4 * Copyright (c) 2007 CodeSourcery
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "semihosting/semihost.h"
27 #if !defined(CONFIG_USER_ONLY)
29 static void cf_rte(CPUM68KState *env)
35 fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
36 env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
37 sp |= (fmt >> 28) & 3;
38 env->aregs[7] = sp + 8;
40 cpu_m68k_set_sr(env, fmt);
43 static void m68k_rte(CPUM68KState *env)
51 sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
53 env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
55 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
56 /* all except 68000 */
57 fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
64 cpu_m68k_set_sr(env, sr);
79 cpu_m68k_set_sr(env, sr);
82 static const char *m68k_exception_name(int index)
86 return "Access Fault";
88 return "Address Error";
90 return "Illegal Instruction";
92 return "Divide by Zero";
96 return "FTRAPcc, TRAPcc, TRAPV";
98 return "Privilege Violation";
105 case EXCP_DEBEGBP: /* 68020/030 only */
106 return "Copro Protocol Violation";
108 return "Format Error";
109 case EXCP_UNINITIALIZED:
110 return "Uninitialized Interrupt";
112 return "Spurious Interrupt";
113 case EXCP_INT_LEVEL_1:
114 return "Level 1 Interrupt";
115 case EXCP_INT_LEVEL_1 + 1:
116 return "Level 2 Interrupt";
117 case EXCP_INT_LEVEL_1 + 2:
118 return "Level 3 Interrupt";
119 case EXCP_INT_LEVEL_1 + 3:
120 return "Level 4 Interrupt";
121 case EXCP_INT_LEVEL_1 + 4:
122 return "Level 5 Interrupt";
123 case EXCP_INT_LEVEL_1 + 5:
124 return "Level 6 Interrupt";
125 case EXCP_INT_LEVEL_1 + 6:
126 return "Level 7 Interrupt";
147 case EXCP_TRAP0 + 10:
149 case EXCP_TRAP0 + 11:
151 case EXCP_TRAP0 + 12:
153 case EXCP_TRAP0 + 13:
155 case EXCP_TRAP0 + 14:
157 case EXCP_TRAP0 + 15:
160 return "FP Branch/Set on unordered condition";
162 return "FP Inexact Result";
164 return "FP Divide by Zero";
166 return "FP Underflow";
168 return "FP Operand Error";
170 return "FP Overflow";
172 return "FP Signaling NAN";
174 return "FP Unimplemented Data Type";
175 case EXCP_MMU_CONF: /* 68030/68851 only */
176 return "MMU Configuration Error";
177 case EXCP_MMU_ILLEGAL: /* 68851 only */
178 return "MMU Illegal Operation";
179 case EXCP_MMU_ACCESS: /* 68851 only */
180 return "MMU Access Level Violation";
182 return "User Defined Vector";
187 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
189 CPUState *cs = env_cpu(env);
200 switch (cs->exception_index) {
202 /* Return from an exception. */
206 if (semihosting_enabled((env->sr & SR_S) == 0)
207 && (env->pc & 3) == 0
208 && cpu_lduw_code(env, env->pc - 4) == 0x4e71
209 && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
211 do_m68k_semihosting(env, env->dregs[0]);
215 cs->exception_index = EXCP_HLT;
221 vector = cs->exception_index << 2;
223 sr = env->sr | cpu_m68k_get_ccr(env);
224 if (qemu_loglevel_mask(CPU_LOG_INT)) {
226 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
227 ++count, m68k_exception_name(cs->exception_index),
228 vector, env->pc, env->aregs[7], sr);
237 env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
242 fmt |= (sp & 3) << 28;
244 /* ??? This could cause MMU faults. */
247 cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
249 cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
251 /* Jump to vector. */
252 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
255 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
256 uint16_t format, uint16_t sr,
257 uint32_t addr, uint32_t retaddr)
259 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
260 /* all except 68000 */
261 CPUState *cs = env_cpu(env);
265 cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
267 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
272 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
276 cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
280 cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
282 cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
285 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
287 CPUState *cs = env_cpu(env);
293 switch (cs->exception_index) {
295 /* Return from an exception. */
301 vector = cs->exception_index << 2;
303 sr = env->sr | cpu_m68k_get_ccr(env);
304 if (qemu_loglevel_mask(CPU_LOG_INT)) {
306 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
307 ++count, m68k_exception_name(cs->exception_index),
308 vector, env->pc, env->aregs[7], sr);
312 * MC68040UM/AD, chapter 9.3.10
315 /* "the processor first make an internal copy" */
317 /* "set the mode to supervisor" */
319 /* "suppress tracing" */
321 /* "sets the processor interrupt mask" */
323 sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
325 cpu_m68k_set_sr(env, sr);
328 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
332 switch (cs->exception_index) {
334 if (env->mmu.fault) {
335 cpu_abort(cs, "DOUBLE MMU FAULT\n");
337 env->mmu.fault = true;
340 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
343 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
346 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
347 /* write back 1 / push data 0 */
349 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
350 /* write back 1 address */
352 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
353 /* write back 2 data */
355 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
356 /* write back 2 address */
358 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
359 /* write back 3 data */
361 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
362 /* write back 3 address */
364 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
367 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
368 /* write back 1 status */
370 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
371 /* write back 2 status */
373 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
374 /* write back 3 status */
376 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
377 /* special status word */
379 cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
380 /* effective address */
382 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
384 do_stack_frame(env, &sp, 7, oldsr, 0, env->pc);
385 env->mmu.fault = false;
386 if (qemu_loglevel_mask(CPU_LOG_INT)) {
388 "ssw: %08x ea: %08x sfc: %d dfc: %d\n",
389 env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
394 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
398 do_stack_frame(env, &sp, 2, oldsr, 0, env->pc);
405 do_stack_frame(env, &sp, 2, oldsr, env->mmu.ar, env->pc);
408 case EXCP_SPURIOUS ... EXCP_INT_LEVEL_7:
409 if (is_hw && (oldsr & SR_M)) {
410 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
413 cpu_m68k_set_sr(env, sr & ~SR_M);
415 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
418 do_stack_frame(env, &sp, 1, oldsr, 0, env->pc);
424 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
429 /* Jump to vector. */
430 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
433 static void do_interrupt_all(CPUM68KState *env, int is_hw)
435 if (m68k_feature(env, M68K_FEATURE_M68K)) {
436 m68k_interrupt_all(env, is_hw);
439 cf_interrupt_all(env, is_hw);
442 void m68k_cpu_do_interrupt(CPUState *cs)
444 M68kCPU *cpu = M68K_CPU(cs);
445 CPUM68KState *env = &cpu->env;
447 do_interrupt_all(env, 0);
450 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
452 do_interrupt_all(env, 1);
455 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
456 unsigned size, MMUAccessType access_type,
457 int mmu_idx, MemTxAttrs attrs,
458 MemTxResult response, uintptr_t retaddr)
460 M68kCPU *cpu = M68K_CPU(cs);
461 CPUM68KState *env = &cpu->env;
463 cpu_restore_state(cs, retaddr);
465 if (m68k_feature(env, M68K_FEATURE_M68040)) {
469 * According to the MC68040 users manual the ATC bit of the SSW is
470 * used to distinguish between ATC faults and physical bus errors.
471 * In the case of a bus error e.g. during nubus read from an empty
472 * slot this bit should not be set
474 if (response != MEMTX_DECODE_ERROR) {
475 env->mmu.ssw |= M68K_ATC_040;
478 /* FIXME: manage MMU table access error */
479 env->mmu.ssw &= ~M68K_TM_040;
480 if (env->sr & SR_S) { /* SUPERVISOR */
481 env->mmu.ssw |= M68K_TM_040_SUPER;
483 if (access_type == MMU_INST_FETCH) { /* instruction or data */
484 env->mmu.ssw |= M68K_TM_040_CODE;
486 env->mmu.ssw |= M68K_TM_040_DATA;
488 env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
491 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
494 env->mmu.ssw |= M68K_BA_SIZE_WORD;
497 env->mmu.ssw |= M68K_BA_SIZE_LONG;
501 if (access_type != MMU_DATA_STORE) {
502 env->mmu.ssw |= M68K_RW_040;
507 cs->exception_index = EXCP_ACCESS;
512 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
514 M68kCPU *cpu = M68K_CPU(cs);
515 CPUM68KState *env = &cpu->env;
517 if (interrupt_request & CPU_INTERRUPT_HARD
518 && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
520 * Real hardware gets the interrupt vector via an IACK cycle
521 * at this point. Current emulated hardware doesn't rely on
522 * this, so we provide/save the vector when the interrupt is
525 cs->exception_index = env->pending_vector;
526 do_interrupt_m68k_hardirq(env);
532 #endif /* !CONFIG_USER_ONLY */
534 G_NORETURN static void
535 raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
537 CPUState *cs = env_cpu(env);
539 cs->exception_index = tt;
540 cpu_loop_exit_restore(cs, raddr);
543 G_NORETURN static void raise_exception(CPUM68KState *env, int tt)
545 raise_exception_ra(env, tt, 0);
548 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
550 raise_exception(env, tt);
553 G_NORETURN static void
554 raise_exception_format2(CPUM68KState *env, int tt, int ilen, uintptr_t raddr)
556 CPUState *cs = env_cpu(env);
558 cs->exception_index = tt;
560 /* Recover PC and CC_OP for the beginning of the insn. */
561 cpu_restore_state(cs, raddr);
563 /* Flags are current in env->cc_*, or are undefined. */
564 env->cc_op = CC_OP_FLAGS;
567 * Remember original pc in mmu.ar, for the Format 2 stack frame.
568 * Adjust PC to end of the insn.
570 env->mmu.ar = env->pc;
576 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den, int ilen)
578 uint32_t num = env->dregs[destr];
581 env->cc_c = 0; /* always cleared, even if div0 */
584 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
592 * real 68040 keeps N and unset Z on overflow,
593 * whereas documentation says "undefined"
598 env->dregs[destr] = deposit32(quot, 16, 16, rem);
599 env->cc_z = (int16_t)quot;
600 env->cc_n = (int16_t)quot;
604 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den, int ilen)
606 int32_t num = env->dregs[destr];
609 env->cc_c = 0; /* always cleared, even if overflow/div0 */
612 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
617 if (quot != (int16_t)quot) {
619 /* nothing else is modified */
621 * real 68040 keeps N and unset Z on overflow,
622 * whereas documentation says "undefined"
627 env->dregs[destr] = deposit32(quot, 16, 16, rem);
628 env->cc_z = (int16_t)quot;
629 env->cc_n = (int16_t)quot;
633 void HELPER(divul)(CPUM68KState *env, int numr, int regr,
634 uint32_t den, int ilen)
636 uint32_t num = env->dregs[numr];
639 env->cc_c = 0; /* always cleared, even if div0 */
642 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
651 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
653 env->dregs[numr] = quot;
655 env->dregs[regr] = rem;
658 env->dregs[regr] = rem;
659 env->dregs[numr] = quot;
663 void HELPER(divsl)(CPUM68KState *env, int numr, int regr,
664 int32_t den, int ilen)
666 int32_t num = env->dregs[numr];
669 env->cc_c = 0; /* always cleared, even if overflow/div0 */
672 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
681 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
683 env->dregs[numr] = quot;
685 env->dregs[regr] = rem;
688 env->dregs[regr] = rem;
689 env->dregs[numr] = quot;
693 void HELPER(divull)(CPUM68KState *env, int numr, int regr,
694 uint32_t den, int ilen)
696 uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
700 env->cc_c = 0; /* always cleared, even if overflow/div0 */
703 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
708 if (quot > 0xffffffffULL) {
711 * real 68040 keeps N and unset Z on overflow,
712 * whereas documentation says "undefined"
722 * If Dq and Dr are the same, the quotient is returned.
723 * therefore we set Dq last.
726 env->dregs[regr] = rem;
727 env->dregs[numr] = quot;
730 void HELPER(divsll)(CPUM68KState *env, int numr, int regr,
731 int32_t den, int ilen)
733 int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
737 env->cc_c = 0; /* always cleared, even if overflow/div0 */
740 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
745 if (quot != (int32_t)quot) {
748 * real 68040 keeps N and unset Z on overflow,
749 * whereas documentation says "undefined"
759 * If Dq and Dr are the same, the quotient is returned.
760 * therefore we set Dq last.
763 env->dregs[regr] = rem;
764 env->dregs[numr] = quot;
767 /* We're executing in a serial context -- no need to be atomic. */
768 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
770 uint32_t Dc1 = extract32(regs, 9, 3);
771 uint32_t Dc2 = extract32(regs, 6, 3);
772 uint32_t Du1 = extract32(regs, 3, 3);
773 uint32_t Du2 = extract32(regs, 0, 3);
774 int16_t c1 = env->dregs[Dc1];
775 int16_t c2 = env->dregs[Dc2];
776 int16_t u1 = env->dregs[Du1];
777 int16_t u2 = env->dregs[Du2];
779 uintptr_t ra = GETPC();
781 l1 = cpu_lduw_data_ra(env, a1, ra);
782 l2 = cpu_lduw_data_ra(env, a2, ra);
783 if (l1 == c1 && l2 == c2) {
784 cpu_stw_data_ra(env, a1, u1, ra);
785 cpu_stw_data_ra(env, a2, u2, ra);
795 env->cc_op = CC_OP_CMPW;
796 env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
797 env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
800 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
803 uint32_t Dc1 = extract32(regs, 9, 3);
804 uint32_t Dc2 = extract32(regs, 6, 3);
805 uint32_t Du1 = extract32(regs, 3, 3);
806 uint32_t Du2 = extract32(regs, 0, 3);
807 uint32_t c1 = env->dregs[Dc1];
808 uint32_t c2 = env->dregs[Dc2];
809 uint32_t u1 = env->dregs[Du1];
810 uint32_t u2 = env->dregs[Du2];
812 uintptr_t ra = GETPC();
813 #if defined(CONFIG_ATOMIC64)
814 int mmu_idx = cpu_mmu_index(env, 0);
815 MemOpIdx oi = make_memop_idx(MO_BEUQ, mmu_idx);
819 /* We're executing in a parallel context -- must be atomic. */
820 #ifdef CONFIG_ATOMIC64
822 if ((a1 & 7) == 0 && a2 == a1 + 4) {
823 c = deposit64(c2, 32, 32, c1);
824 u = deposit64(u2, 32, 32, u1);
825 l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
828 } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
829 c = deposit64(c1, 32, 32, c2);
830 u = deposit64(u1, 32, 32, u2);
831 l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
837 /* Tell the main loop we need to serialize this insn. */
838 cpu_loop_exit_atomic(env_cpu(env), ra);
841 /* We're executing in a serial context -- no need to be atomic. */
842 l1 = cpu_ldl_data_ra(env, a1, ra);
843 l2 = cpu_ldl_data_ra(env, a2, ra);
844 if (l1 == c1 && l2 == c2) {
845 cpu_stl_data_ra(env, a1, u1, ra);
846 cpu_stl_data_ra(env, a2, u2, ra);
857 env->cc_op = CC_OP_CMPL;
858 env->dregs[Dc1] = l1;
859 env->dregs[Dc2] = l2;
862 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
864 do_cas2l(env, regs, a1, a2, false);
867 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
870 do_cas2l(env, regs, a1, a2, true);
880 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
884 /* Bound length; map 0 to 32. */
885 len = ((len - 1) & 31) + 1;
887 /* Note that ofs is signed. */
896 * Compute the number of bytes required (minus one) to
897 * satisfy the bitfield.
899 blen = (bofs + len - 1) / 8;
902 * Canonicalize the bit offset for data loaded into a 64-bit big-endian
903 * word. For the cases where BLEN is not a power of 2, adjust ADDR so
904 * that we can use the next power of two sized load without crossing a
905 * page boundary, unless the field itself crosses the boundary.
925 bofs += 8 * (addr & 3);
930 g_assert_not_reached();
933 return (struct bf_data){
941 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
946 return cpu_ldub_data_ra(env, addr, ra);
948 return cpu_lduw_data_ra(env, addr, ra);
951 return cpu_ldl_data_ra(env, addr, ra);
953 return cpu_ldq_data_ra(env, addr, ra);
955 g_assert_not_reached();
959 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
960 uint64_t data, uintptr_t ra)
964 cpu_stb_data_ra(env, addr, data, ra);
967 cpu_stw_data_ra(env, addr, data, ra);
971 cpu_stl_data_ra(env, addr, data, ra);
974 cpu_stq_data_ra(env, addr, data, ra);
977 g_assert_not_reached();
981 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
982 int32_t ofs, uint32_t len)
984 uintptr_t ra = GETPC();
985 struct bf_data d = bf_prep(addr, ofs, len);
986 uint64_t data = bf_load(env, d.addr, d.blen, ra);
988 return (int64_t)(data << d.bofs) >> (64 - d.len);
991 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
992 int32_t ofs, uint32_t len)
994 uintptr_t ra = GETPC();
995 struct bf_data d = bf_prep(addr, ofs, len);
996 uint64_t data = bf_load(env, d.addr, d.blen, ra);
999 * Put CC_N at the top of the high word; put the zero-extended value
1000 * at the bottom of the low word.
1003 data >>= 64 - d.len;
1004 data |= data << (64 - d.len);
1009 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
1010 int32_t ofs, uint32_t len)
1012 uintptr_t ra = GETPC();
1013 struct bf_data d = bf_prep(addr, ofs, len);
1014 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1015 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1017 data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
1019 bf_store(env, d.addr, d.blen, data, ra);
1021 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
1022 return val << (32 - d.len);
1025 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
1026 int32_t ofs, uint32_t len)
1028 uintptr_t ra = GETPC();
1029 struct bf_data d = bf_prep(addr, ofs, len);
1030 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1031 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1033 bf_store(env, d.addr, d.blen, data ^ mask, ra);
1035 return ((data & mask) << d.bofs) >> 32;
1038 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1039 int32_t ofs, uint32_t len)
1041 uintptr_t ra = GETPC();
1042 struct bf_data d = bf_prep(addr, ofs, len);
1043 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1044 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1046 bf_store(env, d.addr, d.blen, data & ~mask, ra);
1048 return ((data & mask) << d.bofs) >> 32;
1051 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1052 int32_t ofs, uint32_t len)
1054 uintptr_t ra = GETPC();
1055 struct bf_data d = bf_prep(addr, ofs, len);
1056 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1057 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1059 bf_store(env, d.addr, d.blen, data | mask, ra);
1061 return ((data & mask) << d.bofs) >> 32;
1064 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1066 return (n ? clz32(n) : len) + ofs;
1069 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1070 int32_t ofs, uint32_t len)
1072 uintptr_t ra = GETPC();
1073 struct bf_data d = bf_prep(addr, ofs, len);
1074 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1075 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1076 uint64_t n = (data & mask) << d.bofs;
1077 uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1080 * Return FFO in the low word and N in the high word.
1081 * Note that because of MASK and the shift, the low word
1087 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1091 * X: Not affected, C,V,Z: Undefined,
1092 * N: Set if val < 0; cleared if val > ub, undefined otherwise
1093 * We implement here values found from a real MC68040:
1094 * X,V,Z: Not affected
1095 * N: Set if val < 0; cleared if val >= 0
1096 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1097 * if 0 > ub: set if val > ub and val < 0, cleared otherwise
1100 env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1102 if (val < 0 || val > ub) {
1103 raise_exception_format2(env, EXCP_CHK, 2, GETPC());
1107 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1111 * X: Not affected, N,V: Undefined,
1112 * Z: Set if val is equal to lb or ub
1113 * C: Set if val < lb or val > ub, cleared otherwise
1114 * We implement here values found from a real MC68040:
1115 * X,N,V: Not affected
1116 * Z: Set if val is equal to lb or ub
1117 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1118 * if lb > ub: set if val > ub and val < lb, cleared otherwise
1120 env->cc_z = val != lb && val != ub;
1121 env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1124 raise_exception_format2(env, EXCP_CHK, 4, GETPC());