2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "sparc32_dma.h"
32 * This is the DMA controller part of chip STP2000 (Master I/O), also
33 * produced as NCR89C100. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
40 #define DPRINTF(fmt, args...) \
41 do { printf("DMA: " fmt , ##args); } while (0)
43 #define DPRINTF(fmt, args...)
47 #define DMA_SIZE (4 * sizeof(uint32_t))
48 #define DMA_MAXADDR (DMA_SIZE - 1)
50 #define DMA_VER 0xa0000000
52 #define DMA_INTREN 0x10
53 #define DMA_WRITE_MEM 0x100
54 #define DMA_LOADED 0x04000000
55 #define DMA_DRAIN_FIFO 0x40
56 #define DMA_RESET 0x80
58 typedef struct DMAState DMAState;
61 uint32_t dmaregs[DMA_REGS];
67 /* Note: on sparc, the lance 16 bit bus is swapped */
68 void ledma_memory_read(void *opaque, target_phys_addr_t addr,
69 uint8_t *buf, int len, int do_bswap)
74 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
75 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
76 addr |= s->dmaregs[3];
78 sparc_iommu_memory_read(s->iommu, addr, buf, len);
82 sparc_iommu_memory_read(s->iommu, addr, buf, len);
83 for(i = 0; i < len; i += 2) {
84 bswap16s((uint16_t *)(buf + i));
89 void ledma_memory_write(void *opaque, target_phys_addr_t addr,
90 uint8_t *buf, int len, int do_bswap)
96 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
97 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
98 addr |= s->dmaregs[3];
100 sparc_iommu_memory_write(s->iommu, addr, buf, len);
106 if (l > sizeof(tmp_buf))
108 for(i = 0; i < l; i += 2) {
109 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
111 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
119 static void dma_set_irq(void *opaque, int irq, int level)
121 DMAState *s = opaque;
123 DPRINTF("Raise IRQ\n");
124 s->dmaregs[0] |= DMA_INTR;
125 qemu_irq_raise(s->irq);
127 s->dmaregs[0] &= ~DMA_INTR;
128 DPRINTF("Lower IRQ\n");
129 qemu_irq_lower(s->irq);
133 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
135 DMAState *s = opaque;
137 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
138 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
139 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
140 s->dmaregs[0] |= DMA_INTR;
141 s->dmaregs[1] += len;
144 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
146 DMAState *s = opaque;
148 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
149 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
150 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
151 s->dmaregs[0] |= DMA_INTR;
152 s->dmaregs[1] += len;
155 static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
157 DMAState *s = opaque;
160 saddr = (addr & DMA_MAXADDR) >> 2;
161 DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
164 return s->dmaregs[saddr];
167 static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
169 DMAState *s = opaque;
172 saddr = (addr & DMA_MAXADDR) >> 2;
173 DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
174 s->dmaregs[saddr], val);
177 if (!(val & DMA_INTREN)) {
178 DPRINTF("Lower IRQ\n");
179 qemu_irq_lower(s->irq);
181 if (val & DMA_RESET) {
182 qemu_irq_raise(s->dev_reset);
183 qemu_irq_lower(s->dev_reset);
184 } else if (val & DMA_DRAIN_FIFO) {
185 val &= ~DMA_DRAIN_FIFO;
187 val = DMA_DRAIN_FIFO;
192 s->dmaregs[0] |= DMA_LOADED;
197 s->dmaregs[saddr] = val;
200 static CPUReadMemoryFunc *dma_mem_read[3] = {
206 static CPUWriteMemoryFunc *dma_mem_write[3] = {
212 static void dma_reset(void *opaque)
214 DMAState *s = opaque;
216 memset(s->dmaregs, 0, DMA_SIZE);
217 s->dmaregs[0] = DMA_VER;
220 static void dma_save(QEMUFile *f, void *opaque)
222 DMAState *s = opaque;
225 for (i = 0; i < DMA_REGS; i++)
226 qemu_put_be32s(f, &s->dmaregs[i]);
229 static int dma_load(QEMUFile *f, void *opaque, int version_id)
231 DMAState *s = opaque;
236 for (i = 0; i < DMA_REGS; i++)
237 qemu_get_be32s(f, &s->dmaregs[i]);
242 void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
243 void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
248 s = qemu_mallocz(sizeof(DMAState));
255 dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
256 cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
258 register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
259 qemu_register_reset(dma_reset, s);
260 *dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
262 *reset = &s->dev_reset;