2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
152 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153 /* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
157 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
162 #define L1_SIZE (1 << L1_BITS)
163 #define L2_SIZE (1 << L2_BITS)
165 unsigned long qemu_real_host_page_size;
166 unsigned long qemu_host_page_bits;
167 unsigned long qemu_host_page_size;
168 unsigned long qemu_host_page_mask;
170 /* XXX: for system emulation, it could just be an array */
171 static PageDesc *l1_map[L1_SIZE];
172 static PhysPageDesc **l1_phys_map;
174 #if !defined(CONFIG_USER_ONLY)
175 static void io_mem_init(void);
177 /* io memory support */
178 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
180 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
181 static int io_mem_nb;
182 static int io_mem_watch;
186 static const char *logfilename = "/tmp/qemu.log";
189 static int log_append = 0;
192 static int tlb_flush_count;
193 static int tb_flush_count;
194 static int tb_phys_invalidate_count;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 target_phys_addr_t base;
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
205 static void map_exec(void *addr, long size)
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
213 static void map_exec(void *addr, long size)
215 unsigned long start, end, page_size;
217 page_size = getpagesize();
218 start = (unsigned long)addr;
219 start &= ~(page_size - 1);
221 end = (unsigned long)addr + size;
222 end += page_size - 1;
223 end &= ~(page_size - 1);
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
230 static void page_init(void)
232 /* NOTE: we can always suppose that qemu_host_page_size >=
236 SYSTEM_INFO system_info;
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
242 qemu_real_host_page_size = getpagesize();
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
255 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
257 long long startaddr, endaddr;
262 last_brk = (unsigned long)sbrk(0);
263 f = fopen("/proc/self/maps", "r");
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 page_set_flags(startaddr & TARGET_PAGE_MASK,
273 TARGET_PAGE_ALIGN(endaddr),
284 static inline PageDesc **page_l1_map(target_ulong index)
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
292 return &l1_map[index >> L2_BITS];
295 static inline PageDesc *page_find_alloc(target_ulong index)
298 lp = page_l1_map(index);
304 /* allocate if not found */
305 #if defined(CONFIG_USER_ONLY)
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
323 return p + (index & (L2_SIZE - 1));
326 static inline PageDesc *page_find(target_ulong index)
329 lp = page_l1_map(index);
336 return p + (index & (L2_SIZE - 1));
339 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
344 p = (void **)l1_phys_map;
345 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
347 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
353 /* allocate if not found */
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
365 /* allocate if not found */
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
376 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
378 return phys_page_find_alloc(index, 0);
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr);
383 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
401 static void code_gen_alloc(unsigned long tb_size)
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
414 /* XXX: needs ajustments */
415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428 #if defined(__x86_64__)
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
448 #elif defined(__FreeBSD__)
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453 #if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
476 map_exec(code_gen_buffer, code_gen_buffer_size);
478 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
486 /* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
489 void cpu_exec_init_all(unsigned long tb_size)
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
495 #if !defined(CONFIG_USER_ONLY)
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502 #define CPU_COMMON_SAVE_VERSION 1
504 static void cpu_common_save(QEMUFile *f, void *opaque)
506 CPUState *env = opaque;
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
512 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
514 CPUState *env = opaque;
516 if (version_id != CPU_COMMON_SAVE_VERSION)
519 qemu_get_be32s(f, &env->halted);
520 qemu_get_be32s(f, &env->interrupt_request);
527 void cpu_exec_init(CPUState *env)
532 env->next_cpu = NULL;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
539 env->cpu_index = cpu_index;
541 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
549 static inline void invalidate_page_bitmap(PageDesc *p)
551 if (p->code_bitmap) {
552 qemu_free(p->code_bitmap);
553 p->code_bitmap = NULL;
555 p->code_write_count = 0;
558 /* set to NULL all the 'first_tb' fields in all PageDescs */
559 static void page_flush_tb(void)
564 for(i = 0; i < L1_SIZE; i++) {
567 for(j = 0; j < L2_SIZE; j++) {
569 invalidate_page_bitmap(p);
576 /* flush all the translation blocks */
577 /* XXX: tb_flush is currently not thread safe */
578 void tb_flush(CPUState *env1)
581 #if defined(DEBUG_FLUSH)
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
599 code_gen_ptr = code_gen_buffer;
600 /* XXX: flush processor icache at this point if cache flush is
605 #ifdef DEBUG_TB_CHECK
607 static void tb_invalidate_check(target_ulong address)
609 TranslationBlock *tb;
611 address &= TARGET_PAGE_MASK;
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
617 address, (long)tb->pc, tb->size);
623 /* verify that all the pages have correct rights for code */
624 static void tb_page_check(void)
626 TranslationBlock *tb;
627 int i, flags1, flags2;
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
635 (long)tb->pc, tb->size, flags1, flags2);
641 static void tb_jmp_check(TranslationBlock *tb)
643 TranslationBlock *tb1;
646 /* suppress any remaining jumps to this TB */
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
653 tb1 = tb1->jmp_next[n1];
655 /* check end of list */
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
663 /* invalidate one TB */
664 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
667 TranslationBlock *tb1;
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
678 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
680 TranslationBlock *tb1;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
688 *ptb = tb1->page_next[n1];
691 ptb = &tb1->page_next[n1];
695 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
697 TranslationBlock *tb1, **ptb;
700 ptb = &tb->jmp_next[n];
703 /* find tb(n) in circular list */
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
711 ptb = &tb1->jmp_first;
713 ptb = &tb1->jmp_next[n1];
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
719 tb->jmp_next[n] = NULL;
723 /* reset the jump entry 'n' of a TB so that it is not chained to
725 static inline void tb_reset_jump(TranslationBlock *tb, int n)
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
730 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
735 target_phys_addr_t phys_pc;
736 TranslationBlock *tb1, *tb2;
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
741 tb_remove(&tb_phys_hash[h], tb,
742 offsetof(TranslationBlock, phys_hash_next));
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
756 tb_invalidated_flag = 1;
758 /* remove the TB from the hash list */
759 h = tb_jmp_cache_hash_func(tb->pc);
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
769 /* suppress any remaining jumps to this TB */
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
783 tb_phys_invalidate_count++;
786 static inline void set_bits(uint8_t *tab, int start, int len)
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
795 mask &= ~(0xff << (end & 7));
800 start = (start + 8) & ~7;
802 while (start < end1) {
807 mask = ~(0xff << (end & 7));
813 static void build_page_bitmap(PageDesc *p)
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
843 TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
847 TranslationBlock *tb;
849 target_ulong phys_pc, phys_page2, virt_page2;
852 phys_pc = get_phys_addr_code(env, pc);
855 /* flush must be done */
857 /* cannot fail at this point */
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
862 tc_ptr = code_gen_ptr;
864 tb->cs_base = cs_base;
867 cpu_gen_code(env, tb, &code_gen_size);
868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
870 /* check next page if needed */
871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
874 phys_page2 = get_phys_addr_code(env, virt_page2);
876 tb_link_phys(tb, phys_pc, phys_page2);
880 /* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
885 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
886 int is_cpu_write_access)
888 TranslationBlock *tb, *tb_next, *saved_tb;
889 CPUState *env = cpu_single_env;
890 target_ulong tb_start, tb_end;
893 #ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900 #endif /* TARGET_HAS_PRECISE_SMC */
902 p = page_find(start >> TARGET_PAGE_BITS);
905 if (!p->code_bitmap &&
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
908 /* build code bitmap */
909 build_page_bitmap(p);
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
929 if (!(tb_end <= start || tb_start >= end)) {
930 #ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
934 if (env->mem_io_pc) {
935 /* now we have a real cpu fault */
936 current_tb = tb_find_pc(env->mem_io_pc);
939 if (current_tb == tb &&
940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
947 current_tb_modified = 1;
948 cpu_restore_state(current_tb, env,
949 env->mem_io_pc, NULL);
950 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
953 #endif /* TARGET_HAS_PRECISE_SMC */
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
961 tb_phys_invalidate(tb, -1);
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
970 #if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
973 invalidate_page_bitmap(p);
974 if (is_cpu_write_access) {
975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
979 #ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
984 env->current_tb = NULL;
985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
986 cpu_resume_from_signal(env, NULL);
991 /* len must be <= 8 and start must be a multiple of len */
992 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1000 cpu_single_env->mem_io_vaddr, len,
1001 cpu_single_env->eip,
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1006 p = page_find(start >> TARGET_PAGE_BITS);
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1016 tb_invalidate_phys_page_range(start, start + len, 1);
1020 #if !defined(CONFIG_SOFTMMU)
1021 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1022 unsigned long pc, void *puc)
1024 TranslationBlock *tb;
1027 #ifdef TARGET_HAS_PRECISE_SMC
1028 TranslationBlock *current_tb = NULL;
1029 CPUState *env = cpu_single_env;
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
1041 #ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1046 while (tb != NULL) {
1048 tb = (TranslationBlock *)((long)tb & ~3);
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
1060 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1063 #endif /* TARGET_HAS_PRECISE_SMC */
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1073 env->current_tb = NULL;
1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1075 cpu_resume_from_signal(env, puc);
1081 /* add the tb in the target page and protect it if necessary */
1082 static inline void tb_alloc_page(TranslationBlock *tb,
1083 unsigned int n, target_ulong page_addr)
1086 TranslationBlock *last_first_tb;
1088 tb->page_addr[n] = page_addr;
1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
1095 #if defined(TARGET_HAS_SMC) || 1
1097 #if defined(CONFIG_USER_ONLY)
1098 if (p->flags & PAGE_WRITE) {
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
1105 page_addr &= qemu_host_page_mask;
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1117 mprotect(g2h(page_addr), qemu_host_page_size,
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119 #ifdef DEBUG_TB_INVALIDATE
1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
1129 tlb_protect_code(page_addr);
1133 #endif /* TARGET_HAS_SMC */
1136 /* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
1138 TranslationBlock *tb_alloc(target_ulong pc)
1140 TranslationBlock *tb;
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1145 tb = &tbs[nb_tbs++];
1151 void tb_free(TranslationBlock *tb)
1153 /* In practice this is mostly used for single use temporary TB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1162 /* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
1164 void tb_link_phys(TranslationBlock *tb,
1165 target_ulong phys_pc, target_ulong phys_page2)
1168 TranslationBlock **ptb;
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1179 /* add in the page list */
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1184 tb->page_addr[1] = -1;
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
1196 #ifdef DEBUG_TB_CHECK
1202 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1206 int m_min, m_max, m;
1208 TranslationBlock *tb;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1215 /* binary search (cf Knuth) */
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1221 v = (unsigned long)tb->tc_ptr;
1224 else if (tc_ptr < v) {
1233 static void tb_reset_jump_recursive(TranslationBlock *tb);
1235 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1237 TranslationBlock *tb1, *tb_next, **ptb;
1240 tb1 = tb->jmp_next[n];
1242 /* find head of list */
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1248 tb1 = tb1->jmp_next[n1];
1250 /* we are now sure now that tb jumps to tb1 */
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1261 ptb = &tb1->jmp_next[n1];
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1269 /* suppress jumps in the tb on which we could have jumped */
1270 tb_reset_jump_recursive(tb_next);
1274 static void tb_reset_jump_recursive(TranslationBlock *tb)
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1280 #if defined(TARGET_HAS_ICE)
1281 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1283 target_phys_addr_t addr;
1285 ram_addr_t ram_addr;
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1291 pd = IO_MEM_UNASSIGNED;
1293 pd = p->phys_offset;
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1300 /* Add a watchpoint. */
1301 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
1306 wp = qemu_malloc(sizeof(*wp));
1314 wp->next = env->watchpoints;
1317 wp->next->prev = wp;
1318 env->watchpoints = wp;
1320 tlb_flush_page(env, addr);
1321 /* FIXME: This flush is needed because of the hack to make memory ops
1322 terminate the TB. It can be removed once the proper IO trap and
1323 re-execute bits are in. */
1331 /* Remove a specific watchpoint. */
1332 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1337 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1338 if (addr == wp->vaddr && flags == wp->flags) {
1339 cpu_watchpoint_remove_by_ref(env, wp);
1346 /* Remove a specific watchpoint by reference. */
1347 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1349 if (watchpoint->next)
1350 watchpoint->next->prev = watchpoint->prev;
1351 if (watchpoint->prev)
1352 watchpoint->prev->next = watchpoint->next;
1354 env->watchpoints = watchpoint->next;
1356 tlb_flush_page(env, watchpoint->vaddr);
1358 qemu_free(watchpoint);
1361 /* Remove all matching watchpoints. */
1362 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1366 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1367 if (wp->flags & mask)
1368 cpu_watchpoint_remove_by_ref(env, wp);
1371 /* Add a breakpoint. */
1372 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1373 CPUBreakpoint **breakpoint)
1375 #if defined(TARGET_HAS_ICE)
1378 bp = qemu_malloc(sizeof(*bp));
1385 bp->next = env->breakpoints;
1388 bp->next->prev = bp;
1389 env->breakpoints = bp;
1391 breakpoint_invalidate(env, pc);
1401 /* Remove a specific breakpoint. */
1402 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1404 #if defined(TARGET_HAS_ICE)
1407 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1408 if (bp->pc == pc && bp->flags == flags) {
1409 cpu_breakpoint_remove_by_ref(env, bp);
1419 /* Remove a specific breakpoint by reference. */
1420 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1422 #if defined(TARGET_HAS_ICE)
1423 if (breakpoint->next)
1424 breakpoint->next->prev = breakpoint->prev;
1425 if (breakpoint->prev)
1426 breakpoint->prev->next = breakpoint->next;
1428 env->breakpoints = breakpoint->next;
1430 breakpoint_invalidate(env, breakpoint->pc);
1432 qemu_free(breakpoint);
1436 /* Remove all matching breakpoints. */
1437 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1439 #if defined(TARGET_HAS_ICE)
1442 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1443 if (bp->flags & mask)
1444 cpu_breakpoint_remove_by_ref(env, bp);
1448 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1449 CPU loop after each instruction */
1450 void cpu_single_step(CPUState *env, int enabled)
1452 #if defined(TARGET_HAS_ICE)
1453 if (env->singlestep_enabled != enabled) {
1454 env->singlestep_enabled = enabled;
1455 /* must flush all the translated code to avoid inconsistancies */
1456 /* XXX: only flush what is necessary */
1462 /* enable or disable low levels log */
1463 void cpu_set_log(int log_flags)
1465 loglevel = log_flags;
1466 if (loglevel && !logfile) {
1467 logfile = fopen(logfilename, log_append ? "a" : "w");
1469 perror(logfilename);
1472 #if !defined(CONFIG_SOFTMMU)
1473 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1475 static char logfile_buf[4096];
1476 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1479 setvbuf(logfile, NULL, _IOLBF, 0);
1483 if (!loglevel && logfile) {
1489 void cpu_set_log_filename(const char *filename)
1491 logfilename = strdup(filename);
1496 cpu_set_log(loglevel);
1499 /* mask must never be zero, except for A20 change call */
1500 void cpu_interrupt(CPUState *env, int mask)
1502 #if !defined(USE_NPTL)
1503 TranslationBlock *tb;
1504 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1508 old_mask = env->interrupt_request;
1509 /* FIXME: This is probably not threadsafe. A different thread could
1510 be in the middle of a read-modify-write operation. */
1511 env->interrupt_request |= mask;
1512 #if defined(USE_NPTL)
1513 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1514 problem and hope the cpu will stop of its own accord. For userspace
1515 emulation this often isn't actually as bad as it sounds. Often
1516 signals are used primarily to interrupt blocking syscalls. */
1519 env->icount_decr.u16.high = 0xffff;
1520 #ifndef CONFIG_USER_ONLY
1521 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1522 an async event happened and we need to process it. */
1524 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1525 cpu_abort(env, "Raised interrupt while not in I/O function");
1529 tb = env->current_tb;
1530 /* if the cpu is currently executing code, we must unlink it and
1531 all the potentially executing TB */
1532 if (tb && !testandset(&interrupt_lock)) {
1533 env->current_tb = NULL;
1534 tb_reset_jump_recursive(tb);
1535 resetlock(&interrupt_lock);
1541 void cpu_reset_interrupt(CPUState *env, int mask)
1543 env->interrupt_request &= ~mask;
1546 const CPULogItem cpu_log_items[] = {
1547 { CPU_LOG_TB_OUT_ASM, "out_asm",
1548 "show generated host assembly code for each compiled TB" },
1549 { CPU_LOG_TB_IN_ASM, "in_asm",
1550 "show target assembly code for each compiled TB" },
1551 { CPU_LOG_TB_OP, "op",
1552 "show micro ops for each compiled TB" },
1553 { CPU_LOG_TB_OP_OPT, "op_opt",
1556 "before eflags optimization and "
1558 "after liveness analysis" },
1559 { CPU_LOG_INT, "int",
1560 "show interrupts/exceptions in short format" },
1561 { CPU_LOG_EXEC, "exec",
1562 "show trace before each executed TB (lots of logs)" },
1563 { CPU_LOG_TB_CPU, "cpu",
1564 "show CPU state before block translation" },
1566 { CPU_LOG_PCALL, "pcall",
1567 "show protected mode far calls/returns/exceptions" },
1570 { CPU_LOG_IOPORT, "ioport",
1571 "show all i/o ports accesses" },
1576 static int cmp1(const char *s1, int n, const char *s2)
1578 if (strlen(s2) != n)
1580 return memcmp(s1, s2, n) == 0;
1583 /* takes a comma separated list of log masks. Return 0 if error. */
1584 int cpu_str_to_log_mask(const char *str)
1586 const CPULogItem *item;
1593 p1 = strchr(p, ',');
1596 if(cmp1(p,p1-p,"all")) {
1597 for(item = cpu_log_items; item->mask != 0; item++) {
1601 for(item = cpu_log_items; item->mask != 0; item++) {
1602 if (cmp1(p, p1 - p, item->name))
1616 void cpu_abort(CPUState *env, const char *fmt, ...)
1623 fprintf(stderr, "qemu: fatal: ");
1624 vfprintf(stderr, fmt, ap);
1625 fprintf(stderr, "\n");
1627 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1629 cpu_dump_state(env, stderr, fprintf, 0);
1632 fprintf(logfile, "qemu: fatal: ");
1633 vfprintf(logfile, fmt, ap2);
1634 fprintf(logfile, "\n");
1636 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1638 cpu_dump_state(env, logfile, fprintf, 0);
1648 CPUState *cpu_copy(CPUState *env)
1650 CPUState *new_env = cpu_init(env->cpu_model_str);
1651 /* preserve chaining and index */
1652 CPUState *next_cpu = new_env->next_cpu;
1653 int cpu_index = new_env->cpu_index;
1654 memcpy(new_env, env, sizeof(CPUState));
1655 new_env->next_cpu = next_cpu;
1656 new_env->cpu_index = cpu_index;
1660 #if !defined(CONFIG_USER_ONLY)
1662 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1666 /* Discard jump cache entries for any tb which might potentially
1667 overlap the flushed page. */
1668 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1669 memset (&env->tb_jmp_cache[i], 0,
1670 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672 i = tb_jmp_cache_hash_page(addr);
1673 memset (&env->tb_jmp_cache[i], 0,
1674 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1677 /* NOTE: if flush_global is true, also flush global entries (not
1679 void tlb_flush(CPUState *env, int flush_global)
1683 #if defined(DEBUG_TLB)
1684 printf("tlb_flush:\n");
1686 /* must reset current TB so that interrupts cannot modify the
1687 links while we are modifying them */
1688 env->current_tb = NULL;
1690 for(i = 0; i < CPU_TLB_SIZE; i++) {
1691 env->tlb_table[0][i].addr_read = -1;
1692 env->tlb_table[0][i].addr_write = -1;
1693 env->tlb_table[0][i].addr_code = -1;
1694 env->tlb_table[1][i].addr_read = -1;
1695 env->tlb_table[1][i].addr_write = -1;
1696 env->tlb_table[1][i].addr_code = -1;
1697 #if (NB_MMU_MODES >= 3)
1698 env->tlb_table[2][i].addr_read = -1;
1699 env->tlb_table[2][i].addr_write = -1;
1700 env->tlb_table[2][i].addr_code = -1;
1701 #if (NB_MMU_MODES == 4)
1702 env->tlb_table[3][i].addr_read = -1;
1703 env->tlb_table[3][i].addr_write = -1;
1704 env->tlb_table[3][i].addr_code = -1;
1709 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1712 if (env->kqemu_enabled) {
1713 kqemu_flush(env, flush_global);
1719 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1721 if (addr == (tlb_entry->addr_read &
1722 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1723 addr == (tlb_entry->addr_write &
1724 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1725 addr == (tlb_entry->addr_code &
1726 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1727 tlb_entry->addr_read = -1;
1728 tlb_entry->addr_write = -1;
1729 tlb_entry->addr_code = -1;
1733 void tlb_flush_page(CPUState *env, target_ulong addr)
1737 #if defined(DEBUG_TLB)
1738 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1740 /* must reset current TB so that interrupts cannot modify the
1741 links while we are modifying them */
1742 env->current_tb = NULL;
1744 addr &= TARGET_PAGE_MASK;
1745 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1746 tlb_flush_entry(&env->tlb_table[0][i], addr);
1747 tlb_flush_entry(&env->tlb_table[1][i], addr);
1748 #if (NB_MMU_MODES >= 3)
1749 tlb_flush_entry(&env->tlb_table[2][i], addr);
1750 #if (NB_MMU_MODES == 4)
1751 tlb_flush_entry(&env->tlb_table[3][i], addr);
1755 tlb_flush_jmp_cache(env, addr);
1758 if (env->kqemu_enabled) {
1759 kqemu_flush_page(env, addr);
1764 /* update the TLBs so that writes to code in the virtual page 'addr'
1766 static void tlb_protect_code(ram_addr_t ram_addr)
1768 cpu_physical_memory_reset_dirty(ram_addr,
1769 ram_addr + TARGET_PAGE_SIZE,
1773 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1774 tested for self modifying code */
1775 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1778 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1781 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1782 unsigned long start, unsigned long length)
1785 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1786 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1787 if ((addr - start) < length) {
1788 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1793 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1797 unsigned long length, start1;
1801 start &= TARGET_PAGE_MASK;
1802 end = TARGET_PAGE_ALIGN(end);
1804 length = end - start;
1807 len = length >> TARGET_PAGE_BITS;
1809 /* XXX: should not depend on cpu context */
1811 if (env->kqemu_enabled) {
1814 for(i = 0; i < len; i++) {
1815 kqemu_set_notdirty(env, addr);
1816 addr += TARGET_PAGE_SIZE;
1820 mask = ~dirty_flags;
1821 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1822 for(i = 0; i < len; i++)
1825 /* we modify the TLB cache so that the dirty bit will be set again
1826 when accessing the range */
1827 start1 = start + (unsigned long)phys_ram_base;
1828 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1829 for(i = 0; i < CPU_TLB_SIZE; i++)
1830 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1831 for(i = 0; i < CPU_TLB_SIZE; i++)
1832 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1833 #if (NB_MMU_MODES >= 3)
1834 for(i = 0; i < CPU_TLB_SIZE; i++)
1835 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1836 #if (NB_MMU_MODES == 4)
1837 for(i = 0; i < CPU_TLB_SIZE; i++)
1838 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1844 int cpu_physical_memory_set_dirty_tracking(int enable)
1846 in_migration = enable;
1850 int cpu_physical_memory_get_dirty_tracking(void)
1852 return in_migration;
1855 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1857 ram_addr_t ram_addr;
1859 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1860 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1861 tlb_entry->addend - (unsigned long)phys_ram_base;
1862 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1863 tlb_entry->addr_write |= TLB_NOTDIRTY;
1868 /* update the TLB according to the current state of the dirty bits */
1869 void cpu_tlb_update_dirty(CPUState *env)
1872 for(i = 0; i < CPU_TLB_SIZE; i++)
1873 tlb_update_dirty(&env->tlb_table[0][i]);
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_update_dirty(&env->tlb_table[1][i]);
1876 #if (NB_MMU_MODES >= 3)
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
1878 tlb_update_dirty(&env->tlb_table[2][i]);
1879 #if (NB_MMU_MODES == 4)
1880 for(i = 0; i < CPU_TLB_SIZE; i++)
1881 tlb_update_dirty(&env->tlb_table[3][i]);
1886 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1888 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1889 tlb_entry->addr_write = vaddr;
1892 /* update the TLB corresponding to virtual page vaddr
1893 so that it is no longer dirty */
1894 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1898 vaddr &= TARGET_PAGE_MASK;
1899 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1900 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1901 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1902 #if (NB_MMU_MODES >= 3)
1903 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1904 #if (NB_MMU_MODES == 4)
1905 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1910 /* add a new TLB entry. At most one entry for a given virtual address
1911 is permitted. Return 0 if OK or 2 if the page could not be mapped
1912 (can only happen in non SOFTMMU mode for I/O pages or pages
1913 conflicting with the host address space). */
1914 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1915 target_phys_addr_t paddr, int prot,
1916 int mmu_idx, int is_softmmu)
1921 target_ulong address;
1922 target_ulong code_address;
1923 target_phys_addr_t addend;
1927 target_phys_addr_t iotlb;
1929 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1931 pd = IO_MEM_UNASSIGNED;
1933 pd = p->phys_offset;
1935 #if defined(DEBUG_TLB)
1936 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1937 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1942 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1943 /* IO memory case (romd handled later) */
1944 address |= TLB_MMIO;
1946 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1947 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1949 iotlb = pd & TARGET_PAGE_MASK;
1950 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1951 iotlb |= IO_MEM_NOTDIRTY;
1953 iotlb |= IO_MEM_ROM;
1955 /* IO handlers are currently passed a phsical address.
1956 It would be nice to pass an offset from the base address
1957 of that region. This would avoid having to special case RAM,
1958 and avoid full address decoding in every device.
1959 We can't use the high bits of pd for this because
1960 IO_MEM_ROMD uses these as a ram address. */
1961 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1964 code_address = address;
1965 /* Make accesses to pages with watchpoints go via the
1966 watchpoint trap routines. */
1967 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1968 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1969 iotlb = io_mem_watch + paddr;
1970 /* TODO: The memory case can be optimized by not trapping
1971 reads of pages with a write breakpoint. */
1972 address |= TLB_MMIO;
1976 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1977 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1978 te = &env->tlb_table[mmu_idx][index];
1979 te->addend = addend - vaddr;
1980 if (prot & PAGE_READ) {
1981 te->addr_read = address;
1986 if (prot & PAGE_EXEC) {
1987 te->addr_code = code_address;
1991 if (prot & PAGE_WRITE) {
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1993 (pd & IO_MEM_ROMD)) {
1994 /* Write access calls the I/O callback. */
1995 te->addr_write = address | TLB_MMIO;
1996 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1997 !cpu_physical_memory_is_dirty(pd)) {
1998 te->addr_write = address | TLB_NOTDIRTY;
2000 te->addr_write = address;
2003 te->addr_write = -1;
2010 void tlb_flush(CPUState *env, int flush_global)
2014 void tlb_flush_page(CPUState *env, target_ulong addr)
2018 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2019 target_phys_addr_t paddr, int prot,
2020 int mmu_idx, int is_softmmu)
2025 /* dump memory mappings */
2026 void page_dump(FILE *f)
2028 unsigned long start, end;
2029 int i, j, prot, prot1;
2032 fprintf(f, "%-8s %-8s %-8s %s\n",
2033 "start", "end", "size", "prot");
2037 for(i = 0; i <= L1_SIZE; i++) {
2042 for(j = 0;j < L2_SIZE; j++) {
2047 if (prot1 != prot) {
2048 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2050 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2051 start, end, end - start,
2052 prot & PAGE_READ ? 'r' : '-',
2053 prot & PAGE_WRITE ? 'w' : '-',
2054 prot & PAGE_EXEC ? 'x' : '-');
2068 int page_get_flags(target_ulong address)
2072 p = page_find(address >> TARGET_PAGE_BITS);
2078 /* modify the flags of a page and invalidate the code if
2079 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2080 depending on PAGE_WRITE */
2081 void page_set_flags(target_ulong start, target_ulong end, int flags)
2086 /* mmap_lock should already be held. */
2087 start = start & TARGET_PAGE_MASK;
2088 end = TARGET_PAGE_ALIGN(end);
2089 if (flags & PAGE_WRITE)
2090 flags |= PAGE_WRITE_ORG;
2091 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2092 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2093 /* We may be called for host regions that are outside guest
2097 /* if the write protection is set, then we invalidate the code
2099 if (!(p->flags & PAGE_WRITE) &&
2100 (flags & PAGE_WRITE) &&
2102 tb_invalidate_phys_page(addr, 0, NULL);
2108 int page_check_range(target_ulong start, target_ulong len, int flags)
2114 if (start + len < start)
2115 /* we've wrapped around */
2118 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2119 start = start & TARGET_PAGE_MASK;
2121 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2122 p = page_find(addr >> TARGET_PAGE_BITS);
2125 if( !(p->flags & PAGE_VALID) )
2128 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2130 if (flags & PAGE_WRITE) {
2131 if (!(p->flags & PAGE_WRITE_ORG))
2133 /* unprotect the page if it was put read-only because it
2134 contains translated code */
2135 if (!(p->flags & PAGE_WRITE)) {
2136 if (!page_unprotect(addr, 0, NULL))
2145 /* called from signal handler: invalidate the code and unprotect the
2146 page. Return TRUE if the fault was succesfully handled. */
2147 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2149 unsigned int page_index, prot, pindex;
2151 target_ulong host_start, host_end, addr;
2153 /* Technically this isn't safe inside a signal handler. However we
2154 know this only ever happens in a synchronous SEGV handler, so in
2155 practice it seems to be ok. */
2158 host_start = address & qemu_host_page_mask;
2159 page_index = host_start >> TARGET_PAGE_BITS;
2160 p1 = page_find(page_index);
2165 host_end = host_start + qemu_host_page_size;
2168 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2172 /* if the page was really writable, then we change its
2173 protection back to writable */
2174 if (prot & PAGE_WRITE_ORG) {
2175 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2176 if (!(p1[pindex].flags & PAGE_WRITE)) {
2177 mprotect((void *)g2h(host_start), qemu_host_page_size,
2178 (prot & PAGE_BITS) | PAGE_WRITE);
2179 p1[pindex].flags |= PAGE_WRITE;
2180 /* and since the content will be modified, we must invalidate
2181 the corresponding translated code. */
2182 tb_invalidate_phys_page(address, pc, puc);
2183 #ifdef DEBUG_TB_CHECK
2184 tb_invalidate_check(address);
2194 static inline void tlb_set_dirty(CPUState *env,
2195 unsigned long addr, target_ulong vaddr)
2198 #endif /* defined(CONFIG_USER_ONLY) */
2200 #if !defined(CONFIG_USER_ONLY)
2201 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2203 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2204 ram_addr_t orig_memory);
2205 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2208 if (addr > start_addr) \
2211 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2212 if (start_addr2 > 0) \
2216 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2217 end_addr2 = TARGET_PAGE_SIZE - 1; \
2219 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2220 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2225 /* register physical memory. 'size' must be a multiple of the target
2226 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2228 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2230 ram_addr_t phys_offset)
2232 target_phys_addr_t addr, end_addr;
2235 ram_addr_t orig_size = size;
2239 /* XXX: should not depend on cpu context */
2241 if (env->kqemu_enabled) {
2242 kqemu_set_phys_mem(start_addr, size, phys_offset);
2246 kvm_set_phys_mem(start_addr, size, phys_offset);
2248 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2249 end_addr = start_addr + (target_phys_addr_t)size;
2250 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2251 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2252 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2253 ram_addr_t orig_memory = p->phys_offset;
2254 target_phys_addr_t start_addr2, end_addr2;
2255 int need_subpage = 0;
2257 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2259 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2260 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2261 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2262 &p->phys_offset, orig_memory);
2264 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2267 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2269 p->phys_offset = phys_offset;
2270 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2271 (phys_offset & IO_MEM_ROMD))
2272 phys_offset += TARGET_PAGE_SIZE;
2275 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2276 p->phys_offset = phys_offset;
2277 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2278 (phys_offset & IO_MEM_ROMD))
2279 phys_offset += TARGET_PAGE_SIZE;
2281 target_phys_addr_t start_addr2, end_addr2;
2282 int need_subpage = 0;
2284 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2285 end_addr2, need_subpage);
2287 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2288 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2289 &p->phys_offset, IO_MEM_UNASSIGNED);
2290 subpage_register(subpage, start_addr2, end_addr2,
2297 /* since each CPU stores ram addresses in its TLB cache, we must
2298 reset the modified entries */
2300 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2305 /* XXX: temporary until new memory mapping API */
2306 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2310 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2312 return IO_MEM_UNASSIGNED;
2313 return p->phys_offset;
2316 /* XXX: better than nothing */
2317 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2320 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2321 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2322 (uint64_t)size, (uint64_t)phys_ram_size);
2325 addr = phys_ram_alloc_offset;
2326 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2330 void qemu_ram_free(ram_addr_t addr)
2334 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2336 #ifdef DEBUG_UNASSIGNED
2337 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2339 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2340 do_unassigned_access(addr, 0, 0, 0, 1);
2345 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2347 #ifdef DEBUG_UNASSIGNED
2348 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2350 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2351 do_unassigned_access(addr, 0, 0, 0, 2);
2356 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2358 #ifdef DEBUG_UNASSIGNED
2359 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2361 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2362 do_unassigned_access(addr, 0, 0, 0, 4);
2367 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2369 #ifdef DEBUG_UNASSIGNED
2370 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2372 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2373 do_unassigned_access(addr, 1, 0, 0, 1);
2377 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2379 #ifdef DEBUG_UNASSIGNED
2380 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2382 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2383 do_unassigned_access(addr, 1, 0, 0, 2);
2387 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2389 #ifdef DEBUG_UNASSIGNED
2390 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2392 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2393 do_unassigned_access(addr, 1, 0, 0, 4);
2397 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2398 unassigned_mem_readb,
2399 unassigned_mem_readw,
2400 unassigned_mem_readl,
2403 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2404 unassigned_mem_writeb,
2405 unassigned_mem_writew,
2406 unassigned_mem_writel,
2409 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2413 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2414 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2415 #if !defined(CONFIG_USER_ONLY)
2416 tb_invalidate_phys_page_fast(ram_addr, 1);
2417 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2420 stb_p(phys_ram_base + ram_addr, val);
2422 if (cpu_single_env->kqemu_enabled &&
2423 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2424 kqemu_modify_page(cpu_single_env, ram_addr);
2426 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2427 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2428 /* we remove the notdirty callback only if the code has been
2430 if (dirty_flags == 0xff)
2431 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2434 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2438 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2440 #if !defined(CONFIG_USER_ONLY)
2441 tb_invalidate_phys_page_fast(ram_addr, 2);
2442 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2445 stw_p(phys_ram_base + ram_addr, val);
2447 if (cpu_single_env->kqemu_enabled &&
2448 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2449 kqemu_modify_page(cpu_single_env, ram_addr);
2451 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2452 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2453 /* we remove the notdirty callback only if the code has been
2455 if (dirty_flags == 0xff)
2456 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2459 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2463 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2464 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2465 #if !defined(CONFIG_USER_ONLY)
2466 tb_invalidate_phys_page_fast(ram_addr, 4);
2467 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2470 stl_p(phys_ram_base + ram_addr, val);
2472 if (cpu_single_env->kqemu_enabled &&
2473 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2474 kqemu_modify_page(cpu_single_env, ram_addr);
2476 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2477 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2478 /* we remove the notdirty callback only if the code has been
2480 if (dirty_flags == 0xff)
2481 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2484 static CPUReadMemoryFunc *error_mem_read[3] = {
2485 NULL, /* never used */
2486 NULL, /* never used */
2487 NULL, /* never used */
2490 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2491 notdirty_mem_writeb,
2492 notdirty_mem_writew,
2493 notdirty_mem_writel,
2496 /* Generate a debug exception if a watchpoint has been hit. */
2497 static void check_watchpoint(int offset, int flags)
2499 CPUState *env = cpu_single_env;
2503 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2504 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
2505 if (vaddr == wp->vaddr && (wp->flags & flags)) {
2506 env->watchpoint_hit = wp;
2507 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2513 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2514 so these check for a hit then pass through to the normal out-of-line
2516 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2518 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
2519 return ldub_phys(addr);
2522 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2524 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
2525 return lduw_phys(addr);
2528 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2530 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
2531 return ldl_phys(addr);
2534 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2537 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
2538 stb_phys(addr, val);
2541 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2544 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
2545 stw_phys(addr, val);
2548 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2551 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
2552 stl_phys(addr, val);
2555 static CPUReadMemoryFunc *watch_mem_read[3] = {
2561 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2567 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2573 idx = SUBPAGE_IDX(addr - mmio->base);
2574 #if defined(DEBUG_SUBPAGE)
2575 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2576 mmio, len, addr, idx);
2578 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2583 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2584 uint32_t value, unsigned int len)
2588 idx = SUBPAGE_IDX(addr - mmio->base);
2589 #if defined(DEBUG_SUBPAGE)
2590 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2591 mmio, len, addr, idx, value);
2593 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2596 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2598 #if defined(DEBUG_SUBPAGE)
2599 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2602 return subpage_readlen(opaque, addr, 0);
2605 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2608 #if defined(DEBUG_SUBPAGE)
2609 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2611 subpage_writelen(opaque, addr, value, 0);
2614 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2616 #if defined(DEBUG_SUBPAGE)
2617 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2620 return subpage_readlen(opaque, addr, 1);
2623 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2626 #if defined(DEBUG_SUBPAGE)
2627 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2629 subpage_writelen(opaque, addr, value, 1);
2632 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2634 #if defined(DEBUG_SUBPAGE)
2635 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2638 return subpage_readlen(opaque, addr, 2);
2641 static void subpage_writel (void *opaque,
2642 target_phys_addr_t addr, uint32_t value)
2644 #if defined(DEBUG_SUBPAGE)
2645 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2647 subpage_writelen(opaque, addr, value, 2);
2650 static CPUReadMemoryFunc *subpage_read[] = {
2656 static CPUWriteMemoryFunc *subpage_write[] = {
2662 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2668 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2670 idx = SUBPAGE_IDX(start);
2671 eidx = SUBPAGE_IDX(end);
2672 #if defined(DEBUG_SUBPAGE)
2673 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2674 mmio, start, end, idx, eidx, memory);
2676 memory >>= IO_MEM_SHIFT;
2677 for (; idx <= eidx; idx++) {
2678 for (i = 0; i < 4; i++) {
2679 if (io_mem_read[memory][i]) {
2680 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2681 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2683 if (io_mem_write[memory][i]) {
2684 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2685 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2693 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2694 ram_addr_t orig_memory)
2699 mmio = qemu_mallocz(sizeof(subpage_t));
2702 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2703 #if defined(DEBUG_SUBPAGE)
2704 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2705 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2707 *phys = subpage_memory | IO_MEM_SUBPAGE;
2708 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2714 static void io_mem_init(void)
2716 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2717 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2718 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2721 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2722 watch_mem_write, NULL);
2723 /* alloc dirty bits array */
2724 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2725 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2728 /* mem_read and mem_write are arrays of functions containing the
2729 function to access byte (index 0), word (index 1) and dword (index
2730 2). Functions can be omitted with a NULL function pointer. The
2731 registered functions may be modified dynamically later.
2732 If io_index is non zero, the corresponding io zone is
2733 modified. If it is zero, a new io zone is allocated. The return
2734 value can be used with cpu_register_physical_memory(). (-1) is
2735 returned if error. */
2736 int cpu_register_io_memory(int io_index,
2737 CPUReadMemoryFunc **mem_read,
2738 CPUWriteMemoryFunc **mem_write,
2741 int i, subwidth = 0;
2743 if (io_index <= 0) {
2744 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2746 io_index = io_mem_nb++;
2748 if (io_index >= IO_MEM_NB_ENTRIES)
2752 for(i = 0;i < 3; i++) {
2753 if (!mem_read[i] || !mem_write[i])
2754 subwidth = IO_MEM_SUBWIDTH;
2755 io_mem_read[io_index][i] = mem_read[i];
2756 io_mem_write[io_index][i] = mem_write[i];
2758 io_mem_opaque[io_index] = opaque;
2759 return (io_index << IO_MEM_SHIFT) | subwidth;
2762 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2764 return io_mem_write[io_index >> IO_MEM_SHIFT];
2767 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2769 return io_mem_read[io_index >> IO_MEM_SHIFT];
2772 #endif /* !defined(CONFIG_USER_ONLY) */
2774 /* physical memory access (slow version, mainly for debug) */
2775 #if defined(CONFIG_USER_ONLY)
2776 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2777 int len, int is_write)
2784 page = addr & TARGET_PAGE_MASK;
2785 l = (page + TARGET_PAGE_SIZE) - addr;
2788 flags = page_get_flags(page);
2789 if (!(flags & PAGE_VALID))
2792 if (!(flags & PAGE_WRITE))
2794 /* XXX: this code should not depend on lock_user */
2795 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2796 /* FIXME - should this return an error rather than just fail? */
2799 unlock_user(p, addr, l);
2801 if (!(flags & PAGE_READ))
2803 /* XXX: this code should not depend on lock_user */
2804 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2805 /* FIXME - should this return an error rather than just fail? */
2808 unlock_user(p, addr, 0);
2817 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2818 int len, int is_write)
2823 target_phys_addr_t page;
2828 page = addr & TARGET_PAGE_MASK;
2829 l = (page + TARGET_PAGE_SIZE) - addr;
2832 p = phys_page_find(page >> TARGET_PAGE_BITS);
2834 pd = IO_MEM_UNASSIGNED;
2836 pd = p->phys_offset;
2840 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2841 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2842 /* XXX: could force cpu_single_env to NULL to avoid
2844 if (l >= 4 && ((addr & 3) == 0)) {
2845 /* 32 bit write access */
2847 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2849 } else if (l >= 2 && ((addr & 1) == 0)) {
2850 /* 16 bit write access */
2852 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2855 /* 8 bit write access */
2857 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2861 unsigned long addr1;
2862 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2864 ptr = phys_ram_base + addr1;
2865 memcpy(ptr, buf, l);
2866 if (!cpu_physical_memory_is_dirty(addr1)) {
2867 /* invalidate code */
2868 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2870 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2871 (0xff & ~CODE_DIRTY_FLAG);
2875 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2876 !(pd & IO_MEM_ROMD)) {
2878 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2879 if (l >= 4 && ((addr & 3) == 0)) {
2880 /* 32 bit read access */
2881 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2884 } else if (l >= 2 && ((addr & 1) == 0)) {
2885 /* 16 bit read access */
2886 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2890 /* 8 bit read access */
2891 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2897 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2898 (addr & ~TARGET_PAGE_MASK);
2899 memcpy(buf, ptr, l);
2908 /* used for ROM loading : can write in RAM and ROM */
2909 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2910 const uint8_t *buf, int len)
2914 target_phys_addr_t page;
2919 page = addr & TARGET_PAGE_MASK;
2920 l = (page + TARGET_PAGE_SIZE) - addr;
2923 p = phys_page_find(page >> TARGET_PAGE_BITS);
2925 pd = IO_MEM_UNASSIGNED;
2927 pd = p->phys_offset;
2930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2931 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2932 !(pd & IO_MEM_ROMD)) {
2935 unsigned long addr1;
2936 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2938 ptr = phys_ram_base + addr1;
2939 memcpy(ptr, buf, l);
2948 /* warning: addr must be aligned */
2949 uint32_t ldl_phys(target_phys_addr_t addr)
2957 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2959 pd = IO_MEM_UNASSIGNED;
2961 pd = p->phys_offset;
2964 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2965 !(pd & IO_MEM_ROMD)) {
2967 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2968 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2971 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2972 (addr & ~TARGET_PAGE_MASK);
2978 /* warning: addr must be aligned */
2979 uint64_t ldq_phys(target_phys_addr_t addr)
2987 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2989 pd = IO_MEM_UNASSIGNED;
2991 pd = p->phys_offset;
2994 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2995 !(pd & IO_MEM_ROMD)) {
2997 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2998 #ifdef TARGET_WORDS_BIGENDIAN
2999 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3000 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3002 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3003 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3007 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3008 (addr & ~TARGET_PAGE_MASK);
3015 uint32_t ldub_phys(target_phys_addr_t addr)
3018 cpu_physical_memory_read(addr, &val, 1);
3023 uint32_t lduw_phys(target_phys_addr_t addr)
3026 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3027 return tswap16(val);
3030 /* warning: addr must be aligned. The ram page is not masked as dirty
3031 and the code inside is not invalidated. It is useful if the dirty
3032 bits are used to track modified PTEs */
3033 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3040 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3042 pd = IO_MEM_UNASSIGNED;
3044 pd = p->phys_offset;
3047 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3048 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3049 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3051 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3052 ptr = phys_ram_base + addr1;
3055 if (unlikely(in_migration)) {
3056 if (!cpu_physical_memory_is_dirty(addr1)) {
3057 /* invalidate code */
3058 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3060 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3061 (0xff & ~CODE_DIRTY_FLAG);
3067 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3074 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3076 pd = IO_MEM_UNASSIGNED;
3078 pd = p->phys_offset;
3081 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3082 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3083 #ifdef TARGET_WORDS_BIGENDIAN
3084 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3085 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3087 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3088 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3091 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3092 (addr & ~TARGET_PAGE_MASK);
3097 /* warning: addr must be aligned */
3098 void stl_phys(target_phys_addr_t addr, uint32_t val)
3105 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3107 pd = IO_MEM_UNASSIGNED;
3109 pd = p->phys_offset;
3112 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3113 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3114 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3116 unsigned long addr1;
3117 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3119 ptr = phys_ram_base + addr1;
3121 if (!cpu_physical_memory_is_dirty(addr1)) {
3122 /* invalidate code */
3123 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3125 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3126 (0xff & ~CODE_DIRTY_FLAG);
3132 void stb_phys(target_phys_addr_t addr, uint32_t val)
3135 cpu_physical_memory_write(addr, &v, 1);
3139 void stw_phys(target_phys_addr_t addr, uint32_t val)
3141 uint16_t v = tswap16(val);
3142 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3146 void stq_phys(target_phys_addr_t addr, uint64_t val)
3149 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3154 /* virtual memory access for debug */
3155 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3156 uint8_t *buf, int len, int is_write)
3159 target_phys_addr_t phys_addr;
3163 page = addr & TARGET_PAGE_MASK;
3164 phys_addr = cpu_get_phys_page_debug(env, page);
3165 /* if no physical page mapped, return an error */
3166 if (phys_addr == -1)
3168 l = (page + TARGET_PAGE_SIZE) - addr;
3171 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3180 /* in deterministic execution mode, instructions doing device I/Os
3181 must be at the end of the TB */
3182 void cpu_io_recompile(CPUState *env, void *retaddr)
3184 TranslationBlock *tb;
3186 target_ulong pc, cs_base;
3189 tb = tb_find_pc((unsigned long)retaddr);
3191 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3194 n = env->icount_decr.u16.low + tb->icount;
3195 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3196 /* Calculate how many instructions had been executed before the fault
3198 n = n - env->icount_decr.u16.low;
3199 /* Generate a new TB ending on the I/O insn. */
3201 /* On MIPS and SH, delay slot instructions can only be restarted if
3202 they were already the first instruction in the TB. If this is not
3203 the first instruction in a TB then re-execute the preceding
3205 #if defined(TARGET_MIPS)
3206 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3207 env->active_tc.PC -= 4;
3208 env->icount_decr.u16.low++;
3209 env->hflags &= ~MIPS_HFLAG_BMASK;
3211 #elif defined(TARGET_SH4)
3212 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3215 env->icount_decr.u16.low++;
3216 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3219 /* This should never happen. */
3220 if (n > CF_COUNT_MASK)
3221 cpu_abort(env, "TB too big during recompile");
3223 cflags = n | CF_LAST_IO;
3225 cs_base = tb->cs_base;
3227 tb_phys_invalidate(tb, -1);
3228 /* FIXME: In theory this could raise an exception. In practice
3229 we have already translated the block once so it's probably ok. */
3230 tb_gen_code(env, pc, cs_base, flags, cflags);
3231 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3232 the first in the TB) then we end up generating a whole new TB and
3233 repeating the fault, which is horribly inefficient.
3234 Better would be to execute just this insn uncached, or generate a
3236 cpu_resume_from_signal(env, NULL);
3239 void dump_exec_info(FILE *f,
3240 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3242 int i, target_code_size, max_target_code_size;
3243 int direct_jmp_count, direct_jmp2_count, cross_page;
3244 TranslationBlock *tb;
3246 target_code_size = 0;
3247 max_target_code_size = 0;
3249 direct_jmp_count = 0;
3250 direct_jmp2_count = 0;
3251 for(i = 0; i < nb_tbs; i++) {
3253 target_code_size += tb->size;
3254 if (tb->size > max_target_code_size)
3255 max_target_code_size = tb->size;
3256 if (tb->page_addr[1] != -1)
3258 if (tb->tb_next_offset[0] != 0xffff) {
3260 if (tb->tb_next_offset[1] != 0xffff) {
3261 direct_jmp2_count++;
3265 /* XXX: avoid using doubles ? */
3266 cpu_fprintf(f, "Translation buffer state:\n");
3267 cpu_fprintf(f, "gen code size %ld/%ld\n",
3268 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3269 cpu_fprintf(f, "TB count %d/%d\n",
3270 nb_tbs, code_gen_max_blocks);
3271 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3272 nb_tbs ? target_code_size / nb_tbs : 0,
3273 max_target_code_size);
3274 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3275 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3276 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3277 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3279 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3280 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3282 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3284 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3285 cpu_fprintf(f, "\nStatistics:\n");
3286 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3287 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3288 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3289 tcg_dump_info(f, cpu_fprintf);
3292 #if !defined(CONFIG_USER_ONLY)
3294 #define MMUSUFFIX _cmmu
3295 #define GETPC() NULL
3296 #define env cpu_single_env
3297 #define SOFTMMU_CODE_ACCESS
3300 #include "softmmu_template.h"
3303 #include "softmmu_template.h"
3306 #include "softmmu_template.h"
3309 #include "softmmu_template.h"