2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
12 #include "qemu/osdep.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
59 reg &= mask_group(cs, attrs);
63 static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr)
66 * Return true if a vCPU is resident, which is defined by
67 * whether the GICR_VPENDBASER register is marked VALID and
68 * has the right virtual pending table address.
70 if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
73 return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK);
77 * update_for_one_lpi: Update pending information if this LPI is better
80 * @irq: interrupt to look up in the LPI Configuration table
81 * @ctbase: physical address of the LPI Configuration table to use
82 * @ds: true if priority value should not be shifted
83 * @hpp: points to pending information to update
85 * Look up @irq in the Configuration table specified by @ctbase
86 * to see if it is enabled and what its priority is. If it is an
87 * enabled interrupt with a higher priority than that currently
88 * recorded in @hpp, update @hpp.
90 static void update_for_one_lpi(GICv3CPUState *cs, int irq,
91 uint64_t ctbase, bool ds, PendingIrq *hpp)
96 address_space_read(&cs->gic->dma_as,
97 ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
98 MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
100 if (!(lpite & LPI_CTE_ENABLED)) {
105 prio = lpite & LPI_PRIORITY_MASK;
107 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
110 if ((prio < hpp->prio) ||
111 ((prio == hpp->prio) && (irq <= hpp->irq))) {
114 /* LPIs and vLPIs are always non-secure Grp1 interrupts */
115 hpp->grp = GICV3_G1NS;
120 * update_for_all_lpis: Fully scan LPI tables and find best pending LPI
123 * @ptbase: physical address of LPI Pending table
124 * @ctbase: physical address of LPI Configuration table
125 * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
126 * @ds: true if priority value should not be shifted
127 * @hpp: points to pending information to set
129 * Recalculate the highest priority pending enabled LPI from scratch,
130 * and set @hpp accordingly.
132 * We scan the LPI pending table @ptbase; for each pending LPI, we read the
133 * corresponding entry in the LPI configuration table @ctbase to extract
134 * the priority and enabled information.
136 * We take @ptsizebits in the form idbits-1 because this is the way that
137 * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
138 * and in the VMAPP command's VPT_size field.
140 static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
141 uint64_t ctbase, unsigned ptsizebits,
142 bool ds, PendingIrq *hpp)
144 AddressSpace *as = &cs->gic->dma_as;
146 uint32_t pendt_size = (1ULL << (ptsizebits + 1));
151 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
152 address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
155 update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
162 * set_lpi_pending_bit: Set or clear pending bit for an LPI
165 * @ptbase: physical address of LPI Pending table
166 * @irq: LPI to change pending state for
167 * @level: false to clear pending state, true to set
169 * Returns true if we needed to do something, false if the pending bit
170 * was already at @level.
172 static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
175 AddressSpace *as = &cs->gic->dma_as;
176 uint64_t addr = ptbase + irq / 8;
179 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
180 if (extract32(pend, irq % 8, 1) == level) {
181 /* Bit already at requested state, no action required */
184 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
185 address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
189 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
192 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
193 * honouring security state (these are RAZ/WI for Group 0 or Secure
194 * Group 1 interrupts).
198 prio = cs->gicr_ipriorityr[irq];
200 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
201 if (!(cs->gicr_igroupr0 & (1U << irq))) {
202 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
205 /* NS view of the interrupt priority */
206 prio = (prio << 1) & 0xff;
211 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
214 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
215 * honouring security state (these are RAZ/WI for Group 0 or Secure
216 * Group 1 interrupts).
218 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
219 if (!(cs->gicr_igroupr0 & (1U << irq))) {
220 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
223 /* NS view of the interrupt priority */
224 value = 0x80 | (value >> 1);
226 cs->gicr_ipriorityr[irq] = value;
229 static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
231 uint64_t ptbase, ctbase, idbits;
233 if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
234 cs->hppvlpi.prio = 0xff;
238 ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
239 ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
240 idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
242 update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
245 static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
247 gicv3_redist_update_vlpi_only(cs);
248 gicv3_cpuif_virt_irq_fiq_update(cs);
251 static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
253 /* Write @newval to GICR_VPENDBASER, handling its effects */
254 bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
255 bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
259 * The DIRTY bit is read-only and for us is always zero;
260 * other fields are writable.
262 newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
263 R_GICR_VPENDBASER_SHAREABILITY_MASK |
264 R_GICR_VPENDBASER_PHYADDR_MASK |
265 R_GICR_VPENDBASER_OUTERCACHE_MASK |
266 R_GICR_VPENDBASER_PENDINGLAST_MASK |
267 R_GICR_VPENDBASER_IDAI_MASK |
268 R_GICR_VPENDBASER_VALID_MASK;
270 if (oldvalid && newvalid) {
272 * Changing other fields while VALID is 1 is UNPREDICTABLE;
273 * we choose to log and ignore the write.
275 if (cs->gicr_vpendbaser ^ newval) {
276 qemu_log_mask(LOG_GUEST_ERROR,
277 "%s: Changing GICR_VPENDBASER when VALID=1 "
278 "is UNPREDICTABLE\n", __func__);
282 if (!oldvalid && !newvalid) {
283 cs->gicr_vpendbaser = newval;
289 * Valid going from 0 to 1: update hppvlpi from tables.
290 * If IDAI is 0 we are allowed to use the info we cached in
291 * the IMPDEF area of the table.
292 * PendingLast is RES1 when we make this transition.
297 * Valid going from 1 to 0:
298 * Set PendingLast if there was a pending enabled interrupt
299 * for the vPE that was just descheduled.
300 * If we cache info in the IMPDEF area, write it out here.
302 pendinglast = cs->hppvlpi.prio != 0xff;
305 newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
306 cs->gicr_vpendbaser = newval;
307 gicv3_redist_update_vlpi(cs);
310 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
311 uint64_t *data, MemTxAttrs attrs)
314 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
315 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
322 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
323 uint64_t value, MemTxAttrs attrs)
326 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
327 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
328 gicv3_redist_update(cs);
335 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
336 uint64_t *data, MemTxAttrs attrs)
340 *data = cs->gicr_ctlr;
343 *data = gicv3_iidr();
346 *data = extract64(cs->gicr_typer, 0, 32);
349 *data = extract64(cs->gicr_typer, 32, 32);
352 /* RAZ/WI for us (this is an optional register and our implementation
353 * does not track RO/WO/reserved violations to report them to the guest)
358 *data = cs->gicr_waker;
361 *data = extract64(cs->gicr_propbaser, 0, 32);
363 case GICR_PROPBASER + 4:
364 *data = extract64(cs->gicr_propbaser, 32, 32);
367 *data = extract64(cs->gicr_pendbaser, 0, 32);
369 case GICR_PENDBASER + 4:
370 *data = extract64(cs->gicr_pendbaser, 32, 32);
373 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
377 *data = cs->gicr_igroupr0;
379 case GICR_ISENABLER0:
380 case GICR_ICENABLER0:
381 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
386 /* The pending register reads as the logical OR of the pending
387 * latch and the input line level for level-triggered interrupts.
389 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
390 *data = gicr_read_bitmap_reg(cs, attrs, val);
393 case GICR_ISACTIVER0:
394 case GICR_ICACTIVER0:
395 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
397 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
399 int i, irq = offset - GICR_IPRIORITYR;
402 for (i = irq + 3; i >= irq; i--) {
404 value |= gicr_read_ipriorityr(cs, attrs, i);
412 /* Our edge_trigger bitmap is one bit per irq; take the correct
413 * half of it, and spread it out into the odd bits.
417 value = cs->edge_trigger & mask_group(cs, attrs);
418 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
419 value = half_shuffle32(value) << 1;
424 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
425 /* RAZ/WI if security disabled, or if
426 * security enabled and this is an NS access
431 *data = cs->gicr_igrpmodr0;
434 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
435 /* RAZ/WI if security disabled, or if
436 * security enabled and this is an NS access
441 *data = cs->gicr_nsacr;
443 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
444 *data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
447 * VLPI frame registers. We don't need a version check for
448 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
449 * prevent pre-v4 GIC from passing us offsets this high.
451 case GICR_VPROPBASER:
452 *data = extract64(cs->gicr_vpropbaser, 0, 32);
454 case GICR_VPROPBASER + 4:
455 *data = extract64(cs->gicr_vpropbaser, 32, 32);
457 case GICR_VPENDBASER:
458 *data = extract64(cs->gicr_vpendbaser, 0, 32);
460 case GICR_VPENDBASER + 4:
461 *data = extract64(cs->gicr_vpendbaser, 32, 32);
468 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
469 uint64_t value, MemTxAttrs attrs)
473 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
474 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
475 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
476 * implement LPIs) so Enable_LPIs is programmable.
478 if (cs->gicr_typer & GICR_TYPER_PLPIS) {
479 if (value & GICR_CTLR_ENABLE_LPIS) {
480 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
481 /* Check for any pending interr in pending table */
482 gicv3_redist_update_lpi(cs);
484 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
485 /* cs->hppi might have been an LPI; recalculate */
486 gicv3_redist_update(cs);
491 /* RAZ/WI for our implementation */
494 /* Only the ProcessorSleep bit is writable. When the guest sets
495 * it, it requests that we transition the channel between the
496 * redistributor and the cpu interface to quiescent, and that
497 * we set the ChildrenAsleep bit once the inteface has reached the
499 * Setting the ProcessorSleep to 0 reverses the quiescing, and
500 * ChildrenAsleep is cleared once the transition is complete.
501 * Since our interface is not asynchronous, we complete these
502 * transitions instantaneously, so we set ChildrenAsleep to the
503 * same value as ProcessorSleep here.
505 value &= GICR_WAKER_ProcessorSleep;
506 if (value & GICR_WAKER_ProcessorSleep) {
507 value |= GICR_WAKER_ChildrenAsleep;
509 cs->gicr_waker = value;
512 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
514 case GICR_PROPBASER + 4:
515 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
518 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
520 case GICR_PENDBASER + 4:
521 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
524 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
527 cs->gicr_igroupr0 = value;
528 gicv3_redist_update(cs);
530 case GICR_ISENABLER0:
531 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
533 case GICR_ICENABLER0:
534 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
537 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
540 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
542 case GICR_ISACTIVER0:
543 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
545 case GICR_ICACTIVER0:
546 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
548 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
550 int i, irq = offset - GICR_IPRIORITYR;
552 for (i = irq; i < irq + 4; i++, value >>= 8) {
553 gicr_write_ipriorityr(cs, attrs, i, value);
555 gicv3_redist_update(cs);
559 /* Register is all RAZ/WI or RAO/WI bits */
565 /* Since our edge_trigger bitmap is one bit per irq, our input
566 * 32-bits will compress down into 16 bits which we need
567 * to write into the bitmap.
569 value = half_unshuffle32(value >> 1) << 16;
570 mask = mask_group(cs, attrs) & 0xffff0000U;
572 cs->edge_trigger &= ~mask;
573 cs->edge_trigger |= (value & mask);
575 gicv3_redist_update(cs);
579 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
580 /* RAZ/WI if security disabled, or if
581 * security enabled and this is an NS access
585 cs->gicr_igrpmodr0 = value;
586 gicv3_redist_update(cs);
589 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
590 /* RAZ/WI if security disabled, or if
591 * security enabled and this is an NS access
595 cs->gicr_nsacr = value;
596 /* no update required as this only affects access permission checks */
600 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
601 /* RO registers, ignore the write */
602 qemu_log_mask(LOG_GUEST_ERROR,
603 "%s: invalid guest write to RO register at offset "
604 TARGET_FMT_plx "\n", __func__, offset);
607 * VLPI frame registers. We don't need a version check for
608 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
609 * prevent pre-v4 GIC from passing us offsets this high.
611 case GICR_VPROPBASER:
612 cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
614 case GICR_VPROPBASER + 4:
615 cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
617 case GICR_VPENDBASER:
618 gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
620 case GICR_VPENDBASER + 4:
621 gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
628 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
629 uint64_t *data, MemTxAttrs attrs)
633 *data = cs->gicr_typer;
636 *data = cs->gicr_propbaser;
639 *data = cs->gicr_pendbaser;
642 * VLPI frame registers. We don't need a version check for
643 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
644 * prevent pre-v4 GIC from passing us offsets this high.
646 case GICR_VPROPBASER:
647 *data = cs->gicr_vpropbaser;
649 case GICR_VPENDBASER:
650 *data = cs->gicr_vpendbaser;
657 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
658 uint64_t value, MemTxAttrs attrs)
662 cs->gicr_propbaser = value;
665 cs->gicr_pendbaser = value;
668 /* RO register, ignore the write */
669 qemu_log_mask(LOG_GUEST_ERROR,
670 "%s: invalid guest write to RO register at offset "
671 TARGET_FMT_plx "\n", __func__, offset);
674 * VLPI frame registers. We don't need a version check for
675 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
676 * prevent pre-v4 GIC from passing us offsets this high.
678 case GICR_VPROPBASER:
679 cs->gicr_vpropbaser = value;
681 case GICR_VPENDBASER:
682 gicr_write_vpendbaser(cs, value);
689 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
690 unsigned size, MemTxAttrs attrs)
692 GICv3RedistRegion *region = opaque;
693 GICv3State *s = region->gic;
698 assert((offset & (size - 1)) == 0);
701 * There are (for GICv3) two 64K redistributor pages per CPU.
702 * In some cases the redistributor pages for all CPUs are not
703 * contiguous (eg on the virt board they are split into two
704 * parts if there are too many CPUs to all fit in the same place
705 * in the memory map); if so then the GIC has multiple MemoryRegions
706 * for the redistributors.
708 cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
709 offset %= gicv3_redist_size(s);
711 cs = &s->cpu[cpuidx];
715 r = gicr_readb(cs, offset, data, attrs);
718 r = gicr_readl(cs, offset, data, attrs);
721 r = gicr_readll(cs, offset, data, attrs);
729 qemu_log_mask(LOG_GUEST_ERROR,
730 "%s: invalid guest read at offset " TARGET_FMT_plx
731 " size %u\n", __func__, offset, size);
732 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
734 /* The spec requires that reserved registers are RAZ/WI;
735 * so use MEMTX_ERROR returns from leaf functions as a way to
736 * trigger the guest-error logging but don't return it to
737 * the caller, or we'll cause a spurious guest data abort.
742 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
748 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
749 unsigned size, MemTxAttrs attrs)
751 GICv3RedistRegion *region = opaque;
752 GICv3State *s = region->gic;
757 assert((offset & (size - 1)) == 0);
760 * There are (for GICv3) two 64K redistributor pages per CPU.
761 * In some cases the redistributor pages for all CPUs are not
762 * contiguous (eg on the virt board they are split into two
763 * parts if there are too many CPUs to all fit in the same place
764 * in the memory map); if so then the GIC has multiple MemoryRegions
765 * for the redistributors.
767 cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
768 offset %= gicv3_redist_size(s);
770 cs = &s->cpu[cpuidx];
774 r = gicr_writeb(cs, offset, data, attrs);
777 r = gicr_writel(cs, offset, data, attrs);
780 r = gicr_writell(cs, offset, data, attrs);
788 qemu_log_mask(LOG_GUEST_ERROR,
789 "%s: invalid guest write at offset " TARGET_FMT_plx
790 " size %u\n", __func__, offset, size);
791 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
793 /* The spec requires that reserved registers are RAZ/WI;
794 * so use MEMTX_ERROR returns from leaf functions as a way to
795 * trigger the guest-error logging but don't return it to
796 * the caller, or we'll cause a spurious guest data abort.
800 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
806 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
808 uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
810 update_for_one_lpi(cs, irq, lpict_baddr,
811 cs->gic->gicd_ctlr & GICD_CTLR_DS,
815 void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
818 * This function scans the LPI pending table and for each pending
819 * LPI, reads the corresponding entry from LPI configuration table
820 * to extract the priority info and determine if the current LPI
821 * priority is lower than the last computed high priority lpi interrupt.
822 * If yes, replace current LPI as the new high priority lpi interrupt.
824 uint64_t lpipt_baddr, lpict_baddr;
827 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
830 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
834 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
835 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
837 update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
838 cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
841 void gicv3_redist_update_lpi(GICv3CPUState *cs)
843 gicv3_redist_update_lpi_only(cs);
844 gicv3_redist_update(cs);
847 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
850 * This function updates the pending bit in lpi pending table for
851 * the irq being activated or deactivated.
853 uint64_t lpipt_baddr;
855 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
856 if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
857 /* no change in the value of pending bit, return */
862 * check if this LPI is better than the current hpplpi, if yes
863 * just set hpplpi.prio and .irq without doing a full rescan
866 gicv3_redist_check_lpi_priority(cs, irq);
867 gicv3_redist_update(cs);
869 if (irq == cs->hpplpi.irq) {
870 gicv3_redist_update_lpi(cs);
875 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
879 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
882 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
883 (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
887 /* set/clear the pending bit for this irq */
888 gicv3_redist_lpi_pending(cs, irq, level);
891 void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
894 * The only cached information for LPIs we have is the HPPLPI.
895 * We could be cleverer about identifying when we don't need
896 * to do a full rescan of the pending table, but until we find
897 * this is a performance issue, just always recalculate.
899 gicv3_redist_update_lpi(cs);
902 void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
905 * Move the specified LPI's pending state from the source redistributor
906 * to the destination.
908 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
909 * we choose to NOP. If LPIs are disabled on source there's nothing
910 * to be transferred anyway.
916 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
917 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
921 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
923 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
926 pendt_size = 1ULL << (idbits + 1);
927 if ((irq / 8) >= pendt_size) {
931 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
933 if (!set_pending_table_bit(src, src_baddr, irq, 0)) {
934 /* Not pending on source, nothing to do */
937 if (irq == src->hpplpi.irq) {
939 * We just made this LPI not-pending so only need to update
940 * if it was previously the highest priority pending LPI
942 gicv3_redist_update_lpi(src);
944 /* Mark it pending on the destination */
945 gicv3_redist_lpi_pending(dest, irq, 1);
948 void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
951 * We must move all pending LPIs from the source redistributor
952 * to the destination. That is, for every pending LPI X on
953 * src, we must set it not-pending on src and pending on dest.
954 * LPIs that are already pending on dest are not cleared.
956 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
957 * we choose to NOP. If LPIs are disabled on source there's nothing
958 * to be transferred anyway.
960 AddressSpace *as = &src->gic->dma_as;
963 uint64_t src_baddr, dest_baddr;
966 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
967 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
971 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
973 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
976 pendt_size = 1ULL << (idbits + 1);
977 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
978 dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
980 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
981 uint8_t src_pend, dest_pend;
983 address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
984 &src_pend, sizeof(src_pend));
988 address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
989 &dest_pend, sizeof(dest_pend));
990 dest_pend |= src_pend;
992 address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
993 &src_pend, sizeof(src_pend));
994 address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
995 &dest_pend, sizeof(dest_pend));
998 gicv3_redist_update_lpi(src);
999 gicv3_redist_update_lpi(dest);
1002 void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
1005 * Change the pending state of the specified vLPI.
1006 * Unlike gicv3_redist_process_vlpi(), we know here that the
1007 * vCPU is definitely resident on this redistributor, and that
1008 * the irq is in range.
1010 uint64_t vptbase, ctbase;
1012 vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16;
1014 if (set_pending_table_bit(cs, vptbase, irq, level)) {
1016 /* Check whether this vLPI is now the best */
1017 ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
1018 update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
1019 gicv3_cpuif_virt_irq_fiq_update(cs);
1021 /* Only need to recalculate if this was previously the best vLPI */
1022 if (irq == cs->hppvlpi.irq) {
1023 gicv3_redist_update_vlpi(cs);
1029 void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
1030 int doorbell, int level)
1033 bool resident = vcpu_resident(cs, vptaddr);
1037 uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
1038 if (irq >= (1ULL << (idbits + 1))) {
1043 bit_changed = set_pending_table_bit(cs, vptaddr, irq, level);
1044 if (resident && bit_changed) {
1046 /* Check whether this vLPI is now the best */
1047 ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
1048 update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
1049 gicv3_cpuif_virt_irq_fiq_update(cs);
1051 /* Only need to recalculate if this was previously the best vLPI */
1052 if (irq == cs->hppvlpi.irq) {
1053 gicv3_redist_update_vlpi(cs);
1058 if (!resident && level && doorbell != INTID_SPURIOUS &&
1059 (cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
1060 /* vCPU is not currently resident: ring the doorbell */
1061 gicv3_redist_process_lpi(cs, doorbell, 1);
1065 void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
1066 GICv3CPUState *dest, uint64_t dest_vptaddr,
1067 int irq, int doorbell)
1070 * Move the specified vLPI's pending state from the source redistributor
1071 * to the destination.
1073 if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) {
1074 /* Not pending on source, nothing to do */
1077 if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) {
1079 * Update src's cached highest-priority pending vLPI if we just made
1082 gicv3_redist_update_vlpi(src);
1085 * Mark the vLPI pending on the destination (ringing the doorbell
1086 * if the vCPU isn't resident)
1088 gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq);
1091 void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
1093 if (!vcpu_resident(cs, vptaddr)) {
1094 /* We don't have anything cached if the vCPU isn't resident */
1098 /* Otherwise, our only cached information is the HPPVLPI info */
1099 gicv3_redist_update_vlpi(cs);
1102 void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
1105 * The only cached information for LPIs we have is the HPPLPI.
1106 * We could be cleverer about identifying when we don't need
1107 * to do a full rescan of the pending table, but until we find
1108 * this is a performance issue, just always recalculate.
1110 gicv3_redist_vinvall(cs, vptaddr);
1113 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
1115 /* Update redistributor state for a change in an external PPI input line */
1116 if (level == extract32(cs->level, irq, 1)) {
1120 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
1122 cs->level = deposit32(cs->level, irq, 1, level);
1125 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
1126 if (extract32(cs->edge_trigger, irq, 1)) {
1127 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1131 gicv3_redist_update(cs);
1134 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
1136 /* Update redistributor state for a generated SGI */
1137 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
1139 /* If we are asked for a Secure Group 1 SGI and it's actually
1140 * configured as Secure Group 0 this is OK (subject to the usual
1143 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
1147 if (grp != irqgrp) {
1151 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
1152 /* If security is enabled we must test the NSACR bits */
1153 int nsaccess = gicr_ns_access(cs, irq);
1155 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
1156 (irqgrp == GICV3_G1 && nsaccess < 2)) {
1161 /* OK, we can accept the SGI */
1162 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
1163 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1164 gicv3_redist_update(cs);