbi_aa64_rvae1_write },
6685 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6686 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6687 .access = PL1_W, .type = ARM_CP_NO_RAW,
6688 .writefn = tlbi_aa64_rvae1_write },
6689 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6691 .access = PL2_W, .type = ARM_CP_NOP },
6692 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6693 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6694 .access = PL2_W, .type = ARM_CP_NOP },
6695 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6696 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6697 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6698 .writefn = tlbi_aa64_rvae2is_write },
6699 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6700 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6701 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6702 .writefn = tlbi_aa64_rvae2is_write },
6703 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6704 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6705 .access = PL2_W, .type = ARM_CP_NOP },
6706 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6707 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6708 .access = PL2_W, .type = ARM_CP_NOP },
6709 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6710 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6711 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6712 .writefn = tlbi_aa64_rvae2is_write },
6713 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6714 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6715 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6716 .writefn = tlbi_aa64_rvae2is_write },
6717 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6718 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6719 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6720 .writefn = tlbi_aa64_rvae2_write },
6721 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6722 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6723 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6724 .writefn = tlbi_aa64_rvae2_write },
6725 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6726 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6727 .access = PL3_W, .type = ARM_CP_NO_RAW,
6728 .writefn = tlbi_aa64_rvae3is_write },
6729 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6730 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6731 .access = PL3_W, .type = ARM_CP_NO_RAW,
6732 .writefn = tlbi_aa64_rvae3is_write },
6733 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6734 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6735 .access = PL3_W, .type = ARM_CP_NO_RAW,
6736 .writefn = tlbi_aa64_rvae3is_write },
6737 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6738 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6739 .access = PL3_W, .type = ARM_CP_NO_RAW,
6740 .writefn = tlbi_aa64_rvae3is_write },
6741 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6742 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6743 .access = PL3_W, .type = ARM_CP_NO_RAW,
6744 .writefn = tlbi_aa64_rvae3_write },
6745 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6746 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6747 .access = PL3_W, .type = ARM_CP_NO_RAW,
6748 .writefn = tlbi_aa64_rvae3_write },
6751 static const ARMCPRegInfo tlbios_reginfo[] = {
6752 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6753 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6754 .access = PL1_W, .type = ARM_CP_NO_RAW,
6755 .writefn = tlbi_aa64_vmalle1is_write },
6756 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6757 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6758 .access = PL1_W, .type = ARM_CP_NO_RAW,
6759 .writefn = tlbi_aa64_vae1is_write },
6760 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6761 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6762 .access = PL1_W, .type = ARM_CP_NO_RAW,
6763 .writefn = tlbi_aa64_vmalle1is_write },
6764 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6765 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6766 .access = PL1_W, .type = ARM_CP_NO_RAW,
6767 .writefn = tlbi_aa64_vae1is_write },
6768 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6769 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6770 .access = PL1_W, .type = ARM_CP_NO_RAW,
6771 .writefn = tlbi_aa64_vae1is_write },
6772 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6773 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6774 .access = PL1_W, .type = ARM_CP_NO_RAW,
6775 .writefn = tlbi_aa64_vae1is_write },
6776 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6777 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6778 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6779 .writefn = tlbi_aa64_alle2is_write },
6780 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6781 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6782 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6783 .writefn = tlbi_aa64_vae2is_write },
6784 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6785 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6786 .access = PL2_W, .type = ARM_CP_NO_RAW,
6787 .writefn = tlbi_aa64_alle1is_write },
6788 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6789 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6790 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6791 .writefn = tlbi_aa64_vae2is_write },
6792 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6793 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6794 .access = PL2_W, .type = ARM_CP_NO_RAW,
6795 .writefn = tlbi_aa64_alle1is_write },
6796 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6798 .access = PL2_W, .type = ARM_CP_NOP },
6799 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6800 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6801 .access = PL2_W, .type = ARM_CP_NOP },
6802 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6803 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6804 .access = PL2_W, .type = ARM_CP_NOP },
6805 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6806 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6807 .access = PL2_W, .type = ARM_CP_NOP },
6808 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6809 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6810 .access = PL3_W, .type = ARM_CP_NO_RAW,
6811 .writefn = tlbi_aa64_alle3is_write },
6812 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6813 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6814 .access = PL3_W, .type = ARM_CP_NO_RAW,
6815 .writefn = tlbi_aa64_vae3is_write },
6816 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6817 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6818 .access = PL3_W, .type = ARM_CP_NO_RAW,
6819 .writefn = tlbi_aa64_vae3is_write },
6822 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6827 /* Success sets NZCV = 0000. */
6828 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6830 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6832 * ??? Failed, for unknown reasons in the crypto subsystem.
6833 * The best we can do is log the reason and return the
6834 * timed-out indication to the guest. There is no reason
6835 * we know to expect this failure to be transitory, so the
6836 * guest may well hang retrying the operation.
6838 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6839 ri->name, error_get_pretty(err));
6842 env->ZF = 0; /* NZCF = 0100 */
6848 /* We do not support re-seeding, so the two registers operate the same. */
6849 static const ARMCPRegInfo rndr_reginfo[] = {
6850 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6851 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6852 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6853 .access = PL0_R, .readfn = rndr_readfn },
6854 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6855 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6856 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6857 .access = PL0_R, .readfn = rndr_readfn },
6860 #ifndef CONFIG_USER_ONLY
6861 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6864 ARMCPU *cpu = env_archcpu(env);
6865 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6866 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6867 uint64_t vaddr_in = (uint64_t) value;
6868 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6870 int mem_idx = cpu_mmu_index(env, false);
6872 /* This won't be crossing page boundaries */
6873 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6879 /* RCU lock is already being held */
6880 mr = memory_region_from_host(haddr, &offset);
6883 memory_region_writeback(mr, offset, dline_size);
6888 static const ARMCPRegInfo dcpop_reg[] = {
6889 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6890 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6891 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6892 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6895 static const ARMCPRegInfo dcpodp_reg[] = {
6896 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6897 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6898 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6899 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6901 #endif /*CONFIG_USER_ONLY*/
6903 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6906 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6907 return CP_ACCESS_TRAP_EL2;
6910 return CP_ACCESS_OK;
6913 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6916 int el = arm_current_el(env);
6918 if (el < 2 && arm_is_el2_enabled(env)) {
6919 uint64_t hcr = arm_hcr_el2_eff(env);
6920 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6921 return CP_ACCESS_TRAP_EL2;
6925 arm_feature(env, ARM_FEATURE_EL3) &&
6926 !(env->cp15.scr_el3 & SCR_ATA)) {
6927 return CP_ACCESS_TRAP_EL3;
6929 return CP_ACCESS_OK;
6932 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6934 return env->pstate & PSTATE_TCO;
6937 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6939 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6942 static const ARMCPRegInfo mte_reginfo[] = {
6943 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6944 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6945 .access = PL1_RW, .accessfn = access_mte,
6946 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6947 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6948 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6949 .access = PL1_RW, .accessfn = access_mte,
6950 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6951 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6952 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6953 .access = PL2_RW, .accessfn = access_mte,
6954 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6955 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6956 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6958 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6959 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6960 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6961 .access = PL1_RW, .accessfn = access_mte,
6962 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6963 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6964 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6965 .access = PL1_RW, .accessfn = access_mte,
6966 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6967 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6968 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6969 .access = PL1_R, .accessfn = access_aa64_tid5,
6970 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6971 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6972 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6973 .type = ARM_CP_NO_RAW,
6974 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6975 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6976 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6977 .type = ARM_CP_NOP, .access = PL1_W,
6978 .accessfn = aa64_cacheop_poc_access },
6979 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6980 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6982 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6983 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6984 .type = ARM_CP_NOP, .access = PL1_W,
6985 .accessfn = aa64_cacheop_poc_access },
6986 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6987 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6988 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6989 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6991 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6992 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6993 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6994 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6995 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6998 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7000 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7003 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7004 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7005 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7006 .type = ARM_CP_CONST, .access = PL0_RW, },
7009 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7010 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7011 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7012 .type = ARM_CP_NOP, .access = PL0_W,
7013 .accessfn = aa64_cacheop_poc_access },
7014 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7015 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7016 .type = ARM_CP_NOP, .access = PL0_W,
7017 .accessfn = aa64_cacheop_poc_access },
7018 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7019 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7020 .type = ARM_CP_NOP, .access = PL0_W,
7021 .accessfn = aa64_cacheop_poc_access },
7022 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7023 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7024 .type = ARM_CP_NOP, .access = PL0_W,
7025 .accessfn = aa64_cacheop_poc_access },
7026 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7027 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7028 .type = ARM_CP_NOP, .access = PL0_W,
7029 .accessfn = aa64_cacheop_poc_access },
7030 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7032 .type = ARM_CP_NOP, .access = PL0_W,
7033 .accessfn = aa64_cacheop_poc_access },
7034 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7035 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7036 .type = ARM_CP_NOP, .access = PL0_W,
7037 .accessfn = aa64_cacheop_poc_access },
7038 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7039 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7040 .type = ARM_CP_NOP, .access = PL0_W,
7041 .accessfn = aa64_cacheop_poc_access },
7042 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7044 .access = PL0_W, .type = ARM_CP_DC_GVA,
7045 #ifndef CONFIG_USER_ONLY
7046 /* Avoid overhead of an access check that always passes in user-mode */
7047 .accessfn = aa64_zva_access,
7050 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7051 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7052 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7053 #ifndef CONFIG_USER_ONLY
7054 /* Avoid overhead of an access check that always passes in user-mode */
7055 .accessfn = aa64_zva_access,
7060 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7063 uint64_t hcr = arm_hcr_el2_eff(env);
7064 int el = arm_current_el(env);
7066 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7067 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7068 if (hcr & HCR_TGE) {
7069 return CP_ACCESS_TRAP_EL2;
7071 return CP_ACCESS_TRAP;
7073 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7074 return CP_ACCESS_TRAP_EL2;
7076 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7077 return CP_ACCESS_TRAP_EL2;
7080 && arm_feature(env, ARM_FEATURE_EL3)
7081 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7082 return CP_ACCESS_TRAP_EL3;
7084 return CP_ACCESS_OK;
7087 static const ARMCPRegInfo scxtnum_reginfo[] = {
7088 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7089 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7090 .access = PL0_RW, .accessfn = access_scxtnum,
7091 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7092 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7093 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7094 .access = PL1_RW, .accessfn = access_scxtnum,
7095 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7096 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7097 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7098 .access = PL2_RW, .accessfn = access_scxtnum,
7099 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7100 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7101 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7103 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7105 #endif /* TARGET_AARCH64 */
7107 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7110 int el = arm_current_el(env);
7113 uint64_t sctlr = arm_sctlr(env, el);
7114 if (!(sctlr & SCTLR_EnRCTX)) {
7115 return CP_ACCESS_TRAP;
7117 } else if (el == 1) {
7118 uint64_t hcr = arm_hcr_el2_eff(env);
7120 return CP_ACCESS_TRAP_EL2;
7123 return CP_ACCESS_OK;
7126 static const ARMCPRegInfo predinv_reginfo[] = {
7127 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7129 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7130 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7131 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7132 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7133 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7135 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7137 * Note the AArch32 opcodes have a different OPC1.
7139 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7140 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7141 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7142 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7143 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7144 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7145 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7147 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7150 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7152 /* Read the high 32 bits of the current CCSIDR */
7153 return extract64(ccsidr_read(env, ri), 32, 32);
7156 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7157 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7160 .accessfn = access_aa64_tid2,
7161 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7164 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7167 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7168 return CP_ACCESS_TRAP_EL2;
7171 return CP_ACCESS_OK;
7174 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7177 if (arm_feature(env, ARM_FEATURE_V8)) {
7178 return access_aa64_tid3(env, ri, isread);
7181 return CP_ACCESS_OK;
7184 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7187 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7188 return CP_ACCESS_TRAP_EL2;
7191 return CP_ACCESS_OK;
7194 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7195 const ARMCPRegInfo *ri, bool isread)
7198 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7199 * in v7A, not in v8A.
7201 if (!arm_feature(env, ARM_FEATURE_V8) &&
7202 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7203 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7204 return CP_ACCESS_TRAP_EL2;
7206 return CP_ACCESS_OK;
7209 static const ARMCPRegInfo jazelle_regs[] = {
7211 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7212 .access = PL1_R, .accessfn = access_jazelle,
7213 .type = ARM_CP_CONST, .resetvalue = 0 },
7215 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7216 .accessfn = access_joscr_jmcr,
7217 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7219 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7220 .accessfn = access_joscr_jmcr,
7221 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7224 static const ARMCPRegInfo contextidr_el2 = {
7225 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7228 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7231 static const ARMCPRegInfo vhe_reginfo[] = {
7232 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7233 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7234 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7235 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7236 #ifndef CONFIG_USER_ONLY
7237 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7238 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7240 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7241 .type = ARM_CP_IO, .access = PL2_RW,
7242 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7243 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7244 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7246 .resetfn = gt_hv_timer_reset,
7247 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7248 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7250 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7253 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7254 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7255 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7256 .type = ARM_CP_IO | ARM_CP_ALIAS,
7257 .access = PL2_RW, .accessfn = e2h_access,
7258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7259 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7260 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7261 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7262 .type = ARM_CP_IO | ARM_CP_ALIAS,
7263 .access = PL2_RW, .accessfn = e2h_access,
7264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7265 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7266 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7267 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7268 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7269 .access = PL2_RW, .accessfn = e2h_access,
7270 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7271 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7272 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7273 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7274 .access = PL2_RW, .accessfn = e2h_access,
7275 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7276 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7277 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7278 .type = ARM_CP_IO | ARM_CP_ALIAS,
7279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7280 .access = PL2_RW, .accessfn = e2h_access,
7281 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7282 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7283 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7284 .type = ARM_CP_IO | ARM_CP_ALIAS,
7285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7286 .access = PL2_RW, .accessfn = e2h_access,
7287 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7291 #ifndef CONFIG_USER_ONLY
7292 static const ARMCPRegInfo ats1e1_reginfo[] = {
7293 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7294 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7295 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7296 .writefn = ats_write64 },
7297 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7299 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7300 .writefn = ats_write64 },
7303 static const ARMCPRegInfo ats1cp_reginfo[] = {
7304 { .name = "ATS1CPRP",
7305 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7306 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7307 .writefn = ats_write },
7308 { .name = "ATS1CPWP",
7309 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7310 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7311 .writefn = ats_write },
7316 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7317 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7318 * is non-zero, which is never for ARMv7, optionally in ARMv8
7319 * and mandatorily for ARMv8.2 and up.
7320 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7321 * implementation is RAZ/WI we can ignore this detail, as we
7324 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7325 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7326 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7327 .access = PL1_RW, .accessfn = access_tacr,
7328 .type = ARM_CP_CONST, .resetvalue = 0 },
7329 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7330 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7331 .access = PL2_RW, .type = ARM_CP_CONST,
7335 void register_cp_regs_for_features(ARMCPU *cpu)
7337 /* Register all the coprocessor registers based on feature bits */
7338 CPUARMState *env = &cpu->env;
7339 if (arm_feature(env, ARM_FEATURE_M)) {
7340 /* M profile has no coprocessor registers */
7344 define_arm_cp_regs(cpu, cp_reginfo);
7345 if (!arm_feature(env, ARM_FEATURE_V8)) {
7346 /* Must go early as it is full of wildcards that may be
7347 * overridden by later definitions.
7349 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7352 if (arm_feature(env, ARM_FEATURE_V6)) {
7353 /* The ID registers all have impdef reset values */
7354 ARMCPRegInfo v6_idregs[] = {
7355 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7357 .access = PL1_R, .type = ARM_CP_CONST,
7358 .accessfn = access_aa32_tid3,
7359 .resetvalue = cpu->isar.id_pfr0 },
7360 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7361 * the value of the GIC field until after we define these regs.
7363 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7365 .access = PL1_R, .type = ARM_CP_NO_RAW,
7366 .accessfn = access_aa32_tid3,
7367 .readfn = id_pfr1_read,
7368 .writefn = arm_cp_write_ignore },
7369 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7371 .access = PL1_R, .type = ARM_CP_CONST,
7372 .accessfn = access_aa32_tid3,
7373 .resetvalue = cpu->isar.id_dfr0 },
7374 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7376 .access = PL1_R, .type = ARM_CP_CONST,
7377 .accessfn = access_aa32_tid3,
7378 .resetvalue = cpu->id_afr0 },
7379 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7381 .access = PL1_R, .type = ARM_CP_CONST,
7382 .accessfn = access_aa32_tid3,
7383 .resetvalue = cpu->isar.id_mmfr0 },
7384 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7386 .access = PL1_R, .type = ARM_CP_CONST,
7387 .accessfn = access_aa32_tid3,
7388 .resetvalue = cpu->isar.id_mmfr1 },
7389 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7391 .access = PL1_R, .type = ARM_CP_CONST,
7392 .accessfn = access_aa32_tid3,
7393 .resetvalue = cpu->isar.id_mmfr2 },
7394 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7396 .access = PL1_R, .type = ARM_CP_CONST,
7397 .accessfn = access_aa32_tid3,
7398 .resetvalue = cpu->isar.id_mmfr3 },
7399 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7401 .access = PL1_R, .type = ARM_CP_CONST,
7402 .accessfn = access_aa32_tid3,
7403 .resetvalue = cpu->isar.id_isar0 },
7404 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7406 .access = PL1_R, .type = ARM_CP_CONST,
7407 .accessfn = access_aa32_tid3,
7408 .resetvalue = cpu->isar.id_isar1 },
7409 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7411 .access = PL1_R, .type = ARM_CP_CONST,
7412 .accessfn = access_aa32_tid3,
7413 .resetvalue = cpu->isar.id_isar2 },
7414 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7416 .access = PL1_R, .type = ARM_CP_CONST,
7417 .accessfn = access_aa32_tid3,
7418 .resetvalue = cpu->isar.id_isar3 },
7419 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7421 .access = PL1_R, .type = ARM_CP_CONST,
7422 .accessfn = access_aa32_tid3,
7423 .resetvalue = cpu->isar.id_isar4 },
7424 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7426 .access = PL1_R, .type = ARM_CP_CONST,
7427 .accessfn = access_aa32_tid3,
7428 .resetvalue = cpu->isar.id_isar5 },
7429 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7431 .access = PL1_R, .type = ARM_CP_CONST,
7432 .accessfn = access_aa32_tid3,
7433 .resetvalue = cpu->isar.id_mmfr4 },
7434 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7436 .access = PL1_R, .type = ARM_CP_CONST,
7437 .accessfn = access_aa32_tid3,
7438 .resetvalue = cpu->isar.id_isar6 },
7440 define_arm_cp_regs(cpu, v6_idregs);
7441 define_arm_cp_regs(cpu, v6_cp_reginfo);
7443 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7445 if (arm_feature(env, ARM_FEATURE_V6K)) {
7446 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7448 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7449 !arm_feature(env, ARM_FEATURE_PMSA)) {
7450 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7452 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7453 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7455 if (arm_feature(env, ARM_FEATURE_V7)) {
7456 ARMCPRegInfo clidr = {
7457 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7458 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7459 .access = PL1_R, .type = ARM_CP_CONST,
7460 .accessfn = access_aa64_tid2,
7461 .resetvalue = cpu->clidr
7463 define_one_arm_cp_reg(cpu, &clidr);
7464 define_arm_cp_regs(cpu, v7_cp_reginfo);
7465 define_debug_regs(cpu);
7466 define_pmu_regs(cpu);
7468 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7470 if (arm_feature(env, ARM_FEATURE_V8)) {
7472 * v8 ID registers, which all have impdef reset values.
7473 * Note that within the ID register ranges the unused slots
7474 * must all RAZ, not UNDEF; future architecture versions may
7475 * define new registers here.
7476 * ID registers which are AArch64 views of the AArch32 ID registers
7477 * which already existed in v6 and v7 are handled elsewhere,
7481 ARMCPRegInfo v8_idregs[] = {
7483 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7484 * emulation because we don't know the right value for the
7485 * GIC field until after we define these regs.
7487 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7490 #ifdef CONFIG_USER_ONLY
7491 .type = ARM_CP_CONST,
7492 .resetvalue = cpu->isar.id_aa64pfr0
7494 .type = ARM_CP_NO_RAW,
7495 .accessfn = access_aa64_tid3,
7496 .readfn = id_aa64pfr0_read,
7497 .writefn = arm_cp_write_ignore
7500 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7502 .access = PL1_R, .type = ARM_CP_CONST,
7503 .accessfn = access_aa64_tid3,
7504 .resetvalue = cpu->isar.id_aa64pfr1},
7505 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7507 .access = PL1_R, .type = ARM_CP_CONST,
7508 .accessfn = access_aa64_tid3,
7510 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7512 .access = PL1_R, .type = ARM_CP_CONST,
7513 .accessfn = access_aa64_tid3,
7515 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7517 .access = PL1_R, .type = ARM_CP_CONST,
7518 .accessfn = access_aa64_tid3,
7519 .resetvalue = cpu->isar.id_aa64zfr0 },
7520 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7522 .access = PL1_R, .type = ARM_CP_CONST,
7523 .accessfn = access_aa64_tid3,
7524 .resetvalue = cpu->isar.id_aa64smfr0 },
7525 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7527 .access = PL1_R, .type = ARM_CP_CONST,
7528 .accessfn = access_aa64_tid3,
7530 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7532 .access = PL1_R, .type = ARM_CP_CONST,
7533 .accessfn = access_aa64_tid3,
7535 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7537 .access = PL1_R, .type = ARM_CP_CONST,
7538 .accessfn = access_aa64_tid3,
7539 .resetvalue = cpu->isar.id_aa64dfr0 },
7540 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7542 .access = PL1_R, .type = ARM_CP_CONST,
7543 .accessfn = access_aa64_tid3,
7544 .resetvalue = cpu->isar.id_aa64dfr1 },
7545 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7547 .access = PL1_R, .type = ARM_CP_CONST,
7548 .accessfn = access_aa64_tid3,
7550 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7552 .access = PL1_R, .type = ARM_CP_CONST,
7553 .accessfn = access_aa64_tid3,
7555 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7557 .access = PL1_R, .type = ARM_CP_CONST,
7558 .accessfn = access_aa64_tid3,
7559 .resetvalue = cpu->id_aa64afr0 },
7560 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7562 .access = PL1_R, .type = ARM_CP_CONST,
7563 .accessfn = access_aa64_tid3,
7564 .resetvalue = cpu->id_aa64afr1 },
7565 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7567 .access = PL1_R, .type = ARM_CP_CONST,
7568 .accessfn = access_aa64_tid3,
7570 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7572 .access = PL1_R, .type = ARM_CP_CONST,
7573 .accessfn = access_aa64_tid3,
7575 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7577 .access = PL1_R, .type = ARM_CP_CONST,
7578 .accessfn = access_aa64_tid3,
7579 .resetvalue = cpu->isar.id_aa64isar0 },
7580 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7582 .access = PL1_R, .type = ARM_CP_CONST,
7583 .accessfn = access_aa64_tid3,
7584 .resetvalue = cpu->isar.id_aa64isar1 },
7585 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7587 .access = PL1_R, .type = ARM_CP_CONST,
7588 .accessfn = access_aa64_tid3,
7590 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7592 .access = PL1_R, .type = ARM_CP_CONST,
7593 .accessfn = access_aa64_tid3,
7595 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7597 .access = PL1_R, .type = ARM_CP_CONST,
7598 .accessfn = access_aa64_tid3,
7600 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7602 .access = PL1_R, .type = ARM_CP_CONST,
7603 .accessfn = access_aa64_tid3,
7605 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7607 .access = PL1_R, .type = ARM_CP_CONST,
7608 .accessfn = access_aa64_tid3,
7610 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7612 .access = PL1_R, .type = ARM_CP_CONST,
7613 .accessfn = access_aa64_tid3,
7615 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7617 .access = PL1_R, .type = ARM_CP_CONST,
7618 .accessfn = access_aa64_tid3,
7619 .resetvalue = cpu->isar.id_aa64mmfr0 },
7620 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7622 .access = PL1_R, .type = ARM_CP_CONST,
7623 .accessfn = access_aa64_tid3,
7624 .resetvalue = cpu->isar.id_aa64mmfr1 },
7625 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7627 .access = PL1_R, .type = ARM_CP_CONST,
7628 .accessfn = access_aa64_tid3,
7629 .resetvalue = cpu->isar.id_aa64mmfr2 },
7630 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7632 .access = PL1_R, .type = ARM_CP_CONST,
7633 .accessfn = access_aa64_tid3,
7635 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7637 .access = PL1_R, .type = ARM_CP_CONST,
7638 .accessfn = access_aa64_tid3,
7640 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7642 .access = PL1_R, .type = ARM_CP_CONST,
7643 .accessfn = access_aa64_tid3,
7645 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7647 .access = PL1_R, .type = ARM_CP_CONST,
7648 .accessfn = access_aa64_tid3,
7650 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7652 .access = PL1_R, .type = ARM_CP_CONST,
7653 .accessfn = access_aa64_tid3,
7655 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7657 .access = PL1_R, .type = ARM_CP_CONST,
7658 .accessfn = access_aa64_tid3,
7659 .resetvalue = cpu->isar.mvfr0 },
7660 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7662 .access = PL1_R, .type = ARM_CP_CONST,
7663 .accessfn = access_aa64_tid3,
7664 .resetvalue = cpu->isar.mvfr1 },
7665 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7667 .access = PL1_R, .type = ARM_CP_CONST,
7668 .accessfn = access_aa64_tid3,
7669 .resetvalue = cpu->isar.mvfr2 },
7671 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
7672 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
7673 * as RAZ, since it is in the "reserved for future ID
7674 * registers, RAZ" part of the AArch32 encoding space.
7676 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
7677 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7678 .access = PL1_R, .type = ARM_CP_CONST,
7679 .accessfn = access_aa64_tid3,
7681 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
7682 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7683 .access = PL1_R, .type = ARM_CP_CONST,
7684 .accessfn = access_aa64_tid3,
7686 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
7687 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7688 .access = PL1_R, .type = ARM_CP_CONST,
7689 .accessfn = access_aa64_tid3,
7692 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
7693 * they're also RAZ for AArch64, and in v8 are gradually
7694 * being filled with AArch64-view-of-AArch32-ID-register
7695 * for new ID registers.
7697 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
7698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7699 .access = PL1_R, .type = ARM_CP_CONST,
7700 .accessfn = access_aa64_tid3,
7702 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7704 .access = PL1_R, .type = ARM_CP_CONST,
7705 .accessfn = access_aa64_tid3,
7706 .resetvalue = cpu->isar.id_pfr2 },
7707 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
7708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7709 .access = PL1_R, .type = ARM_CP_CONST,
7710 .accessfn = access_aa64_tid3,
7711 .resetvalue = cpu->isar.id_dfr1 },
7712 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
7713 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7714 .access = PL1_R, .type = ARM_CP_CONST,
7715 .accessfn = access_aa64_tid3,
7716 .resetvalue = cpu->isar.id_mmfr5 },
7717 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
7718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7719 .access = PL1_R, .type = ARM_CP_CONST,
7720 .accessfn = access_aa64_tid3,
7722 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7723 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7724 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7725 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7726 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7727 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7728 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7729 .resetvalue = cpu->pmceid0 },
7730 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7731 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7732 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7733 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7734 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7735 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7736 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7737 .resetvalue = cpu->pmceid1 },
7739 #ifdef CONFIG_USER_ONLY
7740 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7741 { .name = "ID_AA64PFR0_EL1",
7742 .exported_bits = 0x000f000f00ff0000,
7743 .fixed_bits = 0x0000000000000011 },
7744 { .name = "ID_AA64PFR1_EL1",
7745 .exported_bits = 0x00000000000000f0 },
7746 { .name = "ID_AA64PFR*_EL1_RESERVED",
7748 { .name = "ID_AA64ZFR0_EL1" },
7749 { .name = "ID_AA64MMFR0_EL1",
7750 .fixed_bits = 0x00000000ff000000 },
7751 { .name = "ID_AA64MMFR1_EL1" },
7752 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7754 { .name = "ID_AA64DFR0_EL1",
7755 .fixed_bits = 0x0000000000000006 },
7756 { .name = "ID_AA64DFR1_EL1" },
7757 { .name = "ID_AA64DFR*_EL1_RESERVED",
7759 { .name = "ID_AA64AFR*",
7761 { .name = "ID_AA64ISAR0_EL1",
7762 .exported_bits = 0x00fffffff0fffff0 },
7763 { .name = "ID_AA64ISAR1_EL1",
7764 .exported_bits = 0x000000f0ffffffff },
7765 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7768 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7770 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7771 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7772 !arm_feature(env, ARM_FEATURE_EL2)) {
7773 ARMCPRegInfo rvbar = {
7774 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7775 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7777 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7779 define_one_arm_cp_reg(cpu, &rvbar);
7781 define_arm_cp_regs(cpu, v8_idregs);
7782 define_arm_cp_regs(cpu, v8_cp_reginfo);
7784 for (i = 4; i < 16; i++) {
7786 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
7787 * For pre-v8 cores there are RAZ patterns for these in
7788 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
7789 * v8 extends the "must RAZ" part of the ID register space
7790 * to also cover c0, 0, c{8-15}, {0-7}.
7791 * These are STATE_AA32 because in the AArch64 sysreg space
7792 * c4-c7 is where the AArch64 ID registers live (and we've
7793 * already defined those in v8_idregs[]), and c8-c15 are not
7794 * "must RAZ" for AArch64.
7796 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
7797 ARMCPRegInfo v8_aa32_raz_idregs = {
7799 .state = ARM_CP_STATE_AA32,
7800 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
7801 .access = PL1_R, .type = ARM_CP_CONST,
7802 .accessfn = access_aa64_tid3,
7804 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
7809 * Register the base EL2 cpregs.
7810 * Pre v8, these registers are implemented only as part of the
7811 * Virtualization Extensions (EL2 present). Beginning with v8,
7812 * if EL2 is missing but EL3 is enabled, mostly these become
7813 * RES0 from EL3, with some specific exceptions.
7815 if (arm_feature(env, ARM_FEATURE_EL2)
7816 || (arm_feature(env, ARM_FEATURE_EL3)
7817 && arm_feature(env, ARM_FEATURE_V8))) {
7818 uint64_t vmpidr_def = mpidr_read_val(env);
7819 ARMCPRegInfo vpidr_regs[] = {
7820 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7821 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7822 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7823 .resetvalue = cpu->midr,
7824 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7825 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7826 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7827 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7828 .access = PL2_RW, .resetvalue = cpu->midr,
7829 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7830 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7831 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7832 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7833 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7834 .resetvalue = vmpidr_def,
7835 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7836 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7837 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7838 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7839 .access = PL2_RW, .resetvalue = vmpidr_def,
7840 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7841 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7844 * The only field of MDCR_EL2 that has a defined architectural reset
7845 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
7847 ARMCPRegInfo mdcr_el2 = {
7848 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
7849 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
7850 .writefn = mdcr_el2_write,
7851 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
7852 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
7854 define_one_arm_cp_reg(cpu, &mdcr_el2);
7855 define_arm_cp_regs(cpu, vpidr_regs);
7856 define_arm_cp_regs(cpu, el2_cp_reginfo);
7857 if (arm_feature(env, ARM_FEATURE_V8)) {
7858 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7860 if (cpu_isar_feature(aa64_sel2, cpu)) {
7861 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7863 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7864 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7865 ARMCPRegInfo rvbar = {
7866 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7867 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7869 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7871 define_one_arm_cp_reg(cpu, &rvbar);
7875 /* Register the base EL3 cpregs. */
7876 if (arm_feature(env, ARM_FEATURE_EL3)) {
7877 define_arm_cp_regs(cpu, el3_cp_reginfo);
7878 ARMCPRegInfo el3_regs[] = {
7879 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7880 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7882 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7884 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7885 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7887 .raw_writefn = raw_write, .writefn = sctlr_write,
7888 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7889 .resetvalue = cpu->reset_sctlr },
7892 define_arm_cp_regs(cpu, el3_regs);
7894 /* The behaviour of NSACR is sufficiently various that we don't
7895 * try to describe it in a single reginfo:
7896 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7897 * reads as constant 0xc00 from NS EL1 and NS EL2
7898 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7899 * if v7 without EL3, register doesn't exist
7900 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7902 if (arm_feature(env, ARM_FEATURE_EL3)) {
7903 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7904 static const ARMCPRegInfo nsacr = {
7905 .name = "NSACR", .type = ARM_CP_CONST,
7906 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7907 .access = PL1_RW, .accessfn = nsacr_access,
7910 define_one_arm_cp_reg(cpu, &nsacr);
7912 static const ARMCPRegInfo nsacr = {
7914 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7915 .access = PL3_RW | PL1_R,
7917 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7919 define_one_arm_cp_reg(cpu, &nsacr);
7922 if (arm_feature(env, ARM_FEATURE_V8)) {
7923 static const ARMCPRegInfo nsacr = {
7924 .name = "NSACR", .type = ARM_CP_CONST,
7925 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7929 define_one_arm_cp_reg(cpu, &nsacr);
7933 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7934 if (arm_feature(env, ARM_FEATURE_V6)) {
7935 /* PMSAv6 not implemented */
7936 assert(arm_feature(env, ARM_FEATURE_V7));
7937 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7938 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7940 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7943 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7944 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7945 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7946 if (cpu_isar_feature(aa32_hpd, cpu)) {
7947 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7950 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7951 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7953 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7954 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7956 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7957 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7959 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7960 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7962 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7963 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7965 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7966 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7968 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7969 define_arm_cp_regs(cpu, omap_cp_reginfo);
7971 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7972 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7974 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7975 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7977 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7978 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7980 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7981 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7983 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7984 define_arm_cp_regs(cpu, jazelle_regs);
7986 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7987 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7988 * be read-only (ie write causes UNDEF exception).
7991 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7992 /* Pre-v8 MIDR space.
7993 * Note that the MIDR isn't a simple constant register because
7994 * of the TI925 behaviour where writes to another register can
7995 * cause the MIDR value to change.
7997 * Unimplemented registers in the c15 0 0 0 space default to
7998 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7999 * and friends override accordingly.
8002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8003 .access = PL1_R, .resetvalue = cpu->midr,
8004 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8005 .readfn = midr_read,
8006 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8007 .type = ARM_CP_OVERRIDE },
8008 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8010 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8011 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8013 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8014 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8016 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8017 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8019 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8020 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8022 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8023 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8025 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8026 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8028 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8029 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8030 .readfn = midr_read },
8031 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8032 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8033 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8034 .access = PL1_R, .resetvalue = cpu->midr },
8035 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8037 .access = PL1_R, .resetvalue = cpu->midr },
8038 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8041 .accessfn = access_aa64_tid1,
8042 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8044 ARMCPRegInfo id_cp_reginfo[] = {
8045 /* These are common to v8 and pre-v8 */
8047 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8048 .access = PL1_R, .accessfn = ctr_el0_access,
8049 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8050 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8051 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8052 .access = PL0_R, .accessfn = ctr_el0_access,
8053 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8054 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8058 .accessfn = access_aa32_tid1,
8059 .type = ARM_CP_CONST, .resetvalue = 0 },
8061 /* TLBTR is specific to VMSA */
8062 ARMCPRegInfo id_tlbtr_reginfo = {
8064 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8066 .accessfn = access_aa32_tid1,
8067 .type = ARM_CP_CONST, .resetvalue = 0,
8069 /* MPUIR is specific to PMSA V6+ */
8070 ARMCPRegInfo id_mpuir_reginfo = {
8072 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8073 .access = PL1_R, .type = ARM_CP_CONST,
8074 .resetvalue = cpu->pmsav7_dregion << 8
8076 static const ARMCPRegInfo crn0_wi_reginfo = {
8077 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8078 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8079 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8081 #ifdef CONFIG_USER_ONLY
8082 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8083 { .name = "MIDR_EL1",
8084 .exported_bits = 0x00000000ffffffff },
8085 { .name = "REVIDR_EL1" },
8087 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8089 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8090 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8092 /* Register the blanket "writes ignored" value first to cover the
8093 * whole space. Then update the specific ID registers to allow write
8094 * access, so that they ignore writes rather than causing them to
8097 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8098 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8099 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8101 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8102 id_cp_reginfo[i].access = PL1_RW;
8104 id_mpuir_reginfo.access = PL1_RW;
8105 id_tlbtr_reginfo.access = PL1_RW;
8107 if (arm_feature(env, ARM_FEATURE_V8)) {
8108 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8110 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8112 define_arm_cp_regs(cpu, id_cp_reginfo);
8113 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8114 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8115 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8116 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8120 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8121 ARMCPRegInfo mpidr_cp_reginfo[] = {
8122 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8123 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8124 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8126 #ifdef CONFIG_USER_ONLY
8127 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8128 { .name = "MPIDR_EL1",
8129 .fixed_bits = 0x0000000080000000 },
8131 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8133 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8136 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8137 ARMCPRegInfo auxcr_reginfo[] = {
8138 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8139 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8140 .access = PL1_RW, .accessfn = access_tacr,
8141 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8142 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8144 .access = PL2_RW, .type = ARM_CP_CONST,
8146 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8147 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8148 .access = PL3_RW, .type = ARM_CP_CONST,
8151 define_arm_cp_regs(cpu, auxcr_reginfo);
8152 if (cpu_isar_feature(aa32_ac2, cpu)) {
8153 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8157 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8159 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8160 * There are two flavours:
8161 * (1) older 32-bit only cores have a simple 32-bit CBAR
8162 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8163 * 32-bit register visible to AArch32 at a different encoding
8164 * to the "flavour 1" register and with the bits rearranged to
8165 * be able to squash a 64-bit address into the 32-bit view.
8166 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8167 * in future if we support AArch32-only configs of some of the
8168 * AArch64 cores we might need to add a specific feature flag
8169 * to indicate cores with "flavour 2" CBAR.
8171 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8172 /* 32 bit view is [31:18] 0...0 [43:32]. */
8173 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8174 | extract64(cpu->reset_cbar, 32, 12);
8175 ARMCPRegInfo cbar_reginfo[] = {
8177 .type = ARM_CP_CONST,
8178 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8179 .access = PL1_R, .resetvalue = cbar32 },
8180 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8181 .type = ARM_CP_CONST,
8182 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8183 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8185 /* We don't implement a r/w 64 bit CBAR currently */
8186 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8187 define_arm_cp_regs(cpu, cbar_reginfo);
8189 ARMCPRegInfo cbar = {
8191 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8192 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8193 .fieldoffset = offsetof(CPUARMState,
8194 cp15.c15_config_base_address)
8196 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8197 cbar.access = PL1_R;
8198 cbar.fieldoffset = 0;
8199 cbar.type = ARM_CP_CONST;
8201 define_one_arm_cp_reg(cpu, &cbar);
8205 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8206 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8207 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8208 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8209 .access = PL1_RW, .writefn = vbar_write,
8210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8211 offsetof(CPUARMState, cp15.vbar_ns) },
8214 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8217 /* Generic registers whose values depend on the implementation */
8219 ARMCPRegInfo sctlr = {
8220 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8221 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8222 .access = PL1_RW, .accessfn = access_tvm_trvm,
8223 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8224 offsetof(CPUARMState, cp15.sctlr_ns) },
8225 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8226 .raw_writefn = raw_write,
8228 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8229 /* Normally we would always end the TB on an SCTLR write, but Linux
8230 * arch/arm/mach-pxa/sleep.S expects two instructions following
8231 * an MMU enable to execute from cache. Imitate this behaviour.
8233 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8235 define_one_arm_cp_reg(cpu, &sctlr);
8238 if (cpu_isar_feature(aa64_lor, cpu)) {
8239 define_arm_cp_regs(cpu, lor_reginfo);
8241 if (cpu_isar_feature(aa64_pan, cpu)) {
8242 define_one_arm_cp_reg(cpu, &pan_reginfo);
8244 #ifndef CONFIG_USER_ONLY
8245 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8246 define_arm_cp_regs(cpu, ats1e1_reginfo);
8248 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8249 define_arm_cp_regs(cpu, ats1cp_reginfo);
8252 if (cpu_isar_feature(aa64_uao, cpu)) {
8253 define_one_arm_cp_reg(cpu, &uao_reginfo);
8256 if (cpu_isar_feature(aa64_dit, cpu)) {
8257 define_one_arm_cp_reg(cpu, &dit_reginfo);
8259 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8260 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8262 if (cpu_isar_feature(any_ras, cpu)) {
8263 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8266 if (cpu_isar_feature(aa64_vh, cpu) ||
8267 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8268 define_one_arm_cp_reg(cpu, &contextidr_el2);
8270 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8271 define_arm_cp_regs(cpu, vhe_reginfo);
8274 if (cpu_isar_feature(aa64_sve, cpu)) {
8275 define_arm_cp_regs(cpu, zcr_reginfo);
8278 if (cpu_isar_feature(aa64_hcx, cpu)) {
8279 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8282 #ifdef TARGET_AARCH64
8283 if (cpu_isar_feature(aa64_sme, cpu)) {
8284 define_arm_cp_regs(cpu, sme_reginfo);
8286 if (cpu_isar_feature(aa64_pauth, cpu)) {
8287 define_arm_cp_regs(cpu, pauth_reginfo);
8289 if (cpu_isar_feature(aa64_rndr, cpu)) {
8290 define_arm_cp_regs(cpu, rndr_reginfo);
8292 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8293 define_arm_cp_regs(cpu, tlbirange_reginfo);
8295 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8296 define_arm_cp_regs(cpu, tlbios_reginfo);
8298 #ifndef CONFIG_USER_ONLY
8299 /* Data Cache clean instructions up to PoP */
8300 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8301 define_one_arm_cp_reg(cpu, dcpop_reg);
8303 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8304 define_one_arm_cp_reg(cpu, dcpodp_reg);
8307 #endif /*CONFIG_USER_ONLY*/
8310 * If full MTE is enabled, add all of the system registers.
8311 * If only "instructions available at EL0" are enabled,
8312 * then define only a RAZ/WI version of PSTATE.TCO.
8314 if (cpu_isar_feature(aa64_mte, cpu)) {
8315 define_arm_cp_regs(cpu, mte_reginfo);
8316 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8317 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8318 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8319 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8322 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8323 define_arm_cp_regs(cpu, scxtnum_reginfo);
8327 if (cpu_isar_feature(any_predinv, cpu)) {
8328 define_arm_cp_regs(cpu, predinv_reginfo);
8331 if (cpu_isar_feature(any_ccidx, cpu)) {
8332 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8335 #ifndef CONFIG_USER_ONLY
8337 * Register redirections and aliases must be done last,
8338 * after the registers from the other extensions have been defined.
8340 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8341 define_arm_vh_e2h_redirects_aliases(cpu);
8346 /* Sort alphabetically by type name, except for "any". */
8347 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8349 ObjectClass *class_a = (ObjectClass *)a;
8350 ObjectClass *class_b = (ObjectClass *)b;
8351 const char *name_a, *name_b;
8353 name_a = object_class_get_name(class_a);
8354 name_b = object_class_get_name(class_b);
8355 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8357 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8360 return strcmp(name_a, name_b);
8364 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8366 ObjectClass *oc = data;
8367 CPUClass *cc = CPU_CLASS(oc);
8368 const char *typename;
8371 typename = object_class_get_name(oc);
8372 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8373 if (cc->deprecation_note) {
8374 qemu_printf(" %s (deprecated)\n", name);
8376 qemu_printf(" %s\n", name);
8381 void arm_cpu_list(void)
8385 list = object_class_get_list(TYPE_ARM_CPU, false);
8386 list = g_slist_sort(list, arm_cpu_list_compare);
8387 qemu_printf("Available CPUs:\n");
8388 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8392 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8394 ObjectClass *oc = data;
8395 CpuDefinitionInfoList **cpu_list = user_data;
8396 CpuDefinitionInfo *info;
8397 const char *typename;
8399 typename = object_class_get_name(oc);
8400 info = g_malloc0(sizeof(*info));
8401 info->name = g_strndup(typename,
8402 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8403 info->q_typename = g_strdup(typename);
8405 QAPI_LIST_PREPEND(*cpu_list, info);
8408 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8410 CpuDefinitionInfoList *cpu_list = NULL;
8413 list = object_class_get_list(TYPE_ARM_CPU, false);
8414 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8421 * Private utility function for define_one_arm_cp_reg_with_opaque():
8422 * add a single reginfo struct to the hash table.
8424 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8425 void *opaque, CPState state,
8426 CPSecureState secstate,
8427 int crm, int opc1, int opc2,
8430 CPUARMState *env = &cpu->env;
8433 bool is64 = r->type & ARM_CP_64BIT;
8434 bool ns = secstate & ARM_CP_SECSTATE_NS;
8440 case ARM_CP_STATE_AA32:
8441 /* We assume it is a cp15 register if the .cp field is left unset. */
8442 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8445 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8447 case ARM_CP_STATE_AA64:
8449 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8450 * cp == 0 as equivalent to the value for "standard guest-visible
8451 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8452 * in their AArch64 view (the .cp value may be non-zero for the
8453 * benefit of the AArch32 view).
8455 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8456 cp = CP_REG_ARM64_SYSREG_CP;
8458 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8461 g_assert_not_reached();
8464 /* Overriding of an existing definition must be explicitly requested. */
8465 if (!(r->type & ARM_CP_OVERRIDE)) {
8466 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8468 assert(oldreg->type & ARM_CP_OVERRIDE);
8473 * Eliminate registers that are not present because the EL is missing.
8474 * Doing this here makes it easier to put all registers for a given
8475 * feature into the same ARMCPRegInfo array and define them all at once.
8478 if (arm_feature(env, ARM_FEATURE_EL3)) {
8480 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8481 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8483 int min_el = ctz32(r->access) / 2;
8484 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8485 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8488 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8491 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8493 if ((r->access & max_el) == 0) {
8498 /* Combine cpreg and name into one allocation. */
8499 name_len = strlen(name) + 1;
8500 r2 = g_malloc(sizeof(*r2) + name_len);
8502 r2->name = memcpy(r2 + 1, name, name_len);
8505 * Update fields to match the instantiation, overwiting wildcards
8506 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8513 r2->secure = secstate;
8515 r2->opaque = opaque;
8519 /* This should not have been a very special register to begin. */
8520 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8521 assert(old_special == 0 || old_special == ARM_CP_NOP);
8523 * Set the special function to CONST, retaining the other flags.
8524 * This is important for e.g. ARM_CP_SVE so that we still
8525 * take the SVE trap if CPTR_EL3.EZ == 0.
8527 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8529 * Usually, these registers become RES0, but there are a few
8530 * special cases like VPIDR_EL2 which have a constant non-zero
8531 * value with writes ignored.
8533 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8537 * ARM_CP_CONST has precedence, so removing the callbacks and
8538 * offsets are not strictly necessary, but it is potentially
8539 * less confusing to debug later.
8543 r2->raw_readfn = NULL;
8544 r2->raw_writefn = NULL;
8546 r2->fieldoffset = 0;
8547 r2->bank_fieldoffsets[0] = 0;
8548 r2->bank_fieldoffsets[1] = 0;
8550 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8554 * Register is banked (using both entries in array).
8555 * Overwriting fieldoffset as the array is only used to define
8556 * banked registers but later only fieldoffset is used.
8558 r2->fieldoffset = r->bank_fieldoffsets[ns];
8560 if (state == ARM_CP_STATE_AA32) {
8563 * If the register is banked then we don't need to migrate or
8564 * reset the 32-bit instance in certain cases:
8566 * 1) If the register has both 32-bit and 64-bit instances
8567 * then we can count on the 64-bit instance taking care
8568 * of the non-secure bank.
8569 * 2) If ARMv8 is enabled then we can count on a 64-bit
8570 * version taking care of the secure bank. This requires
8571 * that separate 32 and 64-bit definitions are provided.
8573 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8574 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8575 r2->type |= ARM_CP_ALIAS;
8577 } else if ((secstate != r->secure) && !ns) {
8579 * The register is not banked so we only want to allow
8580 * migration of the non-secure instance.
8582 r2->type |= ARM_CP_ALIAS;
8585 if (HOST_BIG_ENDIAN &&
8586 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8587 r2->fieldoffset += sizeof(uint32_t);
8593 * By convention, for wildcarded registers only the first
8594 * entry is used for migration; the others are marked as
8595 * ALIAS so we don't try to transfer the register
8596 * multiple times. Special registers (ie NOP/WFI) are
8597 * never migratable and not even raw-accessible.
8599 if (r2->type & ARM_CP_SPECIAL_MASK) {
8600 r2->type |= ARM_CP_NO_RAW;
8602 if (((r->crm == CP_ANY) && crm != 0) ||
8603 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8604 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8605 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8609 * Check that raw accesses are either forbidden or handled. Note that
8610 * we can't assert this earlier because the setup of fieldoffset for
8611 * banked registers has to be done first.
8613 if (!(r2->type & ARM_CP_NO_RAW)) {
8614 assert(!raw_accessors_invalid(r2));
8617 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8621 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8622 const ARMCPRegInfo *r, void *opaque)
8624 /* Define implementations of coprocessor registers.
8625 * We store these in a hashtable because typically
8626 * there are less than 150 registers in a space which
8627 * is 16*16*16*8*8 = 262144 in size.
8628 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8629 * If a register is defined twice then the second definition is
8630 * used, so this can be used to define some generic registers and
8631 * then override them with implementation specific variations.
8632 * At least one of the original and the second definition should
8633 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8634 * against accidental use.
8636 * The state field defines whether the register is to be
8637 * visible in the AArch32 or AArch64 execution state. If the
8638 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8639 * reginfo structure for the AArch32 view, which sees the lower
8640 * 32 bits of the 64 bit register.
8642 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8643 * be wildcarded. AArch64 registers are always considered to be 64
8644 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8645 * the register, if any.
8647 int crm, opc1, opc2;
8648 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8649 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8650 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8651 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8652 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8653 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8656 /* 64 bit registers have only CRm and Opc1 fields */
8657 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8658 /* op0 only exists in the AArch64 encodings */
8659 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8660 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8661 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8663 * This API is only for Arm's system coprocessors (14 and 15) or
8664 * (M-profile or v7A-and-earlier only) for implementation defined
8665 * coprocessors in the range 0..7. Our decode assumes this, since
8666 * 8..13 can be used for other insns including VFP and Neon. See
8667 * valid_cp() in translate.c. Assert here that we haven't tried
8668 * to use an invalid coprocessor number.
8671 case ARM_CP_STATE_BOTH:
8672 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8677 case ARM_CP_STATE_AA32:
8678 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8679 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8680 assert(r->cp >= 14 && r->cp <= 15);
8682 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8685 case ARM_CP_STATE_AA64:
8686 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8689 g_assert_not_reached();
8691 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8692 * encodes a minimum access level for the register. We roll this
8693 * runtime check into our general permission check code, so check
8694 * here that the reginfo's specified permissions are strict enough
8695 * to encompass the generic architectural permission check.
8697 if (r->state != ARM_CP_STATE_AA32) {
8698 CPAccessRights mask;
8701 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8702 mask = PL0U_R | PL1_RW;
8722 /* min_EL EL1, secure mode only (we don't check the latter) */
8726 /* broken reginfo with out-of-range opc1 */
8727 g_assert_not_reached();
8729 /* assert our permissions are not too lax (stricter is fine) */
8730 assert((r->access & ~mask) == 0);
8733 /* Check that the register definition has enough info to handle
8734 * reads and writes if they are permitted.
8736 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8737 if (r->access & PL3_R) {
8738 assert((r->fieldoffset ||
8739 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8742 if (r->access & PL3_W) {
8743 assert((r->fieldoffset ||
8744 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8749 for (crm = crmmin; crm <= crmmax; crm++) {
8750 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8751 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8752 for (state = ARM_CP_STATE_AA32;
8753 state <= ARM_CP_STATE_AA64; state++) {
8754 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8757 if (state == ARM_CP_STATE_AA32) {
8758 /* Under AArch32 CP registers can be common
8759 * (same for secure and non-secure world) or banked.
8763 switch (r->secure) {
8764 case ARM_CP_SECSTATE_S:
8765 case ARM_CP_SECSTATE_NS:
8766 add_cpreg_to_hashtable(cpu, r, opaque, state,
8767 r->secure, crm, opc1, opc2,
8770 case ARM_CP_SECSTATE_BOTH:
8771 name = g_strdup_printf("%s_S", r->name);
8772 add_cpreg_to_hashtable(cpu, r, opaque, state,
8774 crm, opc1, opc2, name);
8776 add_cpreg_to_hashtable(cpu, r, opaque, state,
8778 crm, opc1, opc2, r->name);
8781 g_assert_not_reached();
8784 /* AArch64 registers get mapped to non-secure instance
8786 add_cpreg_to_hashtable(cpu, r, opaque, state,
8788 crm, opc1, opc2, r->name);
8796 /* Define a whole list of registers */
8797 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8798 void *opaque, size_t len)
8801 for (i = 0; i < len; ++i) {
8802 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8807 * Modify ARMCPRegInfo for access from userspace.
8809 * This is a data driven modification directed by
8810 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8811 * user-space cannot alter any values and dynamic values pertaining to
8812 * execution state are hidden from user space view anyway.
8814 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8815 const ARMCPRegUserSpaceInfo *mods,
8818 for (size_t mi = 0; mi < mods_len; ++mi) {
8819 const ARMCPRegUserSpaceInfo *m = mods + mi;
8820 GPatternSpec *pat = NULL;
8823 pat = g_pattern_spec_new(m->name);
8825 for (size_t ri = 0; ri < regs_len; ++ri) {
8826 ARMCPRegInfo *r = regs + ri;
8828 if (pat && g_pattern_match_string(pat, r->name)) {
8829 r->type = ARM_CP_CONST;
8833 } else if (strcmp(r->name, m->name) == 0) {
8834 r->type = ARM_CP_CONST;
8836 r->resetvalue &= m->exported_bits;
8837 r->resetvalue |= m->fixed_bits;
8842 g_pattern_spec_free(pat);
8847 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8849 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8852 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8855 /* Helper coprocessor write function for write-ignore registers */
8858 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8860 /* Helper coprocessor write function for read-as-zero registers */
8864 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8866 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8869 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8871 /* Return true if it is not valid for us to switch to
8872 * this CPU mode (ie all the UNPREDICTABLE cases in
8873 * the ARM ARM CPSRWriteByInstr pseudocode).
8876 /* Changes to or from Hyp via MSR and CPS are illegal. */
8877 if (write_type == CPSRWriteByInstr &&
8878 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8879 mode == ARM_CPU_MODE_HYP)) {
8884 case ARM_CPU_MODE_USR:
8886 case ARM_CPU_MODE_SYS:
8887 case ARM_CPU_MODE_SVC:
8888 case ARM_CPU_MODE_ABT:
8889 case ARM_CPU_MODE_UND:
8890 case ARM_CPU_MODE_IRQ:
8891 case ARM_CPU_MODE_FIQ:
8892 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8893 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8895 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8896 * and CPS are treated as illegal mode changes.
8898 if (write_type == CPSRWriteByInstr &&
8899 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8900 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8904 case ARM_CPU_MODE_HYP:
8905 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8906 case ARM_CPU_MODE_MON:
8907 return arm_current_el(env) < 3;
8913 uint32_t cpsr_read(CPUARMState *env)
8916 ZF = (env->ZF == 0);
8917 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8918 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8919 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8920 | ((env->condexec_bits & 0xfc) << 8)
8921 | (env->GE << 16) | (env->daif & CPSR_AIF);
8924 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8925 CPSRWriteType write_type)
8927 uint32_t changed_daif;
8928 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8929 (mask & (CPSR_M | CPSR_E | CPSR_IL));
8931 if (mask & CPSR_NZCV) {
8932 env->ZF = (~val) & CPSR_Z;
8934 env->CF = (val >> 29) & 1;
8935 env->VF = (val << 3) & 0x80000000;
8938 env->QF = ((val & CPSR_Q) != 0);
8940 env->thumb = ((val & CPSR_T) != 0);
8941 if (mask & CPSR_IT_0_1) {
8942 env->condexec_bits &= ~3;
8943 env->condexec_bits |= (val >> 25) & 3;
8945 if (mask & CPSR_IT_2_7) {
8946 env->condexec_bits &= 3;
8947 env->condexec_bits |= (val >> 8) & 0xfc;
8949 if (mask & CPSR_GE) {
8950 env->GE = (val >> 16) & 0xf;
8953 /* In a V7 implementation that includes the security extensions but does
8954 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8955 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8956 * bits respectively.
8958 * In a V8 implementation, it is permitted for privileged software to
8959 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8961 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8962 arm_feature(env, ARM_FEATURE_EL3) &&
8963 !arm_feature(env, ARM_FEATURE_EL2) &&
8964 !arm_is_secure(env)) {
8966 changed_daif = (env->daif ^ val) & mask;
8968 if (changed_daif & CPSR_A) {
8969 /* Check to see if we are allowed to change the masking of async
8970 * abort exceptions from a non-secure state.
8972 if (!(env->cp15.scr_el3 & SCR_AW)) {
8973 qemu_log_mask(LOG_GUEST_ERROR,
8974 "Ignoring attempt to switch CPSR_A flag from "
8975 "non-secure world with SCR.AW bit clear\n");
8980 if (changed_daif & CPSR_F) {
8981 /* Check to see if we are allowed to change the masking of FIQ
8982 * exceptions from a non-secure state.
8984 if (!(env->cp15.scr_el3 & SCR_FW)) {
8985 qemu_log_mask(LOG_GUEST_ERROR,
8986 "Ignoring attempt to switch CPSR_F flag from "
8987 "non-secure world with SCR.FW bit clear\n");
8991 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8992 * If this bit is set software is not allowed to mask
8993 * FIQs, but is allowed to set CPSR_F to 0.
8995 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8997 qemu_log_mask(LOG_GUEST_ERROR,
8998 "Ignoring attempt to enable CPSR_F flag "
8999 "(non-maskable FIQ [NMFI] support enabled)\n");
9005 env->daif &= ~(CPSR_AIF & mask);
9006 env->daif |= val & CPSR_AIF & mask;
9008 if (write_type != CPSRWriteRaw &&
9009 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9010 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9011 /* Note that we can only get here in USR mode if this is a
9012 * gdb stub write; for this case we follow the architectural
9013 * behaviour for guest writes in USR mode of ignoring an attempt
9014 * to switch mode. (Those are caught by translate.c for writes
9015 * triggered by guest instructions.)
9018 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9019 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9020 * v7, and has defined behaviour in v8:
9021 * + leave CPSR.M untouched
9022 * + allow changes to the other CPSR fields
9024 * For user changes via the GDB stub, we don't set PSTATE.IL,
9025 * as this would be unnecessarily harsh for a user error.
9028 if (write_type != CPSRWriteByGDBStub &&
9029 arm_feature(env, ARM_FEATURE_V8)) {
9033 qemu_log_mask(LOG_GUEST_ERROR,
9034 "Illegal AArch32 mode switch attempt from %s to %s\n",
9035 aarch32_mode_name(env->uncached_cpsr),
9036 aarch32_mode_name(val));
9038 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9039 write_type == CPSRWriteExceptionReturn ?
9040 "Exception return from AArch32" :
9041 "AArch32 mode switch from",
9042 aarch32_mode_name(env->uncached_cpsr),
9043 aarch32_mode_name(val), env->regs[15]);
9044 switch_mode(env, val & CPSR_M);
9047 mask &= ~CACHED_CPSR_BITS;
9048 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9049 if (rebuild_hflags) {
9050 arm_rebuild_hflags(env);
9054 /* Sign/zero extend */
9055 uint32_t HELPER(sxtb16)(uint32_t x)
9058 res = (uint16_t)(int8_t)x;
9059 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9063 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9066 * Take a division-by-zero exception if necessary; otherwise return
9067 * to get the usual non-trapping division behaviour (result of 0)
9069 if (arm_feature(env, ARM_FEATURE_M)
9070 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9071 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9075 uint32_t HELPER(uxtb16)(uint32_t x)
9078 res = (uint16_t)(uint8_t)x;
9079 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9083 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9086 handle_possible_div0_trap(env, GETPC());
9089 if (num == INT_MIN && den == -1) {
9095 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9098 handle_possible_div0_trap(env, GETPC());
9104 uint32_t HELPER(rbit)(uint32_t x)
9109 #ifdef CONFIG_USER_ONLY
9111 static void switch_mode(CPUARMState *env, int mode)
9113 ARMCPU *cpu = env_archcpu(env);
9115 if (mode != ARM_CPU_MODE_USR) {
9116 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9120 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9121 uint32_t cur_el, bool secure)
9126 void aarch64_sync_64_to_32(CPUARMState *env)
9128 g_assert_not_reached();
9133 static void switch_mode(CPUARMState *env, int mode)
9138 old_mode = env->uncached_cpsr & CPSR_M;
9139 if (mode == old_mode)
9142 if (old_mode == ARM_CPU_MODE_FIQ) {
9143 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9144 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9145 } else if (mode == ARM_CPU_MODE_FIQ) {
9146 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9147 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9150 i = bank_number(old_mode);
9151 env->banked_r13[i] = env->regs[13];
9152 env->banked_spsr[i] = env->spsr;
9154 i = bank_number(mode);
9155 env->regs[13] = env->banked_r13[i];
9156 env->spsr = env->banked_spsr[i];
9158 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9159 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9162 /* Physical Interrupt Target EL Lookup Table
9164 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9166 * The below multi-dimensional table is used for looking up the target
9167 * exception level given numerous condition criteria. Specifically, the
9168 * target EL is based on SCR and HCR routing controls as well as the
9169 * currently executing EL and secure state.
9172 * target_el_table[2][2][2][2][2][4]
9173 * | | | | | +--- Current EL
9174 * | | | | +------ Non-secure(0)/Secure(1)
9175 * | | | +--------- HCR mask override
9176 * | | +------------ SCR exec state control
9177 * | +--------------- SCR mask override
9178 * +------------------ 32-bit(0)/64-bit(1) EL3
9180 * The table values are as such:
9184 * The ARM ARM target EL table includes entries indicating that an "exception
9185 * is not taken". The two cases where this is applicable are:
9186 * 1) An exception is taken from EL3 but the SCR does not have the exception
9188 * 2) An exception is taken from EL2 but the HCR does not have the exception
9190 * In these two cases, the below table contain a target of EL1. This value is
9191 * returned as it is expected that the consumer of the table data will check
9192 * for "target EL >= current EL" to ensure the exception is not taken.
9196 * BIT IRQ IMO Non-secure Secure
9197 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9199 static const int8_t target_el_table[2][2][2][2][2][4] = {
9200 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9201 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9202 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9203 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9204 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9205 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9206 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9207 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9208 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9209 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9210 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9211 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9212 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9213 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9214 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9215 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9219 * Determine the target EL for physical exceptions
9221 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9222 uint32_t cur_el, bool secure)
9224 CPUARMState *env = cs->env_ptr;
9229 /* Is the highest EL AArch64? */
9230 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9233 if (arm_feature(env, ARM_FEATURE_EL3)) {
9234 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9236 /* Either EL2 is the highest EL (and so the EL2 register width
9237 * is given by is64); or there is no EL2 or EL3, in which case
9238 * the value of 'rw' does not affect the table lookup anyway.
9243 hcr_el2 = arm_hcr_el2_eff(env);
9246 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9247 hcr = hcr_el2 & HCR_IMO;
9250 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9251 hcr = hcr_el2 & HCR_FMO;
9254 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9255 hcr = hcr_el2 & HCR_AMO;
9260 * For these purposes, TGE and AMO/IMO/FMO both force the
9261 * interrupt to EL2. Fold TGE into the bit extracted above.
9263 hcr |= (hcr_el2 & HCR_TGE) != 0;
9265 /* Perform a table-lookup for the target EL given the current state */
9266 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9268 assert(target_el > 0);
9273 void arm_log_exception(CPUState *cs)
9275 int idx = cs->exception_index;
9277 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9278 const char *exc = NULL;
9279 static const char * const excnames[] = {
9280 [EXCP_UDEF] = "Undefined Instruction",
9282 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9283 [EXCP_DATA_ABORT] = "Data Abort",
9286 [EXCP_BKPT] = "Breakpoint",
9287 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9288 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9289 [EXCP_HVC] = "Hypervisor Call",
9290 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9291 [EXCP_SMC] = "Secure Monitor Call",
9292 [EXCP_VIRQ] = "Virtual IRQ",
9293 [EXCP_VFIQ] = "Virtual FIQ",
9294 [EXCP_SEMIHOST] = "Semihosting call",
9295 [EXCP_NOCP] = "v7M NOCP UsageFault",
9296 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9297 [EXCP_STKOF] = "v8M STKOF UsageFault",
9298 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9299 [EXCP_LSERR] = "v8M LSERR UsageFault",
9300 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9301 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9302 [EXCP_VSERR] = "Virtual SERR",
9305 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9306 exc = excnames[idx];
9311 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9312 idx, exc, cs->cpu_index);
9317 * Function used to synchronize QEMU's AArch64 register set with AArch32
9318 * register set. This is necessary when switching between AArch32 and AArch64
9321 void aarch64_sync_32_to_64(CPUARMState *env)
9324 uint32_t mode = env->uncached_cpsr & CPSR_M;
9326 /* We can blanket copy R[0:7] to X[0:7] */
9327 for (i = 0; i < 8; i++) {
9328 env->xregs[i] = env->regs[i];
9332 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9333 * Otherwise, they come from the banked user regs.
9335 if (mode == ARM_CPU_MODE_FIQ) {
9336 for (i = 8; i < 13; i++) {
9337 env->xregs[i] = env->usr_regs[i - 8];
9340 for (i = 8; i < 13; i++) {
9341 env->xregs[i] = env->regs[i];
9346 * Registers x13-x23 are the various mode SP and FP registers. Registers
9347 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9348 * from the mode banked register.
9350 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9351 env->xregs[13] = env->regs[13];
9352 env->xregs[14] = env->regs[14];
9354 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9355 /* HYP is an exception in that it is copied from r14 */
9356 if (mode == ARM_CPU_MODE_HYP) {
9357 env->xregs[14] = env->regs[14];
9359 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9363 if (mode == ARM_CPU_MODE_HYP) {
9364 env->xregs[15] = env->regs[13];
9366 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9369 if (mode == ARM_CPU_MODE_IRQ) {
9370 env->xregs[16] = env->regs[14];
9371 env->xregs[17] = env->regs[13];
9373 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9374 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9377 if (mode == ARM_CPU_MODE_SVC) {
9378 env->xregs[18] = env->regs[14];
9379 env->xregs[19] = env->regs[13];
9381 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9382 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9385 if (mode == ARM_CPU_MODE_ABT) {
9386 env->xregs[20] = env->regs[14];
9387 env->xregs[21] = env->regs[13];
9389 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9390 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9393 if (mode == ARM_CPU_MODE_UND) {
9394 env->xregs[22] = env->regs[14];
9395 env->xregs[23] = env->regs[13];
9397 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9398 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9402 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9403 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9404 * FIQ bank for r8-r14.
9406 if (mode == ARM_CPU_MODE_FIQ) {
9407 for (i = 24; i < 31; i++) {
9408 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9411 for (i = 24; i < 29; i++) {
9412 env->xregs[i] = env->fiq_regs[i - 24];
9414 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9415 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9418 env->pc = env->regs[15];
9422 * Function used to synchronize QEMU's AArch32 register set with AArch64
9423 * register set. This is necessary when switching between AArch32 and AArch64
9426 void aarch64_sync_64_to_32(CPUARMState *env)
9429 uint32_t mode = env->uncached_cpsr & CPSR_M;
9431 /* We can blanket copy X[0:7] to R[0:7] */
9432 for (i = 0; i < 8; i++) {
9433 env->regs[i] = env->xregs[i];
9437 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9438 * Otherwise, we copy x8-x12 into the banked user regs.
9440 if (mode == ARM_CPU_MODE_FIQ) {
9441 for (i = 8; i < 13; i++) {
9442 env->usr_regs[i - 8] = env->xregs[i];
9445 for (i = 8; i < 13; i++) {
9446 env->regs[i] = env->xregs[i];
9451 * Registers r13 & r14 depend on the current mode.
9452 * If we are in a given mode, we copy the corresponding x registers to r13
9453 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9456 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9457 env->regs[13] = env->xregs[13];
9458 env->regs[14] = env->xregs[14];
9460 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9463 * HYP is an exception in that it does not have its own banked r14 but
9464 * shares the USR r14
9466 if (mode == ARM_CPU_MODE_HYP) {
9467 env->regs[14] = env->xregs[14];
9469 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9473 if (mode == ARM_CPU_MODE_HYP) {
9474 env->regs[13] = env->xregs[15];
9476 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9479 if (mode == ARM_CPU_MODE_IRQ) {
9480 env->regs[14] = env->xregs[16];
9481 env->regs[13] = env->xregs[17];
9483 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9484 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9487 if (mode == ARM_CPU_MODE_SVC) {
9488 env->regs[14] = env->xregs[18];
9489 env->regs[13] = env->xregs[19];
9491 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9492 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9495 if (mode == ARM_CPU_MODE_ABT) {
9496 env->regs[14] = env->xregs[20];
9497 env->regs[13] = env->xregs[21];
9499 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9500 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9503 if (mode == ARM_CPU_MODE_UND) {
9504 env->regs[14] = env->xregs[22];
9505 env->regs[13] = env->xregs[23];
9507 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9508 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9511 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9512 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9513 * FIQ bank for r8-r14.
9515 if (mode == ARM_CPU_MODE_FIQ) {
9516 for (i = 24; i < 31; i++) {
9517 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9520 for (i = 24; i < 29; i++) {
9521 env->fiq_regs[i - 24] = env->xregs[i];
9523 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9524 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9527 env->regs[15] = env->pc;
9530 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9531 uint32_t mask, uint32_t offset,
9536 /* Change the CPU state so as to actually take the exception. */
9537 switch_mode(env, new_mode);
9540 * For exceptions taken to AArch32 we must clear the SS bit in both
9541 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9543 env->pstate &= ~PSTATE_SS;
9544 env->spsr = cpsr_read(env);
9545 /* Clear IT bits. */
9546 env->condexec_bits = 0;
9547 /* Switch to the new mode, and to the correct instruction set. */
9548 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9550 /* This must be after mode switching. */
9551 new_el = arm_current_el(env);
9553 /* Set new mode endianness */
9554 env->uncached_cpsr &= ~CPSR_E;
9555 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9556 env->uncached_cpsr |= CPSR_E;
9558 /* J and IL must always be cleared for exception entry */
9559 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9562 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9563 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9564 env->uncached_cpsr |= CPSR_SSBS;
9566 env->uncached_cpsr &= ~CPSR_SSBS;
9570 if (new_mode == ARM_CPU_MODE_HYP) {
9571 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9572 env->elr_el[2] = env->regs[15];
9574 /* CPSR.PAN is normally preserved preserved unless... */
9575 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9578 if (!arm_is_secure_below_el3(env)) {
9579 /* ... the target is EL3, from non-secure state. */
9580 env->uncached_cpsr &= ~CPSR_PAN;
9583 /* ... the target is EL3, from secure state ... */
9586 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9587 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9588 env->uncached_cpsr |= CPSR_PAN;
9594 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9595 * and we should just guard the thumb mode on V4
9597 if (arm_feature(env, ARM_FEATURE_V4T)) {
9599 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9601 env->regs[14] = env->regs[15] + offset;
9603 env->regs[15] = newpc;
9604 arm_rebuild_hflags(env);
9607 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9610 * Handle exception entry to Hyp mode; this is sufficiently
9611 * different to entry to other AArch32 modes that we handle it
9614 * The vector table entry used is always the 0x14 Hyp mode entry point,
9615 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9616 * The offset applied to the preferred return address is always zero
9617 * (see DDI0487C.a section G1.12.3).
9618 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9620 uint32_t addr, mask;
9621 ARMCPU *cpu = ARM_CPU(cs);
9622 CPUARMState *env = &cpu->env;
9624 switch (cs->exception_index) {
9632 /* Fall through to prefetch abort. */
9633 case EXCP_PREFETCH_ABORT:
9634 env->cp15.ifar_s = env->exception.vaddress;
9635 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9636 (uint32_t)env->exception.vaddress);
9639 case EXCP_DATA_ABORT:
9640 env->cp15.dfar_s = env->exception.vaddress;
9641 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9642 (uint32_t)env->exception.vaddress);
9658 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9661 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9662 if (!arm_feature(env, ARM_FEATURE_V8)) {
9664 * QEMU syndrome values are v8-style. v7 has the IL bit
9665 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9666 * If this is a v7 CPU, squash the IL bit in those cases.
9668 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9669 (cs->exception_index == EXCP_DATA_ABORT &&
9670 !(env->exception.syndrome & ARM_EL_ISV)) ||
9671 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9672 env->exception.syndrome &= ~ARM_EL_IL;
9675 env->cp15.esr_el[2] = env->exception.syndrome;
9678 if (arm_current_el(env) != 2 && addr < 0x14) {
9683 if (!(env->cp15.scr_el3 & SCR_EA)) {
9686 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9689 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9693 addr += env->cp15.hvbar;
9695 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9698 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9700 ARMCPU *cpu = ARM_CPU(cs);
9701 CPUARMState *env = &cpu->env;
9708 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9709 switch (syn_get_ec(env->exception.syndrome)) {
9711 case EC_BREAKPOINT_SAME_EL:
9715 case EC_WATCHPOINT_SAME_EL:
9721 case EC_VECTORCATCH:
9730 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9733 if (env->exception.target_el == 2) {
9734 arm_cpu_do_interrupt_aarch32_hyp(cs);
9738 switch (cs->exception_index) {
9740 new_mode = ARM_CPU_MODE_UND;
9749 new_mode = ARM_CPU_MODE_SVC;
9752 /* The PC already points to the next instruction. */
9756 /* Fall through to prefetch abort. */
9757 case EXCP_PREFETCH_ABORT:
9758 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9759 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9760 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9761 env->exception.fsr, (uint32_t)env->exception.vaddress);
9762 new_mode = ARM_CPU_MODE_ABT;
9764 mask = CPSR_A | CPSR_I;
9767 case EXCP_DATA_ABORT:
9768 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9769 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9770 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9772 (uint32_t)env->exception.vaddress);
9773 new_mode = ARM_CPU_MODE_ABT;
9775 mask = CPSR_A | CPSR_I;
9779 new_mode = ARM_CPU_MODE_IRQ;
9781 /* Disable IRQ and imprecise data aborts. */
9782 mask = CPSR_A | CPSR_I;
9784 if (env->cp15.scr_el3 & SCR_IRQ) {
9785 /* IRQ routed to monitor mode */
9786 new_mode = ARM_CPU_MODE_MON;
9791 new_mode = ARM_CPU_MODE_FIQ;
9793 /* Disable FIQ, IRQ and imprecise data aborts. */
9794 mask = CPSR_A | CPSR_I | CPSR_F;
9795 if (env->cp15.scr_el3 & SCR_FIQ) {
9796 /* FIQ routed to monitor mode */
9797 new_mode = ARM_CPU_MODE_MON;
9802 new_mode = ARM_CPU_MODE_IRQ;
9804 /* Disable IRQ and imprecise data aborts. */
9805 mask = CPSR_A | CPSR_I;
9809 new_mode = ARM_CPU_MODE_FIQ;
9811 /* Disable FIQ, IRQ and imprecise data aborts. */
9812 mask = CPSR_A | CPSR_I | CPSR_F;
9818 * Note that this is reported as a data abort, but the DFAR
9819 * has an UNKNOWN value. Construct the SError syndrome from
9820 * AET and ExT fields.
9822 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9824 if (extended_addresses_enabled(env)) {
9825 env->exception.fsr = arm_fi_to_lfsc(&fi);
9827 env->exception.fsr = arm_fi_to_sfsc(&fi);
9829 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9830 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9831 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9832 env->exception.fsr);
9834 new_mode = ARM_CPU_MODE_ABT;
9836 mask = CPSR_A | CPSR_I;
9841 new_mode = ARM_CPU_MODE_MON;
9843 mask = CPSR_A | CPSR_I | CPSR_F;
9847 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9848 return; /* Never happens. Keep compiler happy. */
9851 if (new_mode == ARM_CPU_MODE_MON) {
9852 addr += env->cp15.mvbar;
9853 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9854 /* High vectors. When enabled, base address cannot be remapped. */
9857 /* ARM v7 architectures provide a vector base address register to remap
9858 * the interrupt vector table.
9859 * This register is only followed in non-monitor mode, and is banked.
9860 * Note: only bits 31:5 are valid.
9862 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9865 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9866 env->cp15.scr_el3 &= ~SCR_NS;
9869 take_aarch32_exception(env, new_mode, mask, offset, addr);
9872 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9875 * Return the register number of the AArch64 view of the AArch32
9876 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9877 * be that of the AArch32 mode the exception came from.
9879 int mode = env->uncached_cpsr & CPSR_M;
9881 switch (aarch32_reg) {
9885 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9888 case ARM_CPU_MODE_USR:
9889 case ARM_CPU_MODE_SYS:
9891 case ARM_CPU_MODE_HYP:
9893 case ARM_CPU_MODE_IRQ:
9895 case ARM_CPU_MODE_SVC:
9897 case ARM_CPU_MODE_ABT:
9899 case ARM_CPU_MODE_UND:
9901 case ARM_CPU_MODE_FIQ:
9904 g_assert_not_reached();
9908 case ARM_CPU_MODE_USR:
9909 case ARM_CPU_MODE_SYS:
9910 case ARM_CPU_MODE_HYP:
9912 case ARM_CPU_MODE_IRQ:
9914 case ARM_CPU_MODE_SVC:
9916 case ARM_CPU_MODE_ABT:
9918 case ARM_CPU_MODE_UND:
9920 case ARM_CPU_MODE_FIQ:
9923 g_assert_not_reached();
9928 g_assert_not_reached();
9932 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9934 uint32_t ret = cpsr_read(env);
9936 /* Move DIT to the correct location for SPSR_ELx */
9937 if (ret & CPSR_DIT) {
9941 /* Merge PSTATE.SS into SPSR_ELx */
9942 ret |= env->pstate & PSTATE_SS;
9947 static bool syndrome_is_sync_extabt(uint32_t syndrome)
9949 /* Return true if this syndrome value is a synchronous external abort */
9950 switch (syn_get_ec(syndrome)) {
9952 case EC_INSNABORT_SAME_EL:
9954 case EC_DATAABORT_SAME_EL:
9955 /* Look at fault status code for all the synchronous ext abort cases */
9956 switch (syndrome & 0x3f) {
9972 /* Handle exception entry to a target EL which is using AArch64 */
9973 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9975 ARMCPU *cpu = ARM_CPU(cs);
9976 CPUARMState *env = &cpu->env;
9977 unsigned int new_el = env->exception.target_el;
9978 target_ulong addr = env->cp15.vbar_el[new_el];
9979 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9980 unsigned int old_mode;
9981 unsigned int cur_el = arm_current_el(env);
9985 * Note that new_el can never be 0. If cur_el is 0, then
9986 * el0_a64 is is_a64(), else el0_a64 is ignored.
9988 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9990 if (cur_el < new_el) {
9991 /* Entry vector offset depends on whether the implemented EL
9992 * immediately lower than the target level is using AArch32 or AArch64
9999 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10002 hcr = arm_hcr_el2_eff(env);
10003 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10004 is_aa64 = (hcr & HCR_RW) != 0;
10009 is_aa64 = is_a64(env);
10012 g_assert_not_reached();
10020 } else if (pstate_read(env) & PSTATE_SP) {
10024 switch (cs->exception_index) {
10025 case EXCP_PREFETCH_ABORT:
10026 case EXCP_DATA_ABORT:
10028 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10029 * to be taken to the SError vector entrypoint.
10031 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10032 syndrome_is_sync_extabt(env->exception.syndrome)) {
10035 env->cp15.far_el[new_el] = env->exception.vaddress;
10036 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10037 env->cp15.far_el[new_el]);
10043 case EXCP_HYP_TRAP:
10045 switch (syn_get_ec(env->exception.syndrome)) {
10046 case EC_ADVSIMDFPACCESSTRAP:
10048 * QEMU internal FP/SIMD syndromes from AArch32 include the
10049 * TA and coproc fields which are only exposed if the exception
10050 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10051 * AArch64 format syndrome.
10053 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10055 case EC_CP14RTTRAP:
10056 case EC_CP15RTTRAP:
10057 case EC_CP14DTTRAP:
10059 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10060 * the raw register field from the insn; when taking this to
10061 * AArch64 we must convert it to the AArch64 view of the register
10062 * number. Notice that we read a 4-bit AArch32 register number and
10063 * write back a 5-bit AArch64 one.
10065 rt = extract32(env->exception.syndrome, 5, 4);
10066 rt = aarch64_regnum(env, rt);
10067 env->exception.syndrome = deposit32(env->exception.syndrome,
10070 case EC_CP15RRTTRAP:
10071 case EC_CP14RRTTRAP:
10072 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10073 rt = extract32(env->exception.syndrome, 5, 4);
10074 rt = aarch64_regnum(env, rt);
10075 env->exception.syndrome = deposit32(env->exception.syndrome,
10077 rt = extract32(env->exception.syndrome, 10, 4);
10078 rt = aarch64_regnum(env, rt);
10079 env->exception.syndrome = deposit32(env->exception.syndrome,
10083 env->cp15.esr_el[new_el] = env->exception.syndrome;
10095 /* Construct the SError syndrome from IDS and ISS fields. */
10096 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10097 env->cp15.esr_el[new_el] = env->exception.syndrome;
10100 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10104 old_mode = pstate_read(env);
10105 aarch64_save_sp(env, arm_current_el(env));
10106 env->elr_el[new_el] = env->pc;
10108 old_mode = cpsr_read_for_spsr_elx(env);
10109 env->elr_el[new_el] = env->regs[15];
10111 aarch64_sync_32_to_64(env);
10113 env->condexec_bits = 0;
10115 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10117 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10118 env->elr_el[new_el]);
10120 if (cpu_isar_feature(aa64_pan, cpu)) {
10121 /* The value of PSTATE.PAN is normally preserved, except when ... */
10122 new_mode |= old_mode & PSTATE_PAN;
10125 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10126 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10127 != (HCR_E2H | HCR_TGE)) {
10132 /* ... the target is EL1 ... */
10133 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10134 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10135 new_mode |= PSTATE_PAN;
10140 if (cpu_isar_feature(aa64_mte, cpu)) {
10141 new_mode |= PSTATE_TCO;
10144 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10145 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10146 new_mode |= PSTATE_SSBS;
10148 new_mode &= ~PSTATE_SSBS;
10152 pstate_write(env, PSTATE_DAIF | new_mode);
10153 env->aarch64 = true;
10154 aarch64_restore_sp(env, new_el);
10155 helper_rebuild_hflags_a64(env, new_el);
10159 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10160 new_el, env->pc, pstate_read(env));
10164 * Do semihosting call and set the appropriate return value. All the
10165 * permission and validity checks have been done at translate time.
10167 * We only see semihosting exceptions in TCG only as they are not
10168 * trapped to the hypervisor in KVM.
10171 static void handle_semihosting(CPUState *cs)
10173 ARMCPU *cpu = ARM_CPU(cs);
10174 CPUARMState *env = &cpu->env;
10177 qemu_log_mask(CPU_LOG_INT,
10178 "...handling as semihosting call 0x%" PRIx64 "\n",
10180 do_common_semihosting(cs);
10183 qemu_log_mask(CPU_LOG_INT,
10184 "...handling as semihosting call 0x%x\n",
10186 do_common_semihosting(cs);
10187 env->regs[15] += env->thumb ? 2 : 4;
10192 /* Handle a CPU exception for A and R profile CPUs.
10193 * Do any appropriate logging, handle PSCI calls, and then hand off
10194 * to the AArch64-entry or AArch32-entry function depending on the
10195 * target exception level's register width.
10197 * Note: this is used for both TCG (as the do_interrupt tcg op),
10198 * and KVM to re-inject guest debug exceptions, and to
10199 * inject a Synchronous-External-Abort.
10201 void arm_cpu_do_interrupt(CPUState *cs)
10203 ARMCPU *cpu = ARM_CPU(cs);
10204 CPUARMState *env = &cpu->env;
10205 unsigned int new_el = env->exception.target_el;
10207 assert(!arm_feature(env, ARM_FEATURE_M));
10209 arm_log_exception(cs);
10210 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10212 if (qemu_loglevel_mask(CPU_LOG_INT)
10213 && !excp_is_internal(cs->exception_index)) {
10214 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10215 syn_get_ec(env->exception.syndrome),
10216 env->exception.syndrome);
10219 if (arm_is_psci_call(cpu, cs->exception_index)) {
10220 arm_handle_psci_call(cpu);
10221 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10226 * Semihosting semantics depend on the register width of the code
10227 * that caused the exception, not the target exception level, so
10228 * must be handled here.
10231 if (cs->exception_index == EXCP_SEMIHOST) {
10232 handle_semihosting(cs);
10237 /* Hooks may change global state so BQL should be held, also the
10238 * BQL needs to be held for any modification of
10239 * cs->interrupt_request.
10241 g_assert(qemu_mutex_iothread_locked());
10243 arm_call_pre_el_change_hook(cpu);
10245 assert(!excp_is_internal(cs->exception_index));
10246 if (arm_el_is_aa64(env, new_el)) {
10247 arm_cpu_do_interrupt_aarch64(cs);
10249 arm_cpu_do_interrupt_aarch32(cs);
10252 arm_call_el_change_hook(cpu);
10254 if (!kvm_enabled()) {
10255 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10258 #endif /* !CONFIG_USER_ONLY */
10260 uint64_t arm_sctlr(CPUARMState *env, int el)
10262 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10264 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10265 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10268 return env->cp15.sctlr_el[el];
10271 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10273 if (regime_has_2_ranges(mmu_idx)) {
10274 return extract64(tcr, 37, 2);
10275 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10276 return 0; /* VTCR_EL2 */
10278 /* Replicate the single TBI bit so we always have 2 bits. */
10279 return extract32(tcr, 20, 1) * 3;
10283 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10285 if (regime_has_2_ranges(mmu_idx)) {
10286 return extract64(tcr, 51, 2);
10287 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10288 return 0; /* VTCR_EL2 */
10290 /* Replicate the single TBID bit so we always have 2 bits. */
10291 return extract32(tcr, 29, 1) * 3;
10295 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10297 if (regime_has_2_ranges(mmu_idx)) {
10298 return extract64(tcr, 57, 2);
10300 /* Replicate the single TCMA bit so we always have 2 bits. */
10301 return extract32(tcr, 30, 1) * 3;
10305 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10306 ARMMMUIdx mmu_idx, bool data)
10308 uint64_t tcr = regime_tcr(env, mmu_idx);
10309 bool epd, hpd, using16k, using64k, tsz_oob, ds;
10310 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10311 ARMCPU *cpu = env_archcpu(env);
10313 if (!regime_has_2_ranges(mmu_idx)) {
10315 tsz = extract32(tcr, 0, 6);
10316 using64k = extract32(tcr, 14, 1);
10317 using16k = extract32(tcr, 15, 1);
10318 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10322 hpd = extract32(tcr, 24, 1);
10325 sh = extract32(tcr, 12, 2);
10326 ps = extract32(tcr, 16, 3);
10327 ds = extract64(tcr, 32, 1);
10330 * Bit 55 is always between the two regions, and is canonical for
10331 * determining if address tagging is enabled.
10333 select = extract64(va, 55, 1);
10335 tsz = extract32(tcr, 0, 6);
10336 epd = extract32(tcr, 7, 1);
10337 sh = extract32(tcr, 12, 2);
10338 using64k = extract32(tcr, 14, 1);
10339 using16k = extract32(tcr, 15, 1);
10340 hpd = extract64(tcr, 41, 1);
10342 int tg = extract32(tcr, 30, 2);
10343 using16k = tg == 1;
10344 using64k = tg == 3;
10345 tsz = extract32(tcr, 16, 6);
10346 epd = extract32(tcr, 23, 1);
10347 sh = extract32(tcr, 28, 2);
10348 hpd = extract64(tcr, 42, 1);
10350 ps = extract64(tcr, 32, 3);
10351 ds = extract64(tcr, 59, 1);
10354 if (cpu_isar_feature(aa64_st, cpu)) {
10355 max_tsz = 48 - using64k;
10361 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
10362 * adjust the effective value of DS, as documented.
10366 if (cpu_isar_feature(aa64_lva, cpu)) {
10372 case ARMMMUIdx_Stage2:
10373 case ARMMMUIdx_Stage2_S:
10375 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
10377 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
10382 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
10384 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
10393 if (tsz > max_tsz) {
10396 } else if (tsz < min_tsz) {
10403 /* Present TBI as a composite with TBID. */
10404 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10406 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10408 tbi = (tbi >> select) & 1;
10410 return (ARMVAParameters) {
10418 .using16k = using16k,
10419 .using64k = using64k,
10420 .tsz_oob = tsz_oob,
10425 /* Note that signed overflow is undefined in C. The following routines are
10426 careful to use unsigned types where modulo arithmetic is required.
10427 Failure to do so _will_ break on newer gcc. */
10429 /* Signed saturating arithmetic. */
10431 /* Perform 16-bit signed saturating addition. */
10432 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10437 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10446 /* Perform 8-bit signed saturating addition. */
10447 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10452 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10461 /* Perform 16-bit signed saturating subtraction. */
10462 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10467 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10476 /* Perform 8-bit signed saturating subtraction. */
10477 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10482 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10491 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10492 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10493 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10494 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10497 #include "op_addsub.h"
10499 /* Unsigned saturating arithmetic. */
10500 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10509 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10517 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10526 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10534 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10535 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10536 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10537 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10540 #include "op_addsub.h"
10542 /* Signed modulo arithmetic. */
10543 #define SARITH16(a, b, n, op) do { \
10545 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10546 RESULT(sum, n, 16); \
10548 ge |= 3 << (n * 2); \
10551 #define SARITH8(a, b, n, op) do { \
10553 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10554 RESULT(sum, n, 8); \
10560 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10561 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10562 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10563 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10567 #include "op_addsub.h"
10569 /* Unsigned modulo arithmetic. */
10570 #define ADD16(a, b, n) do { \
10572 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10573 RESULT(sum, n, 16); \
10574 if ((sum >> 16) == 1) \
10575 ge |= 3 << (n * 2); \
10578 #define ADD8(a, b, n) do { \
10580 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10581 RESULT(sum, n, 8); \
10582 if ((sum >> 8) == 1) \
10586 #define SUB16(a, b, n) do { \
10588 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10589 RESULT(sum, n, 16); \
10590 if ((sum >> 16) == 0) \
10591 ge |= 3 << (n * 2); \
10594 #define SUB8(a, b, n) do { \
10596 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10597 RESULT(sum, n, 8); \
10598 if ((sum >> 8) == 0) \
10605 #include "op_addsub.h"
10607 /* Halved signed arithmetic. */
10608 #define ADD16(a, b, n) \
10609 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10610 #define SUB16(a, b, n) \
10611 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10612 #define ADD8(a, b, n) \
10613 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10614 #define SUB8(a, b, n) \
10615 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10618 #include "op_addsub.h"
10620 /* Halved unsigned arithmetic. */
10621 #define ADD16(a, b, n) \
10622 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10623 #define SUB16(a, b, n) \
10624 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10625 #define ADD8(a, b, n) \
10626 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10627 #define SUB8(a, b, n) \
10628 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10631 #include "op_addsub.h"
10633 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10641 /* Unsigned sum of absolute byte differences. */
10642 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10645 sum = do_usad(a, b);
10646 sum += do_usad(a >> 8, b >> 8);
10647 sum += do_usad(a >> 16, b >> 16);
10648 sum += do_usad(a >> 24, b >> 24);
10652 /* For ARMv6 SEL instruction. */
10653 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10665 mask |= 0xff000000;
10666 return (a & mask) | (b & ~mask);
10670 * The upper bytes of val (above the number specified by 'bytes') must have
10671 * been zeroed out by the caller.
10673 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10677 stl_le_p(buf, val);
10679 /* zlib crc32 converts the accumulator and output to one's complement. */
10680 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10683 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10687 stl_le_p(buf, val);
10689 /* Linux crc32c converts the output to one's complement. */
10690 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10693 /* Return the exception level to which FP-disabled exceptions should
10694 * be taken, or 0 if FP is enabled.
10696 int fp_exception_el(CPUARMState *env, int cur_el)
10698 #ifndef CONFIG_USER_ONLY
10701 /* CPACR and the CPTR registers don't exist before v6, so FP is
10702 * always accessible
10704 if (!arm_feature(env, ARM_FEATURE_V6)) {
10708 if (arm_feature(env, ARM_FEATURE_M)) {
10709 /* CPACR can cause a NOCP UsageFault taken to current security state */
10710 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10714 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10715 if (!extract32(env->v7m.nsacr, 10, 1)) {
10716 /* FP insns cause a NOCP UsageFault taken to Secure */
10724 hcr_el2 = arm_hcr_el2_eff(env);
10726 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10727 * 0, 2 : trap EL0 and EL1/PL1 accesses
10728 * 1 : trap only EL0 accesses
10729 * 3 : trap no accesses
10730 * This register is ignored if E2H+TGE are both set.
10732 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10733 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
10743 /* Trap from Secure PL0 or PL1 to Secure PL1. */
10744 if (!arm_el_is_aa64(env, 3)
10745 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
10756 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10757 * to control non-secure access to the FPU. It doesn't have any
10758 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10760 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10761 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10762 if (!extract32(env->cp15.nsacr, 10, 1)) {
10763 /* FP insns act as UNDEF */
10764 return cur_el == 2 ? 2 : 1;
10769 * CPTR_EL2 is present in v7VE or v8, and changes format
10770 * with HCR_EL2.E2H (regardless of TGE).
10773 if (hcr_el2 & HCR_E2H) {
10774 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
10776 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
10784 } else if (arm_is_el2_enabled(env)) {
10785 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
10791 /* CPTR_EL3 : present in v8 */
10792 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
10793 /* Trap all FP ops to EL3 */
10800 /* Return the exception level we're running at if this is our mmu_idx */
10801 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
10803 if (mmu_idx & ARM_MMU_IDX_M) {
10804 return mmu_idx & ARM_MMU_IDX_M_PRIV;
10808 case ARMMMUIdx_E10_0:
10809 case ARMMMUIdx_E20_0:
10810 case ARMMMUIdx_SE10_0:
10811 case ARMMMUIdx_SE20_0:
10813 case ARMMMUIdx_E10_1:
10814 case ARMMMUIdx_E10_1_PAN:
10815 case ARMMMUIdx_SE10_1:
10816 case ARMMMUIdx_SE10_1_PAN:
10819 case ARMMMUIdx_E20_2:
10820 case ARMMMUIdx_E20_2_PAN:
10821 case ARMMMUIdx_SE2:
10822 case ARMMMUIdx_SE20_2:
10823 case ARMMMUIdx_SE20_2_PAN:
10825 case ARMMMUIdx_SE3:
10828 g_assert_not_reached();
10833 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10835 g_assert_not_reached();
10839 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
10844 if (arm_feature(env, ARM_FEATURE_M)) {
10845 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10848 /* See ARM pseudo-function ELIsInHost. */
10851 hcr = arm_hcr_el2_eff(env);
10852 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
10853 idx = ARMMMUIdx_E20_0;
10855 idx = ARMMMUIdx_E10_0;
10859 if (env->pstate & PSTATE_PAN) {
10860 idx = ARMMMUIdx_E10_1_PAN;
10862 idx = ARMMMUIdx_E10_1;
10866 /* Note that TGE does not apply at EL2. */
10867 if (arm_hcr_el2_eff(env) & HCR_E2H) {
10868 if (env->pstate & PSTATE_PAN) {
10869 idx = ARMMMUIdx_E20_2_PAN;
10871 idx = ARMMMUIdx_E20_2;
10874 idx = ARMMMUIdx_E2;
10878 return ARMMMUIdx_SE3;
10880 g_assert_not_reached();
10883 if (arm_is_secure_below_el3(env)) {
10884 idx &= ~ARM_MMU_IDX_A_NS;
10890 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10892 return arm_mmu_idx_el(env, arm_current_el(env));
10895 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
10897 CPUARMTBFlags flags)
10899 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
10900 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
10902 if (arm_singlestep_active(env)) {
10903 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
10908 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
10910 CPUARMTBFlags flags)
10912 bool sctlr_b = arm_sctlr_b(env);
10915 DP_TBFLAG_A32(flags, SCTLR__B, 1);
10917 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
10918 DP_TBFLAG_ANY(flags, BE_DATA, 1);
10920 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
10922 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10925 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
10928 CPUARMTBFlags flags = {};
10929 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
10931 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
10932 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
10933 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10936 if (arm_v7m_is_handler_mode(env)) {
10937 DP_TBFLAG_M32(flags, HANDLER, 1);
10941 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
10942 * is suppressing them because the requested execution priority
10945 if (arm_feature(env, ARM_FEATURE_V8) &&
10946 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
10947 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
10948 DP_TBFLAG_M32(flags, STACKCHECK, 1);
10951 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
10952 DP_TBFLAG_M32(flags, SECURE, 1);
10955 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10958 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
10961 CPUARMTBFlags flags = {};
10962 int el = arm_current_el(env);
10964 if (arm_sctlr(env, el) & SCTLR_A) {
10965 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10968 if (arm_el_is_aa64(env, 1)) {
10969 DP_TBFLAG_A32(flags, VFPEN, 1);
10972 if (el < 2 && env->cp15.hstr_el2 &&
10973 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10974 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
10977 if (env->uncached_cpsr & CPSR_IL) {
10978 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10982 * The SME exception we are testing for is raised via
10983 * AArch64.CheckFPAdvSIMDEnabled(), as called from
10984 * AArch32.CheckAdvSIMDOrFPEnabled().
10987 && FIELD_EX64(env->svcr, SVCR, SM)
10988 && (!arm_is_el2_enabled(env)
10989 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
10990 && arm_el_is_aa64(env, 1)
10991 && !sme_fa64(env, el)) {
10992 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
10995 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10998 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11001 CPUARMTBFlags flags = {};
11002 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11003 uint64_t tcr = regime_tcr(env, mmu_idx);
11007 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
11009 /* Get control bits for tagged addresses. */
11010 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11011 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11013 DP_TBFLAG_A64(flags, TBII, tbii);
11014 DP_TBFLAG_A64(flags, TBID, tbid);
11016 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11017 int sve_el = sve_exception_el(env, el);
11020 * If either FP or SVE are disabled, translator does not need len.
11021 * If SVE EL > FP EL, FP exception has precedence, and translator
11022 * does not need SVE EL. Save potential re-translations by forcing
11023 * the unneeded data to zero.
11026 if (sve_el > fp_el) {
11029 } else if (sve_el == 0) {
11030 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
11032 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
11034 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
11035 int sme_el = sme_exception_el(env, el);
11036 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
11038 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
11040 /* Similarly, do not compute SVL if SME is disabled. */
11041 int svl = sve_vqm1_for_el_sm(env, el, true);
11042 DP_TBFLAG_A64(flags, SVL, svl);
11044 /* If SVE is disabled, we will not have set VL above. */
11045 DP_TBFLAG_A64(flags, VL, svl);
11049 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
11050 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
11052 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
11055 sctlr = regime_sctlr(env, stage1);
11057 if (sctlr & SCTLR_A) {
11058 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11061 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11062 DP_TBFLAG_ANY(flags, BE_DATA, 1);
11065 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11067 * In order to save space in flags, we record only whether
11068 * pauth is "inactive", meaning all insns are implemented as
11069 * a nop, or "active" when some action must be performed.
11070 * The decision of which action to take is left to a helper.
11072 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11073 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11077 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11078 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11079 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11080 DP_TBFLAG_A64(flags, BT, 1);
11084 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11085 if (!(env->pstate & PSTATE_UAO)) {
11087 case ARMMMUIdx_E10_1:
11088 case ARMMMUIdx_E10_1_PAN:
11089 case ARMMMUIdx_SE10_1:
11090 case ARMMMUIdx_SE10_1_PAN:
11091 /* TODO: ARMv8.3-NV */
11092 DP_TBFLAG_A64(flags, UNPRIV, 1);
11094 case ARMMMUIdx_E20_2:
11095 case ARMMMUIdx_E20_2_PAN:
11096 case ARMMMUIdx_SE20_2:
11097 case ARMMMUIdx_SE20_2_PAN:
11099 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11100 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11102 if (env->cp15.hcr_el2 & HCR_TGE) {
11103 DP_TBFLAG_A64(flags, UNPRIV, 1);
11111 if (env->pstate & PSTATE_IL) {
11112 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11115 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11117 * Set MTE_ACTIVE if any access may be Checked, and leave clear
11118 * if all accesses must be Unchecked:
11119 * 1) If no TBI, then there are no tags in the address to check,
11120 * 2) If Tag Check Override, then all accesses are Unchecked,
11121 * 3) If Tag Check Fail == 0, then Checked access have no effect,
11122 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11124 if (allocation_tag_access_enabled(env, el, sctlr)) {
11125 DP_TBFLAG_A64(flags, ATA, 1);
11127 && !(env->pstate & PSTATE_TCO)
11128 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11129 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11132 /* And again for unprivileged accesses, if required. */
11133 if (EX_TBFLAG_A64(flags, UNPRIV)
11135 && !(env->pstate & PSTATE_TCO)
11136 && (sctlr & SCTLR_TCF0)
11137 && allocation_tag_access_enabled(env, 0, sctlr)) {
11138 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11140 /* Cache TCMA as well as TBI. */
11141 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11144 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11147 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11149 int el = arm_current_el(env);
11150 int fp_el = fp_exception_el(env, el);
11151 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11154 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11155 } else if (arm_feature(env, ARM_FEATURE_M)) {
11156 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11158 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11162 void arm_rebuild_hflags(CPUARMState *env)
11164 env->hflags = rebuild_hflags_internal(env);
11168 * If we have triggered a EL state change we can't rely on the
11169 * translator having passed it to us, we need to recompute.
11171 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11173 int el = arm_current_el(env);
11174 int fp_el = fp_exception_el(env, el);
11175 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11177 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11180 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11182 int fp_el = fp_exception_el(env, el);
11183 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11185 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11189 * If we have triggered a EL state change we can't rely on the
11190 * translator having passed it to us, we need to recompute.
11192 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11194 int el = arm_current_el(env);
11195 int fp_el = fp_exception_el(env, el);
11196 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11197 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11200 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11202 int fp_el = fp_exception_el(env, el);
11203 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11205 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11208 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11210 int fp_el = fp_exception_el(env, el);
11211 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11213 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11216 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11218 #ifdef CONFIG_DEBUG_TCG
11219 CPUARMTBFlags c = env->hflags;
11220 CPUARMTBFlags r = rebuild_hflags_internal(env);
11222 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11223 fprintf(stderr, "TCG hflags mismatch "
11224 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11225 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11226 c.flags, c.flags2, r.flags, r.flags2);
11232 static bool mve_no_pred(CPUARMState *env)
11235 * Return true if there is definitely no predication of MVE
11236 * instructions by VPR or LTPSIZE. (Returning false even if there
11237 * isn't any predication is OK; generated code will just be
11239 * If the CPU does not implement MVE then this TB flag is always 0.
11241 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11242 * logic in gen_update_fp_context() needs to be updated to match.
11244 * We do not include the effect of the ECI bits here -- they are
11245 * tracked in other TB flags. This simplifies the logic for
11246 * "when did we emit code that changes the MVE_NO_PRED TB flag
11247 * and thus need to end the TB?".
11249 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11252 if (env->v7m.vpr) {
11255 if (env->v7m.ltpsize < 4) {
11261 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11262 target_ulong *cs_base, uint32_t *pflags)
11264 CPUARMTBFlags flags;
11266 assert_hflags_rebuild_correctly(env);
11267 flags = env->hflags;
11269 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11271 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11272 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11275 *pc = env->regs[15];
11277 if (arm_feature(env, ARM_FEATURE_M)) {
11278 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11279 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11280 != env->v7m.secure) {
11281 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11284 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11285 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11286 (env->v7m.secure &&
11287 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11289 * ASPEN is set, but FPCA/SFPA indicate that there is no
11290 * active FP context; we must create a new FP context before
11291 * executing any FP insn.
11293 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11296 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11297 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11298 DP_TBFLAG_M32(flags, LSPACT, 1);
11301 if (mve_no_pred(env)) {
11302 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11306 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11307 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11309 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11310 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11312 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11313 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11315 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11316 DP_TBFLAG_A32(flags, VFPEN, 1);
11320 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11321 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11325 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11326 * states defined in the ARM ARM for software singlestep:
11327 * SS_ACTIVE PSTATE.SS State
11328 * 0 x Inactive (the TB flag for SS is always 0)
11329 * 1 0 Active-pending
11330 * 1 1 Active-not-pending
11331 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11333 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11334 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11337 *pflags = flags.flags;
11338 *cs_base = flags.flags2;
11341 #ifdef TARGET_AARCH64
11343 * The manual says that when SVE is enabled and VQ is widened the
11344 * implementation is allowed to zero the previously inaccessible
11345 * portion of the registers. The corollary to that is that when
11346 * SVE is enabled and VQ is narrowed we are also allowed to zero
11347 * the now inaccessible portion of the registers.
11349 * The intent of this is that no predicate bit beyond VQ is ever set.
11350 * Which means that some operations on predicate registers themselves
11351 * may operate on full uint64_t or even unrolled across the maximum
11352 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11353 * may well be cheaper than conditionals to restrict the operation
11354 * to the relevant portion of a uint16_t[16].
11356 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11361 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11362 assert(vq <= env_archcpu(env)->sve_max_vq);
11364 /* Zap the high bits of the zregs. */
11365 for (i = 0; i < 32; i++) {
11366 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11369 /* Zap the high bits of the pregs and ffr. */
11372 pmask = ~(-1ULL << (16 * (vq & 3)));
11374 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11375 for (i = 0; i < 17; ++i) {
11376 env->vfp.pregs[i].p[j] &= pmask;
11382 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11387 exc_el = sme_exception_el(env, el);
11389 exc_el = sve_exception_el(env, el);
11392 return 0; /* disabled */
11394 return sve_vqm1_for_el_sm(env, el, sm);
11398 * Notice a change in SVE vector size when changing EL.
11400 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11401 int new_el, bool el0_a64)
11403 ARMCPU *cpu = env_archcpu(env);
11404 int old_len, new_len;
11405 bool old_a64, new_a64, sm;
11407 /* Nothing to do if no SVE. */
11408 if (!cpu_isar_feature(aa64_sve, cpu)) {
11412 /* Nothing to do if FP is disabled in either EL. */
11413 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11417 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11418 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11421 * Both AArch64.TakeException and AArch64.ExceptionReturn
11422 * invoke ResetSVEState when taking an exception from, or
11423 * returning to, AArch32 state when PSTATE.SM is enabled.
11425 sm = FIELD_EX64(env->svcr, SVCR, SM);
11426 if (old_a64 != new_a64 && sm) {
11427 arm_reset_sve_state(env);
11432 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11433 * at ELx, or not available because the EL is in AArch32 state, then
11434 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11435 * has an effective value of 0".
11437 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11438 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11439 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11440 * we already have the correct register contents when encountering the
11441 * vq0->vq0 transition between EL0->EL1.
11443 old_len = new_len = 0;
11445 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11448 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11451 /* When changing vector length, clear inaccessible state. */
11452 if (new_len < old_len) {
11453 aarch64_sve_narrow_vq(env, new_len + 1);