4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
32 /* This check must be after config-host.h is included */
34 #include <sys/eventfd.h>
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #define DPRINTF(fmt, ...) \
50 typedef struct KVMSlot
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
59 typedef struct kvm_dirty_log KVMDirtyLog;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
72 int robust_singlestep;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 int irqchip_in_kernel;
85 static const KVMCapabilityInfo kvm_required_capabilites[] = {
86 KVM_CAP_INFO(USER_MEMORY),
87 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
91 static KVMSlot *kvm_alloc_slot(KVMState *s)
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 if (s->slots[i].memory_size == 0) {
101 fprintf(stderr, "%s: no free slot available\n", __func__);
105 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
106 target_phys_addr_t start_addr,
107 target_phys_addr_t end_addr)
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
114 if (start_addr == mem->start_addr &&
115 end_addr == mem->start_addr + mem->memory_size) {
124 * Find overlapping slot with lowest start address
126 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
127 target_phys_addr_t start_addr,
128 target_phys_addr_t end_addr)
130 KVMSlot *found = NULL;
133 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
134 KVMSlot *mem = &s->slots[i];
136 if (mem->memory_size == 0 ||
137 (found && found->start_addr < mem->start_addr)) {
141 if (end_addr > mem->start_addr &&
142 start_addr < mem->start_addr + mem->memory_size) {
150 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
151 target_phys_addr_t *phys_addr)
155 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
156 KVMSlot *mem = &s->slots[i];
158 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
159 *phys_addr = mem->start_addr + (ram - mem->ram);
167 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
169 struct kvm_userspace_memory_region mem;
171 mem.slot = slot->slot;
172 mem.guest_phys_addr = slot->start_addr;
173 mem.memory_size = slot->memory_size;
174 mem.userspace_addr = (unsigned long)slot->ram;
175 mem.flags = slot->flags;
176 if (s->migration_log) {
177 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
179 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
182 static void kvm_reset_vcpu(void *opaque)
184 CPUState *env = opaque;
186 kvm_arch_reset_vcpu(env);
189 int kvm_irqchip_in_kernel(void)
191 return kvm_state->irqchip_in_kernel;
194 int kvm_pit_in_kernel(void)
196 return kvm_state->pit_in_kernel;
199 int kvm_init_vcpu(CPUState *env)
201 KVMState *s = kvm_state;
205 DPRINTF("kvm_init_vcpu\n");
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
209 DPRINTF("kvm_create_vcpu failed\n");
215 env->kvm_vcpu_dirty = 1;
217 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
224 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
226 if (env->kvm_run == MAP_FAILED) {
228 DPRINTF("mmap'ing vcpu state failed\n");
232 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
233 s->coalesced_mmio_ring =
234 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 ret = kvm_arch_init_vcpu(env);
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
247 * dirty pages logging control
250 static int kvm_mem_flags(KVMState *s, bool log_dirty)
252 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
255 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
257 KVMState *s = kvm_state;
258 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
261 old_flags = mem->flags;
263 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 if (flags == old_flags) {
275 return kvm_set_user_memory_region(s, mem);
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
279 ram_addr_t size, bool log_dirty)
281 KVMState *s = kvm_state;
282 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
285 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
286 TARGET_FMT_plx "\n", __func__, phys_addr,
287 (target_phys_addr_t)(phys_addr + size - 1));
290 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
293 static void kvm_log_start(MemoryListener *listener,
294 MemoryRegionSection *section)
298 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
299 section->size, true);
305 static void kvm_log_stop(MemoryListener *listener,
306 MemoryRegionSection *section)
310 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
311 section->size, false);
317 static int kvm_set_migration_log(int enable)
319 KVMState *s = kvm_state;
323 s->migration_log = enable;
325 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
328 if (!mem->memory_size) {
331 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
334 err = kvm_set_user_memory_region(s, mem);
342 /* get kvm's dirty pages bitmap and update qemu's */
343 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
344 unsigned long *bitmap,
345 unsigned long offset,
346 unsigned long mem_size)
349 unsigned long page_number, addr, addr1, c;
351 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
355 * bitmap-traveling is faster than memory-traveling (for addr...)
356 * especially when most of the memory is not dirty.
358 for (i = 0; i < len; i++) {
359 if (bitmap[i] != 0) {
360 c = leul_to_cpu(bitmap[i]);
364 page_number = i * HOST_LONG_BITS + j;
365 addr1 = page_number * TARGET_PAGE_SIZE;
366 addr = offset + addr1;
367 ram_addr = cpu_get_physical_page_desc(addr);
368 cpu_physical_memory_set_dirty(ram_addr);
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
380 * This means all bits are set to dirty.
382 * @start_add: start of logged region.
383 * @end_addr: end of logged region.
385 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
386 target_phys_addr_t end_addr)
388 KVMState *s = kvm_state;
389 unsigned long size, allocated_size = 0;
394 d.dirty_bitmap = NULL;
395 while (start_addr < end_addr) {
396 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
401 /* XXX bad kernel interface alert
402 * For dirty bitmap, kernel allocates array of size aligned to
403 * bits-per-long. But for case when the kernel is 64bits and
404 * the userspace is 32bits, userspace can't align to the same
405 * bits-per-long, since sizeof(long) is different between kernel
406 * and user space. This way, userspace will provide buffer which
407 * may be 4 bytes less than the kernel will use, resulting in
408 * userspace memory corruption (which is not detectable by valgrind
409 * too, in most cases).
410 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
411 * a hope that sizeof(long) wont become >8 any time soon.
413 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
414 /*HOST_LONG_BITS*/ 64) / 8;
415 if (!d.dirty_bitmap) {
416 d.dirty_bitmap = g_malloc(size);
417 } else if (size > allocated_size) {
418 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
420 allocated_size = size;
421 memset(d.dirty_bitmap, 0, allocated_size);
425 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
426 DPRINTF("ioctl failed %d\n", errno);
431 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
432 mem->start_addr, mem->memory_size);
433 start_addr = mem->start_addr + mem->memory_size;
435 g_free(d.dirty_bitmap);
440 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
443 KVMState *s = kvm_state;
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
451 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
457 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
460 KVMState *s = kvm_state;
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
468 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
474 int kvm_check_extension(KVMState *s, unsigned int extension)
478 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
486 static int kvm_check_many_ioeventfds(void)
488 /* Userspace can use ioeventfd for io notification. This requires a host
489 * that supports eventfd(2) and an I/O thread; since eventfd does not
490 * support SIGIO it cannot interrupt the vcpu.
492 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
493 * can avoid creating too many ioeventfds.
495 #if defined(CONFIG_EVENTFD)
498 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
499 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
500 if (ioeventfds[i] < 0) {
503 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
505 close(ioeventfds[i]);
510 /* Decide whether many devices are supported or not */
511 ret = i == ARRAY_SIZE(ioeventfds);
514 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
515 close(ioeventfds[i]);
523 static const KVMCapabilityInfo *
524 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
527 if (!kvm_check_extension(s, list->value)) {
535 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
537 KVMState *s = kvm_state;
540 MemoryRegion *mr = section->mr;
541 bool log_dirty = memory_region_is_logging(mr);
542 target_phys_addr_t start_addr = section->offset_within_address_space;
543 ram_addr_t size = section->size;
546 /* kvm works in page size chunks, but the function may be called
547 with sub-page size and unaligned start address. */
548 size = TARGET_PAGE_ALIGN(size);
549 start_addr = TARGET_PAGE_ALIGN(start_addr);
551 if (!memory_region_is_ram(mr)) {
555 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
558 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
563 if (add && start_addr >= mem->start_addr &&
564 (start_addr + size <= mem->start_addr + mem->memory_size) &&
565 (ram - start_addr == mem->ram - mem->start_addr)) {
566 /* The new slot fits into the existing one and comes with
567 * identical parameters - update flags and done. */
568 kvm_slot_dirty_pages_log_change(mem, log_dirty);
574 /* unregister the overlapping slot */
575 mem->memory_size = 0;
576 err = kvm_set_user_memory_region(s, mem);
578 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
579 __func__, strerror(-err));
583 /* Workaround for older KVM versions: we can't join slots, even not by
584 * unregistering the previous ones and then registering the larger
585 * slot. We have to maintain the existing fragmentation. Sigh.
587 * This workaround assumes that the new slot starts at the same
588 * address as the first existing one. If not or if some overlapping
589 * slot comes around later, we will fail (not seen in practice so far)
590 * - and actually require a recent KVM version. */
591 if (s->broken_set_mem_region &&
592 old.start_addr == start_addr && old.memory_size < size && add) {
593 mem = kvm_alloc_slot(s);
594 mem->memory_size = old.memory_size;
595 mem->start_addr = old.start_addr;
597 mem->flags = kvm_mem_flags(s, log_dirty);
599 err = kvm_set_user_memory_region(s, mem);
601 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
606 start_addr += old.memory_size;
607 ram += old.memory_size;
608 size -= old.memory_size;
612 /* register prefix slot */
613 if (old.start_addr < start_addr) {
614 mem = kvm_alloc_slot(s);
615 mem->memory_size = start_addr - old.start_addr;
616 mem->start_addr = old.start_addr;
618 mem->flags = kvm_mem_flags(s, log_dirty);
620 err = kvm_set_user_memory_region(s, mem);
622 fprintf(stderr, "%s: error registering prefix slot: %s\n",
623 __func__, strerror(-err));
625 fprintf(stderr, "%s: This is probably because your kernel's " \
626 "PAGE_SIZE is too big. Please try to use 4k " \
627 "PAGE_SIZE!\n", __func__);
633 /* register suffix slot */
634 if (old.start_addr + old.memory_size > start_addr + size) {
635 ram_addr_t size_delta;
637 mem = kvm_alloc_slot(s);
638 mem->start_addr = start_addr + size;
639 size_delta = mem->start_addr - old.start_addr;
640 mem->memory_size = old.memory_size - size_delta;
641 mem->ram = old.ram + size_delta;
642 mem->flags = kvm_mem_flags(s, log_dirty);
644 err = kvm_set_user_memory_region(s, mem);
646 fprintf(stderr, "%s: error registering suffix slot: %s\n",
647 __func__, strerror(-err));
653 /* in case the KVM bug workaround already "consumed" the new slot */
660 mem = kvm_alloc_slot(s);
661 mem->memory_size = size;
662 mem->start_addr = start_addr;
664 mem->flags = kvm_mem_flags(s, log_dirty);
666 err = kvm_set_user_memory_region(s, mem);
668 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
674 static void kvm_region_add(MemoryListener *listener,
675 MemoryRegionSection *section)
677 kvm_set_phys_mem(section, true);
680 static void kvm_region_del(MemoryListener *listener,
681 MemoryRegionSection *section)
683 kvm_set_phys_mem(section, false);
686 static void kvm_log_sync(MemoryListener *listener,
687 MemoryRegionSection *section)
689 target_phys_addr_t start = section->offset_within_address_space;
690 target_phys_addr_t end = start + section->size;
693 r = kvm_physical_sync_dirty_bitmap(start, end);
699 static void kvm_log_global_start(struct MemoryListener *listener)
703 r = kvm_set_migration_log(1);
707 static void kvm_log_global_stop(struct MemoryListener *listener)
711 r = kvm_set_migration_log(0);
715 static MemoryListener kvm_memory_listener = {
716 .region_add = kvm_region_add,
717 .region_del = kvm_region_del,
718 .log_start = kvm_log_start,
719 .log_stop = kvm_log_stop,
720 .log_sync = kvm_log_sync,
721 .log_global_start = kvm_log_global_start,
722 .log_global_stop = kvm_log_global_stop,
725 static void kvm_handle_interrupt(CPUState *env, int mask)
727 env->interrupt_request |= mask;
729 if (!qemu_cpu_is_self(env)) {
736 static const char upgrade_note[] =
737 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
738 "(see http://sourceforge.net/projects/kvm).\n";
740 const KVMCapabilityInfo *missing_cap;
744 s = g_malloc0(sizeof(KVMState));
746 #ifdef KVM_CAP_SET_GUEST_DEBUG
747 QTAILQ_INIT(&s->kvm_sw_breakpoints);
749 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
750 s->slots[i].slot = i;
753 s->fd = qemu_open("/dev/kvm", O_RDWR);
755 fprintf(stderr, "Could not access KVM kernel module: %m\n");
760 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
761 if (ret < KVM_API_VERSION) {
765 fprintf(stderr, "kvm version too old\n");
769 if (ret > KVM_API_VERSION) {
771 fprintf(stderr, "kvm version not supported\n");
775 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
778 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
779 "your host kernel command line\n");
785 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
788 kvm_check_extension_list(s, kvm_arch_required_capabilities);
792 fprintf(stderr, "kvm does not support %s\n%s",
793 missing_cap->name, upgrade_note);
797 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
799 s->broken_set_mem_region = 1;
800 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
802 s->broken_set_mem_region = 0;
805 #ifdef KVM_CAP_VCPU_EVENTS
806 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
809 s->robust_singlestep =
810 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
812 #ifdef KVM_CAP_DEBUGREGS
813 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
817 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
821 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
824 ret = kvm_arch_init(s);
830 memory_listener_register(&kvm_memory_listener);
832 s->many_ioeventfds = kvm_check_many_ioeventfds();
834 cpu_interrupt_handler = kvm_handle_interrupt;
852 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
858 for (i = 0; i < count; i++) {
859 if (direction == KVM_EXIT_IO_IN) {
862 stb_p(ptr, cpu_inb(port));
865 stw_p(ptr, cpu_inw(port));
868 stl_p(ptr, cpu_inl(port));
874 cpu_outb(port, ldub_p(ptr));
877 cpu_outw(port, lduw_p(ptr));
880 cpu_outl(port, ldl_p(ptr));
889 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
891 fprintf(stderr, "KVM internal error.");
892 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
895 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
896 for (i = 0; i < run->internal.ndata; ++i) {
897 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
898 i, (uint64_t)run->internal.data[i]);
901 fprintf(stderr, "\n");
903 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
904 fprintf(stderr, "emulation failure\n");
905 if (!kvm_arch_stop_on_emulation_error(env)) {
906 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
907 return EXCP_INTERRUPT;
910 /* FIXME: Should trigger a qmp message to let management know
911 * something went wrong.
916 void kvm_flush_coalesced_mmio_buffer(void)
918 KVMState *s = kvm_state;
920 if (s->coalesced_flush_in_progress) {
924 s->coalesced_flush_in_progress = true;
926 if (s->coalesced_mmio_ring) {
927 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
928 while (ring->first != ring->last) {
929 struct kvm_coalesced_mmio *ent;
931 ent = &ring->coalesced_mmio[ring->first];
933 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
935 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
939 s->coalesced_flush_in_progress = false;
942 static void do_kvm_cpu_synchronize_state(void *_env)
944 CPUState *env = _env;
946 if (!env->kvm_vcpu_dirty) {
947 kvm_arch_get_registers(env);
948 env->kvm_vcpu_dirty = 1;
952 void kvm_cpu_synchronize_state(CPUState *env)
954 if (!env->kvm_vcpu_dirty) {
955 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
959 void kvm_cpu_synchronize_post_reset(CPUState *env)
961 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
962 env->kvm_vcpu_dirty = 0;
965 void kvm_cpu_synchronize_post_init(CPUState *env)
967 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
968 env->kvm_vcpu_dirty = 0;
971 int kvm_cpu_exec(CPUState *env)
973 struct kvm_run *run = env->kvm_run;
976 DPRINTF("kvm_cpu_exec()\n");
978 if (kvm_arch_process_async_events(env)) {
979 env->exit_request = 0;
983 cpu_single_env = env;
986 if (env->kvm_vcpu_dirty) {
987 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
988 env->kvm_vcpu_dirty = 0;
991 kvm_arch_pre_run(env, run);
992 if (env->exit_request) {
993 DPRINTF("interrupt exit requested\n");
995 * KVM requires us to reenter the kernel after IO exits to complete
996 * instruction emulation. This self-signal will ensure that we
999 qemu_cpu_kick_self();
1001 cpu_single_env = NULL;
1002 qemu_mutex_unlock_iothread();
1004 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1006 qemu_mutex_lock_iothread();
1007 cpu_single_env = env;
1008 kvm_arch_post_run(env, run);
1010 kvm_flush_coalesced_mmio_buffer();
1013 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1014 DPRINTF("io window exit\n");
1015 ret = EXCP_INTERRUPT;
1018 fprintf(stderr, "error: kvm run failed %s\n",
1019 strerror(-run_ret));
1023 switch (run->exit_reason) {
1025 DPRINTF("handle_io\n");
1026 kvm_handle_io(run->io.port,
1027 (uint8_t *)run + run->io.data_offset,
1034 DPRINTF("handle_mmio\n");
1035 cpu_physical_memory_rw(run->mmio.phys_addr,
1038 run->mmio.is_write);
1041 case KVM_EXIT_IRQ_WINDOW_OPEN:
1042 DPRINTF("irq_window_open\n");
1043 ret = EXCP_INTERRUPT;
1045 case KVM_EXIT_SHUTDOWN:
1046 DPRINTF("shutdown\n");
1047 qemu_system_reset_request();
1048 ret = EXCP_INTERRUPT;
1050 case KVM_EXIT_UNKNOWN:
1051 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1052 (uint64_t)run->hw.hardware_exit_reason);
1055 case KVM_EXIT_INTERNAL_ERROR:
1056 ret = kvm_handle_internal_error(env, run);
1059 DPRINTF("kvm_arch_handle_exit\n");
1060 ret = kvm_arch_handle_exit(env, run);
1066 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1067 vm_stop(RUN_STATE_INTERNAL_ERROR);
1070 env->exit_request = 0;
1071 cpu_single_env = NULL;
1075 int kvm_ioctl(KVMState *s, int type, ...)
1082 arg = va_arg(ap, void *);
1085 ret = ioctl(s->fd, type, arg);
1092 int kvm_vm_ioctl(KVMState *s, int type, ...)
1099 arg = va_arg(ap, void *);
1102 ret = ioctl(s->vmfd, type, arg);
1109 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1116 arg = va_arg(ap, void *);
1119 ret = ioctl(env->kvm_fd, type, arg);
1126 int kvm_has_sync_mmu(void)
1128 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1131 int kvm_has_vcpu_events(void)
1133 return kvm_state->vcpu_events;
1136 int kvm_has_robust_singlestep(void)
1138 return kvm_state->robust_singlestep;
1141 int kvm_has_debugregs(void)
1143 return kvm_state->debugregs;
1146 int kvm_has_xsave(void)
1148 return kvm_state->xsave;
1151 int kvm_has_xcrs(void)
1153 return kvm_state->xcrs;
1156 int kvm_has_many_ioeventfds(void)
1158 if (!kvm_enabled()) {
1161 return kvm_state->many_ioeventfds;
1164 void kvm_setup_guest_memory(void *start, size_t size)
1166 if (!kvm_has_sync_mmu()) {
1167 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1170 perror("qemu_madvise");
1172 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1178 #ifdef KVM_CAP_SET_GUEST_DEBUG
1179 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1182 struct kvm_sw_breakpoint *bp;
1184 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1192 int kvm_sw_breakpoints_active(CPUState *env)
1194 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1197 struct kvm_set_guest_debug_data {
1198 struct kvm_guest_debug dbg;
1203 static void kvm_invoke_set_guest_debug(void *data)
1205 struct kvm_set_guest_debug_data *dbg_data = data;
1206 CPUState *env = dbg_data->env;
1208 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1211 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1213 struct kvm_set_guest_debug_data data;
1215 data.dbg.control = reinject_trap;
1217 if (env->singlestep_enabled) {
1218 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1220 kvm_arch_update_guest_debug(env, &data.dbg);
1223 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1227 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1228 target_ulong len, int type)
1230 struct kvm_sw_breakpoint *bp;
1234 if (type == GDB_BREAKPOINT_SW) {
1235 bp = kvm_find_sw_breakpoint(current_env, addr);
1241 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1248 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1254 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1257 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1263 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1264 err = kvm_update_guest_debug(env, 0);
1272 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1273 target_ulong len, int type)
1275 struct kvm_sw_breakpoint *bp;
1279 if (type == GDB_BREAKPOINT_SW) {
1280 bp = kvm_find_sw_breakpoint(current_env, addr);
1285 if (bp->use_count > 1) {
1290 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1295 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1298 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1304 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1305 err = kvm_update_guest_debug(env, 0);
1313 void kvm_remove_all_breakpoints(CPUState *current_env)
1315 struct kvm_sw_breakpoint *bp, *next;
1316 KVMState *s = current_env->kvm_state;
1319 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1320 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1321 /* Try harder to find a CPU that currently sees the breakpoint. */
1322 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1323 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1329 kvm_arch_remove_all_hw_breakpoints();
1331 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1332 kvm_update_guest_debug(env, 0);
1336 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1338 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1343 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1344 target_ulong len, int type)
1349 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1350 target_ulong len, int type)
1355 void kvm_remove_all_breakpoints(CPUState *current_env)
1358 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1360 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1362 struct kvm_signal_mask *sigmask;
1366 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1369 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1372 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1373 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1379 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1382 struct kvm_ioeventfd iofd;
1384 iofd.datamatch = val;
1387 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1390 if (!kvm_enabled()) {
1395 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1398 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1407 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1409 struct kvm_ioeventfd kick = {
1413 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1417 if (!kvm_enabled()) {
1421 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1423 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1430 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1432 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1435 int kvm_on_sigbus(int code, void *addr)
1437 return kvm_arch_on_sigbus(code, addr);