4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
58 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
70 int robust_singlestep;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75 int irqchip_in_kernel;
81 static KVMState *kvm_state;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 /* KVM private memory slots */
95 if (i >= 8 && i < 12) {
98 if (s->slots[i].memory_size == 0) {
103 fprintf(stderr, "%s: no free slot available\n", __func__);
107 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
126 * Find overlapping slot with lowest start address
128 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
132 KVMSlot *found = NULL;
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
152 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
170 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
172 struct kvm_userspace_memory_region mem;
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
178 mem.flags = slot->flags;
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
185 static void kvm_reset_vcpu(void *opaque)
187 CPUState *env = opaque;
189 kvm_arch_reset_vcpu(env);
192 int kvm_irqchip_in_kernel(void)
194 return kvm_state->irqchip_in_kernel;
197 int kvm_pit_in_kernel(void)
199 return kvm_state->pit_in_kernel;
203 int kvm_init_vcpu(CPUState *env)
205 KVMState *s = kvm_state;
209 DPRINTF("kvm_init_vcpu\n");
211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
213 DPRINTF("kvm_create_vcpu failed\n");
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
223 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
227 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
229 if (env->kvm_run == MAP_FAILED) {
231 DPRINTF("mmap'ing vcpu state failed\n");
235 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
236 s->coalesced_mmio_ring =
237 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
240 ret = kvm_arch_init_vcpu(env);
242 qemu_register_reset(kvm_reset_vcpu, env);
243 kvm_arch_reset_vcpu(env);
250 * dirty pages logging control
252 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
253 ram_addr_t size, int flags, int mask)
255 KVMState *s = kvm_state;
256 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
260 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
261 TARGET_FMT_plx "\n", __func__, phys_addr,
262 (target_phys_addr_t)(phys_addr + size - 1));
266 old_flags = mem->flags;
268 flags = (mem->flags & ~mask) | flags;
271 /* If nothing changed effectively, no need to issue ioctl */
272 if (s->migration_log) {
273 flags |= KVM_MEM_LOG_DIRTY_PAGES;
275 if (flags == old_flags) {
279 return kvm_set_user_memory_region(s, mem);
282 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
284 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
285 KVM_MEM_LOG_DIRTY_PAGES);
288 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
290 return kvm_dirty_pages_log_change(phys_addr, size, 0,
291 KVM_MEM_LOG_DIRTY_PAGES);
294 static int kvm_set_migration_log(int enable)
296 KVMState *s = kvm_state;
300 s->migration_log = enable;
302 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
305 if (!mem->memory_size) {
308 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
311 err = kvm_set_user_memory_region(s, mem);
319 /* get kvm's dirty pages bitmap and update qemu's */
320 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
321 unsigned long *bitmap,
322 unsigned long offset,
323 unsigned long mem_size)
326 unsigned long page_number, addr, addr1, c;
328 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
332 * bitmap-traveling is faster than memory-traveling (for addr...)
333 * especially when most of the memory is not dirty.
335 for (i = 0; i < len; i++) {
336 if (bitmap[i] != 0) {
337 c = leul_to_cpu(bitmap[i]);
341 page_number = i * HOST_LONG_BITS + j;
342 addr1 = page_number * TARGET_PAGE_SIZE;
343 addr = offset + addr1;
344 ram_addr = cpu_get_physical_page_desc(addr);
345 cpu_physical_memory_set_dirty(ram_addr);
352 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
355 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
356 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
357 * This means all bits are set to dirty.
359 * @start_add: start of logged region.
360 * @end_addr: end of logged region.
362 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
363 target_phys_addr_t end_addr)
365 KVMState *s = kvm_state;
366 unsigned long size, allocated_size = 0;
371 d.dirty_bitmap = NULL;
372 while (start_addr < end_addr) {
373 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
378 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
379 if (!d.dirty_bitmap) {
380 d.dirty_bitmap = qemu_malloc(size);
381 } else if (size > allocated_size) {
382 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
384 allocated_size = size;
385 memset(d.dirty_bitmap, 0, allocated_size);
389 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
390 DPRINTF("ioctl failed %d\n", errno);
395 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
396 mem->start_addr, mem->memory_size);
397 start_addr = mem->start_addr + mem->memory_size;
399 qemu_free(d.dirty_bitmap);
404 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
407 KVMState *s = kvm_state;
409 if (s->coalesced_mmio) {
410 struct kvm_coalesced_mmio_zone zone;
415 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
421 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
424 KVMState *s = kvm_state;
426 if (s->coalesced_mmio) {
427 struct kvm_coalesced_mmio_zone zone;
432 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
438 int kvm_check_extension(KVMState *s, unsigned int extension)
442 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
450 static int kvm_check_many_ioeventfds(void)
452 /* Userspace can use ioeventfd for io notification. This requires a host
453 * that supports eventfd(2) and an I/O thread; since eventfd does not
454 * support SIGIO it cannot interrupt the vcpu.
456 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
457 * can avoid creating too many ioeventfds.
459 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
462 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
463 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
464 if (ioeventfds[i] < 0) {
467 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
469 close(ioeventfds[i]);
474 /* Decide whether many devices are supported or not */
475 ret = i == ARRAY_SIZE(ioeventfds);
478 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
479 close(ioeventfds[i]);
487 static const KVMCapabilityInfo *
488 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
491 if (!kvm_check_extension(s, list->value)) {
499 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
500 ram_addr_t phys_offset)
502 KVMState *s = kvm_state;
503 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
507 /* kvm works in page size chunks, but the function may be called
508 with sub-page size and unaligned start address. */
509 size = TARGET_PAGE_ALIGN(size);
510 start_addr = TARGET_PAGE_ALIGN(start_addr);
512 /* KVM does not support read-only slots */
513 phys_offset &= ~IO_MEM_ROM;
516 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
521 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
522 (start_addr + size <= mem->start_addr + mem->memory_size) &&
523 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
524 /* The new slot fits into the existing one and comes with
525 * identical parameters - nothing to be done. */
531 /* unregister the overlapping slot */
532 mem->memory_size = 0;
533 err = kvm_set_user_memory_region(s, mem);
535 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
536 __func__, strerror(-err));
540 /* Workaround for older KVM versions: we can't join slots, even not by
541 * unregistering the previous ones and then registering the larger
542 * slot. We have to maintain the existing fragmentation. Sigh.
544 * This workaround assumes that the new slot starts at the same
545 * address as the first existing one. If not or if some overlapping
546 * slot comes around later, we will fail (not seen in practice so far)
547 * - and actually require a recent KVM version. */
548 if (s->broken_set_mem_region &&
549 old.start_addr == start_addr && old.memory_size < size &&
550 flags < IO_MEM_UNASSIGNED) {
551 mem = kvm_alloc_slot(s);
552 mem->memory_size = old.memory_size;
553 mem->start_addr = old.start_addr;
554 mem->phys_offset = old.phys_offset;
557 err = kvm_set_user_memory_region(s, mem);
559 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
564 start_addr += old.memory_size;
565 phys_offset += old.memory_size;
566 size -= old.memory_size;
570 /* register prefix slot */
571 if (old.start_addr < start_addr) {
572 mem = kvm_alloc_slot(s);
573 mem->memory_size = start_addr - old.start_addr;
574 mem->start_addr = old.start_addr;
575 mem->phys_offset = old.phys_offset;
578 err = kvm_set_user_memory_region(s, mem);
580 fprintf(stderr, "%s: error registering prefix slot: %s\n",
581 __func__, strerror(-err));
586 /* register suffix slot */
587 if (old.start_addr + old.memory_size > start_addr + size) {
588 ram_addr_t size_delta;
590 mem = kvm_alloc_slot(s);
591 mem->start_addr = start_addr + size;
592 size_delta = mem->start_addr - old.start_addr;
593 mem->memory_size = old.memory_size - size_delta;
594 mem->phys_offset = old.phys_offset + size_delta;
597 err = kvm_set_user_memory_region(s, mem);
599 fprintf(stderr, "%s: error registering suffix slot: %s\n",
600 __func__, strerror(-err));
606 /* in case the KVM bug workaround already "consumed" the new slot */
610 /* KVM does not need to know about this memory */
611 if (flags >= IO_MEM_UNASSIGNED) {
614 mem = kvm_alloc_slot(s);
615 mem->memory_size = size;
616 mem->start_addr = start_addr;
617 mem->phys_offset = phys_offset;
620 err = kvm_set_user_memory_region(s, mem);
622 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
628 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
629 target_phys_addr_t start_addr,
630 ram_addr_t size, ram_addr_t phys_offset)
632 kvm_set_phys_mem(start_addr, size, phys_offset);
635 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
636 target_phys_addr_t start_addr,
637 target_phys_addr_t end_addr)
639 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
642 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
645 return kvm_set_migration_log(enable);
648 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
649 .set_memory = kvm_client_set_memory,
650 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
651 .migration_log = kvm_client_migration_log,
656 static const char upgrade_note[] =
657 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
658 "(see http://sourceforge.net/projects/kvm).\n";
660 const KVMCapabilityInfo *missing_cap;
664 s = qemu_mallocz(sizeof(KVMState));
666 #ifdef KVM_CAP_SET_GUEST_DEBUG
667 QTAILQ_INIT(&s->kvm_sw_breakpoints);
669 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
670 s->slots[i].slot = i;
673 s->fd = qemu_open("/dev/kvm", O_RDWR);
675 fprintf(stderr, "Could not access KVM kernel module: %m\n");
680 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
681 if (ret < KVM_API_VERSION) {
685 fprintf(stderr, "kvm version too old\n");
689 if (ret > KVM_API_VERSION) {
691 fprintf(stderr, "kvm version not supported\n");
695 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
698 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
699 "your host kernel command line\n");
704 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
707 kvm_check_extension_list(s, kvm_arch_required_capabilities);
711 fprintf(stderr, "kvm does not support %s\n%s",
712 missing_cap->name, upgrade_note);
716 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
718 s->broken_set_mem_region = 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
722 s->broken_set_mem_region = 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
731 s->robust_singlestep = 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
738 #ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
752 ret = kvm_arch_init(s);
758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
778 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
788 stb_p(ptr, cpu_inb(port));
791 stw_p(ptr, cpu_inw(port));
794 stl_p(ptr, cpu_inl(port));
800 cpu_outb(port, ldub_p(ptr));
803 cpu_outw(port, lduw_p(ptr));
806 cpu_outl(port, ldl_p(ptr));
817 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
818 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
820 fprintf(stderr, "KVM internal error.");
821 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
824 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
825 for (i = 0; i < run->internal.ndata; ++i) {
826 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
827 i, (uint64_t)run->internal.data[i]);
830 fprintf(stderr, "\n");
832 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
833 fprintf(stderr, "emulation failure\n");
834 if (!kvm_arch_stop_on_emulation_error(env)) {
835 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
846 void kvm_flush_coalesced_mmio_buffer(void)
848 KVMState *s = kvm_state;
849 if (s->coalesced_mmio_ring) {
850 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
851 while (ring->first != ring->last) {
852 struct kvm_coalesced_mmio *ent;
854 ent = &ring->coalesced_mmio[ring->first];
856 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
858 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
863 static void do_kvm_cpu_synchronize_state(void *_env)
865 CPUState *env = _env;
867 if (!env->kvm_vcpu_dirty) {
868 kvm_arch_get_registers(env);
869 env->kvm_vcpu_dirty = 1;
873 void kvm_cpu_synchronize_state(CPUState *env)
875 if (!env->kvm_vcpu_dirty) {
876 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
880 void kvm_cpu_synchronize_post_reset(CPUState *env)
882 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
883 env->kvm_vcpu_dirty = 0;
886 void kvm_cpu_synchronize_post_init(CPUState *env)
888 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
889 env->kvm_vcpu_dirty = 0;
892 int kvm_cpu_exec(CPUState *env)
894 struct kvm_run *run = env->kvm_run;
897 DPRINTF("kvm_cpu_exec()\n");
900 #ifndef CONFIG_IOTHREAD
901 if (env->exit_request) {
902 DPRINTF("interrupt exit requested\n");
908 if (kvm_arch_process_irqchip_events(env)) {
913 if (env->kvm_vcpu_dirty) {
914 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
915 env->kvm_vcpu_dirty = 0;
918 kvm_arch_pre_run(env, run);
919 cpu_single_env = NULL;
920 qemu_mutex_unlock_iothread();
921 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
922 qemu_mutex_lock_iothread();
923 cpu_single_env = env;
924 kvm_arch_post_run(env, run);
926 kvm_flush_coalesced_mmio_buffer();
928 if (ret == -EINTR || ret == -EAGAIN) {
930 DPRINTF("io window exit\n");
936 DPRINTF("kvm run failed %s\n", strerror(-ret));
940 ret = 0; /* exit loop */
941 switch (run->exit_reason) {
943 DPRINTF("handle_io\n");
944 ret = kvm_handle_io(run->io.port,
945 (uint8_t *)run + run->io.data_offset,
951 DPRINTF("handle_mmio\n");
952 cpu_physical_memory_rw(run->mmio.phys_addr,
958 case KVM_EXIT_IRQ_WINDOW_OPEN:
959 DPRINTF("irq_window_open\n");
961 case KVM_EXIT_SHUTDOWN:
962 DPRINTF("shutdown\n");
963 qemu_system_reset_request();
966 case KVM_EXIT_UNKNOWN:
967 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
968 (uint64_t)run->hw.hardware_exit_reason);
971 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
972 case KVM_EXIT_INTERNAL_ERROR:
973 ret = kvm_handle_internal_error(env, run);
977 DPRINTF("kvm_exit_debug\n");
978 #ifdef KVM_CAP_SET_GUEST_DEBUG
979 if (kvm_arch_debug(&run->debug.arch)) {
980 env->exception_index = EXCP_DEBUG;
983 /* re-enter, this exception was guest-internal */
985 #endif /* KVM_CAP_SET_GUEST_DEBUG */
988 DPRINTF("kvm_arch_handle_exit\n");
989 ret = kvm_arch_handle_exit(env, run);
995 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
997 env->exit_request = 1;
999 if (env->exit_request) {
1000 env->exit_request = 0;
1001 env->exception_index = EXCP_INTERRUPT;
1007 int kvm_ioctl(KVMState *s, int type, ...)
1014 arg = va_arg(ap, void *);
1017 ret = ioctl(s->fd, type, arg);
1024 int kvm_vm_ioctl(KVMState *s, int type, ...)
1031 arg = va_arg(ap, void *);
1034 ret = ioctl(s->vmfd, type, arg);
1041 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1048 arg = va_arg(ap, void *);
1051 ret = ioctl(env->kvm_fd, type, arg);
1058 int kvm_has_sync_mmu(void)
1060 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1063 int kvm_has_vcpu_events(void)
1065 return kvm_state->vcpu_events;
1068 int kvm_has_robust_singlestep(void)
1070 return kvm_state->robust_singlestep;
1073 int kvm_has_debugregs(void)
1075 return kvm_state->debugregs;
1078 int kvm_has_xsave(void)
1080 return kvm_state->xsave;
1083 int kvm_has_xcrs(void)
1085 return kvm_state->xcrs;
1088 int kvm_has_many_ioeventfds(void)
1090 if (!kvm_enabled()) {
1093 return kvm_state->many_ioeventfds;
1096 void kvm_setup_guest_memory(void *start, size_t size)
1098 if (!kvm_has_sync_mmu()) {
1099 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1102 perror("qemu_madvise");
1104 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1110 #ifdef KVM_CAP_SET_GUEST_DEBUG
1111 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1114 struct kvm_sw_breakpoint *bp;
1116 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1124 int kvm_sw_breakpoints_active(CPUState *env)
1126 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1129 struct kvm_set_guest_debug_data {
1130 struct kvm_guest_debug dbg;
1135 static void kvm_invoke_set_guest_debug(void *data)
1137 struct kvm_set_guest_debug_data *dbg_data = data;
1138 CPUState *env = dbg_data->env;
1140 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1143 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1145 struct kvm_set_guest_debug_data data;
1147 data.dbg.control = reinject_trap;
1149 if (env->singlestep_enabled) {
1150 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1152 kvm_arch_update_guest_debug(env, &data.dbg);
1155 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1159 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1160 target_ulong len, int type)
1162 struct kvm_sw_breakpoint *bp;
1166 if (type == GDB_BREAKPOINT_SW) {
1167 bp = kvm_find_sw_breakpoint(current_env, addr);
1173 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1180 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1186 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1189 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1195 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1196 err = kvm_update_guest_debug(env, 0);
1204 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1205 target_ulong len, int type)
1207 struct kvm_sw_breakpoint *bp;
1211 if (type == GDB_BREAKPOINT_SW) {
1212 bp = kvm_find_sw_breakpoint(current_env, addr);
1217 if (bp->use_count > 1) {
1222 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1227 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1230 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1236 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1237 err = kvm_update_guest_debug(env, 0);
1245 void kvm_remove_all_breakpoints(CPUState *current_env)
1247 struct kvm_sw_breakpoint *bp, *next;
1248 KVMState *s = current_env->kvm_state;
1251 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1252 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1253 /* Try harder to find a CPU that currently sees the breakpoint. */
1254 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1255 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1261 kvm_arch_remove_all_hw_breakpoints();
1263 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1264 kvm_update_guest_debug(env, 0);
1268 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1270 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1275 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1276 target_ulong len, int type)
1281 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1282 target_ulong len, int type)
1287 void kvm_remove_all_breakpoints(CPUState *current_env)
1290 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1292 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1294 struct kvm_signal_mask *sigmask;
1298 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1301 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1304 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1305 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1311 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1313 #ifdef KVM_IOEVENTFD
1315 struct kvm_ioeventfd iofd;
1317 iofd.datamatch = val;
1320 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1323 if (!kvm_enabled()) {
1328 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1331 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1343 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1345 #ifdef KVM_IOEVENTFD
1346 struct kvm_ioeventfd kick = {
1350 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1354 if (!kvm_enabled()) {
1358 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1360 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1370 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1372 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1375 int kvm_on_sigbus(int code, void *addr)
1377 return kvm_arch_on_sigbus(code, addr);