2 * MIPS Boston development board emulation.
4 * Copyright (c) 2016 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/mips/cpudevs.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
44 #define TYPE_MIPS_BOSTON "mips-boston"
45 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
48 SysBusDevice parent_obj;
54 CharBackend lcd_display;
62 enum boston_plat_reg {
63 PLAT_FPGA_BUILD = 0x00,
65 PLAT_WRAPPER_CL = 0x08,
66 PLAT_SYSCLK_STATUS = 0x0c,
67 PLAT_SOFTRST_CTL = 0x10,
68 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
69 PLAT_DDR3_STATUS = 0x14,
70 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
71 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
72 PLAT_PCIE_STATUS = 0x18,
73 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
74 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
75 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
76 PLAT_FLASH_CTL = 0x1c,
82 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
83 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
84 #define PLAT_MMCM_DIV_MUL_SHIFT 16
85 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
86 PLAT_BUILD_CFG = 0x34,
87 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
88 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
89 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
90 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
92 #define PLAT_DDR_CFG_SIZE (0xf << 0)
93 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
94 PLAT_NOC_PCIE0_ADDR = 0x3c,
95 PLAT_NOC_PCIE1_ADDR = 0x40,
96 PLAT_NOC_PCIE2_ADDR = 0x44,
100 static void boston_lcd_event(void *opaque, int event)
102 BostonState *s = opaque;
103 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
104 qemu_chr_fe_printf(&s->lcd_display, " ");
105 s->lcd_inited = true;
109 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
112 BostonState *s = opaque;
117 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
118 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
119 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
120 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
123 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
124 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
127 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
130 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
137 static void boston_lcd_write(void *opaque, hwaddr addr,
138 uint64_t val, unsigned size)
140 BostonState *s = opaque;
144 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
145 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
146 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
147 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
150 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
151 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
154 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
157 s->lcd_content[(addr + 0) & 0x7] = val;
161 qemu_chr_fe_printf(&s->lcd_display,
162 "\r%-8.8s", s->lcd_content);
165 static const MemoryRegionOps boston_lcd_ops = {
166 .read = boston_lcd_read,
167 .write = boston_lcd_write,
168 .endianness = DEVICE_NATIVE_ENDIAN,
171 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
174 BostonState *s = opaque;
175 uint32_t gic_freq, val;
178 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
182 switch (addr & 0xffff) {
183 case PLAT_FPGA_BUILD:
185 case PLAT_WRAPPER_CL:
187 case PLAT_DDR3_STATUS:
188 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
190 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
191 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
192 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
193 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
194 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
197 val = PLAT_BUILD_CFG_PCIE0_EN;
198 val |= PLAT_BUILD_CFG_PCIE1_EN;
199 val |= PLAT_BUILD_CFG_PCIE2_EN;
202 val = s->mach->ram_size / GiB;
203 assert(!(val & ~PLAT_DDR_CFG_SIZE));
204 val |= PLAT_DDR_CFG_MHZ;
207 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
213 static void boston_platreg_write(void *opaque, hwaddr addr,
214 uint64_t val, unsigned size)
217 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
221 switch (addr & 0xffff) {
222 case PLAT_FPGA_BUILD:
224 case PLAT_WRAPPER_CL:
225 case PLAT_DDR3_STATUS:
226 case PLAT_PCIE_STATUS:
232 case PLAT_SOFTRST_CTL:
233 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
234 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
238 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
239 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
244 static const MemoryRegionOps boston_platreg_ops = {
245 .read = boston_platreg_read,
246 .write = boston_platreg_write,
247 .endianness = DEVICE_NATIVE_ENDIAN,
250 static const TypeInfo boston_device = {
251 .name = TYPE_MIPS_BOSTON,
252 .parent = TYPE_SYS_BUS_DEVICE,
253 .instance_size = sizeof(BostonState),
256 static void boston_register_types(void)
258 type_register_static(&boston_device);
260 type_init(boston_register_types)
262 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
265 const uint32_t cm_base = 0x16100000;
266 const uint32_t gic_base = 0x16120000;
267 const uint32_t cpc_base = 0x16200000;
271 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
272 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
274 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
275 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
277 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
278 stl_p(p++, 0x01094025); /* or $8, $9 */
279 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
281 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
283 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
285 stl_p(p++, 0x012a4025); /* or $8, $10 */
287 /* Move & enable GIC GCRs */
288 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
289 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
291 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
293 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
296 /* Move & enable CPC GCRs */
297 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
298 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
300 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
302 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
306 * Setup argument registers to follow the UHI boot protocol:
309 * a1/$5 = virtual address of FDT
313 stl_p(p++, 0x2404fffe); /* li $4, -2 */
314 /* lui $5, hi(fdt_addr) */
315 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
316 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
317 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
319 stl_p(p++, 0x34060000); /* li $6, 0 */
320 stl_p(p++, 0x34070000); /* li $7, 0 */
322 /* Load kernel entry address & jump to it */
323 /* lui $25, hi(kernel_entry) */
324 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
325 /* ori $25, lo(kernel_entry) */
326 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
327 stl_p(p++, 0x03200009); /* jr $25 */
330 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
331 const void *match_data, hwaddr *load_addr)
333 BostonState *s = BOSTON(opaque);
334 MachineState *machine = s->mach;
338 size_t fdt_sz, ram_low_sz, ram_high_sz;
340 fdt_sz = fdt_totalsize(fdt_orig) * 2;
341 fdt = g_malloc0(fdt_sz);
343 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
345 fprintf(stderr, "unable to open FDT\n");
349 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
350 ? machine->kernel_cmdline : " ";
351 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
353 fprintf(stderr, "couldn't set /chosen/bootargs\n");
357 ram_low_sz = MIN(256 * MiB, machine->ram_size);
358 ram_high_sz = machine->ram_size - ram_low_sz;
359 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
360 1, 0x00000000, 1, ram_low_sz,
361 1, 0x90000000, 1, ram_high_sz);
363 fdt = g_realloc(fdt, fdt_totalsize(fdt));
364 qemu_fdt_dumpdtb(fdt, fdt_sz);
366 s->fdt_base = *load_addr;
371 static const void *boston_kernel_filter(void *opaque, const void *kernel,
372 hwaddr *load_addr, hwaddr *entry_addr)
374 BostonState *s = BOSTON(opaque);
376 s->kernel_entry = *entry_addr;
381 static const struct fit_loader_match boston_matches[] = {
386 static const struct fit_loader boston_fit_loader = {
387 .matches = boston_matches,
388 .addr_to_phys = cpu_mips_kseg0_to_phys,
389 .fdt_filter = boston_fdt_filter,
390 .kernel_filter = boston_kernel_filter,
393 static inline XilinxPCIEHost *
394 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
395 hwaddr cfg_base, uint64_t cfg_size,
396 hwaddr mmio_base, uint64_t mmio_size,
397 qemu_irq irq, bool link_up)
400 MemoryRegion *cfg, *mmio;
402 dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
404 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
405 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
406 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
407 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
408 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
409 qdev_prop_set_bit(dev, "link_up", link_up);
411 qdev_init_nofail(dev);
413 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
414 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
416 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
417 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
419 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
421 return XILINX_PCIE_HOST(dev);
424 static void boston_mach_init(MachineState *machine)
429 MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
430 MemoryRegion *sys_mem = get_system_memory();
431 XilinxPCIEHost *pcie2;
435 int fw_size, fit_err;
438 if ((machine->ram_size % GiB) ||
439 (machine->ram_size > (2 * GiB))) {
440 error_report("Memory size must be 1GB or 2GB");
444 dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
445 qdev_init_nofail(dev);
450 if (!cpu_supports_cps_smp(machine->cpu_type)) {
451 error_report("Boston requires CPUs which support CPS");
455 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
457 sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps),
458 sizeof(s->cps), TYPE_MIPS_CPS);
459 object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type",
461 object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err);
462 object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
465 error_report("%s", error_get_pretty(err));
469 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
471 flash = g_new(MemoryRegion, 1);
472 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
473 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
475 ddr = g_new(MemoryRegion, 1);
476 memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
478 memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
480 ddr_low_alias = g_new(MemoryRegion, 1);
481 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
482 ddr, 0, MIN(machine->ram_size, (256 * MiB)));
483 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
485 xilinx_pcie_init(sys_mem, 0,
486 0x10000000, 32 * MiB,
488 get_cps_irq(&s->cps, 2), false);
490 xilinx_pcie_init(sys_mem, 1,
491 0x12000000, 32 * MiB,
492 0x20000000, 512 * MiB,
493 get_cps_irq(&s->cps, 1), false);
495 pcie2 = xilinx_pcie_init(sys_mem, 2,
496 0x14000000, 32 * MiB,
498 get_cps_irq(&s->cps, 0), true);
500 platreg = g_new(MemoryRegion, 1);
501 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
502 "boston-platregs", 0x1000);
503 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
505 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
506 get_cps_irq(&s->cps, 3), 10000000,
507 serial_hd(0), DEVICE_NATIVE_ENDIAN);
509 lcd = g_new(MemoryRegion, 1);
510 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
511 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
513 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
514 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
515 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
516 boston_lcd_event, NULL, s, NULL, true);
518 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
520 true, TYPE_ICH9_AHCI);
521 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
522 ide_drive_get(hd, ahci_get_num_ports(ahci));
523 ahci_ide_create_devs(ahci, hd);
525 if (machine->firmware) {
526 fw_size = load_image_targphys(machine->firmware,
527 0x1fc00000, 4 * MiB);
529 error_report("unable to load firmware image '%s'",
533 } else if (machine->kernel_filename) {
534 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
536 error_report("unable to load FIT image");
540 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
541 s->kernel_entry, s->fdt_base, is_64b);
542 } else if (!qtest_enabled()) {
543 error_report("Please provide either a -kernel or -bios argument");
548 static void boston_mach_class_init(MachineClass *mc)
550 mc->desc = "MIPS Boston";
551 mc->init = boston_mach_init;
552 mc->block_default_type = IF_IDE;
553 mc->default_ram_size = 1 * GiB;
555 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
558 DEFINE_MACHINE("boston", boston_mach_class_init)