]> Git Repo - qemu.git/blob - target-arm/cpu.h
Merge remote-tracking branch 'remotes/kvm/uq/master' into staging
[qemu.git] / target-arm / cpu.h
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #  define ELF_MACHINE EM_AARCH64
30 #else
31 #  define TARGET_LONG_BITS 32
32 #  define ELF_MACHINE EM_ARM
33 #endif
34
35 #define CPUArchState struct CPUARMState
36
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
39
40 #include "fpu/softfloat.h"
41
42 #define TARGET_HAS_ICE 1
43
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_STREX          10
54
55 #define ARMV7M_EXCP_RESET   1
56 #define ARMV7M_EXCP_NMI     2
57 #define ARMV7M_EXCP_HARD    3
58 #define ARMV7M_EXCP_MEM     4
59 #define ARMV7M_EXCP_BUS     5
60 #define ARMV7M_EXCP_USAGE   6
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65
66 /* ARM-specific interrupt pending bits.  */
67 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
68
69 /* The usual mapping for an AArch64 system register to its AArch32
70  * counterpart is for the 32 bit world to have access to the lower
71  * half only (with writes leaving the upper half untouched). It's
72  * therefore useful to be able to pass TCG the offset of the least
73  * significant half of a uint64_t struct member.
74  */
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
82
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
86
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88                             int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90                                int dstreg, int operand);
91
92 struct arm_boot_info;
93
94 #define NB_MMU_MODES 2
95
96 /* We currently assume float and double are IEEE single and double
97    precision respectively.
98    Doing runtime conversions is tricky because VFP registers may contain
99    integer values (eg. as the result of a FTOSI instruction).
100    s<2n> maps to the least significant half of d<n>
101    s<2n+1> maps to the most significant half of d<n>
102  */
103
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106     uint64_t cval; /* Timer CompareValue register */
107     uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
109
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
113
114 /* Scale factor for generic timers, ie number of ns per tick.
115  * This gives a 62.5MHz timer.
116  */
117 #define GTIMER_SCALE 16
118
119 typedef struct CPUARMState {
120     /* Regs for current mode.  */
121     uint32_t regs[16];
122
123     /* 32/64 switch only happens when taking and returning from
124      * exceptions so the overlap semantics are taken care of then
125      * instead of having a complicated union.
126      */
127     /* Regs for A64 mode.  */
128     uint64_t xregs[32];
129     uint64_t pc;
130     /* PSTATE isn't an architectural register for ARMv8. However, it is
131      * convenient for us to assemble the underlying state into a 32 bit format
132      * identical to the architectural format used for the SPSR. (This is also
133      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
134      * 'pstate' register are.) Of the PSTATE bits:
135      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
136      *    semantics as for AArch32, as described in the comments on each field)
137      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
138      *  DAIF (exception masks) are kept in env->daif
139      *  all other bits are stored in their correct places in env->pstate
140      */
141     uint32_t pstate;
142     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
143
144     /* Frequently accessed CPSR bits are stored separately for efficiency.
145        This contains all the other bits.  Use cpsr_{read,write} to access
146        the whole CPSR.  */
147     uint32_t uncached_cpsr;
148     uint32_t spsr;
149
150     /* Banked registers.  */
151     uint32_t banked_spsr[6];
152     uint32_t banked_r13[6];
153     uint32_t banked_r14[6];
154
155     /* These hold r8-r12.  */
156     uint32_t usr_regs[5];
157     uint32_t fiq_regs[5];
158
159     /* cpsr flag cache for faster execution */
160     uint32_t CF; /* 0 or 1 */
161     uint32_t VF; /* V is the bit 31. All other bits are undefined */
162     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
163     uint32_t ZF; /* Z set if zero.  */
164     uint32_t QF; /* 0 or 1 */
165     uint32_t GE; /* cpsr[19:16] */
166     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
167     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
168     uint32_t daif; /* exception masks, in the bits they are in in PSTATE */
169
170     /* System control coprocessor (cp15) */
171     struct {
172         uint32_t c0_cpuid;
173         uint64_t c0_cssel; /* Cache size selection.  */
174         uint64_t c1_sys; /* System control register.  */
175         uint64_t c1_coproc; /* Coprocessor access register.  */
176         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
177         uint32_t c1_scr; /* secure config register.  */
178         uint64_t ttbr0_el1; /* MMU translation table base 0. */
179         uint64_t ttbr1_el1; /* MMU translation table base 1. */
180         uint64_t c2_control; /* MMU translation table base control.  */
181         uint32_t c2_mask; /* MMU translation table base selection mask.  */
182         uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
183         uint32_t c2_data; /* MPU data cachable bits.  */
184         uint32_t c2_insn; /* MPU instruction cachable bits.  */
185         uint32_t c3; /* MMU domain access control register
186                         MPU write buffer control.  */
187         uint32_t c5_insn; /* Fault status registers.  */
188         uint32_t c5_data;
189         uint32_t c6_region[8]; /* MPU base/size registers.  */
190         uint32_t c6_insn; /* Fault address registers.  */
191         uint32_t c6_data;
192         uint32_t c7_par;  /* Translation result. */
193         uint32_t c7_par_hi;  /* Translation result, high 32 bits */
194         uint32_t c9_insn; /* Cache lockdown registers.  */
195         uint32_t c9_data;
196         uint32_t c9_pmcr; /* performance monitor control register */
197         uint32_t c9_pmcnten; /* perf monitor counter enables */
198         uint32_t c9_pmovsr; /* perf monitor overflow status */
199         uint32_t c9_pmxevtyper; /* perf monitor event type */
200         uint32_t c9_pmuserenr; /* perf monitor user enable */
201         uint32_t c9_pminten; /* perf monitor interrupt enables */
202         uint64_t mair_el1;
203         uint64_t c12_vbar; /* vector base address register */
204         uint32_t c13_fcse; /* FCSE PID.  */
205         uint32_t c13_context; /* Context ID.  */
206         uint64_t tpidr_el0; /* User RW Thread register.  */
207         uint64_t tpidrro_el0; /* User RO Thread register.  */
208         uint64_t tpidr_el1; /* Privileged Thread register.  */
209         uint64_t c14_cntfrq; /* Counter Frequency register */
210         uint64_t c14_cntkctl; /* Timer Control register */
211         ARMGenericTimer c14_timer[NUM_GTIMERS];
212         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
213         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
214         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
215         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
216         uint32_t c15_threadid; /* TI debugger thread-ID.  */
217         uint32_t c15_config_base_address; /* SCU base address.  */
218         uint32_t c15_diagnostic; /* diagnostic register */
219         uint32_t c15_power_diagnostic;
220         uint32_t c15_power_control; /* power control */
221         uint64_t dbgbvr[16]; /* breakpoint value registers */
222         uint64_t dbgbcr[16]; /* breakpoint control registers */
223         uint64_t dbgwvr[16]; /* watchpoint value registers */
224         uint64_t dbgwcr[16]; /* watchpoint control registers */
225     } cp15;
226
227     struct {
228         uint32_t other_sp;
229         uint32_t vecbase;
230         uint32_t basepri;
231         uint32_t control;
232         int current_sp;
233         int exception;
234         int pending_exception;
235     } v7m;
236
237     /* Thumb-2 EE state.  */
238     uint32_t teecr;
239     uint32_t teehbr;
240
241     /* VFP coprocessor state.  */
242     struct {
243         /* VFP/Neon register state. Note that the mapping between S, D and Q
244          * views of the register bank differs between AArch64 and AArch32:
245          * In AArch32:
246          *  Qn = regs[2n+1]:regs[2n]
247          *  Dn = regs[n]
248          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
249          * (and regs[32] to regs[63] are inaccessible)
250          * In AArch64:
251          *  Qn = regs[2n+1]:regs[2n]
252          *  Dn = regs[2n]
253          *  Sn = regs[2n] bits 31..0
254          * This corresponds to the architecturally defined mapping between
255          * the two execution states, and means we do not need to explicitly
256          * map these registers when changing states.
257          */
258         float64 regs[64];
259
260         uint32_t xregs[16];
261         /* We store these fpcsr fields separately for convenience.  */
262         int vec_len;
263         int vec_stride;
264
265         /* scratch space when Tn are not sufficient.  */
266         uint32_t scratch[8];
267
268         /* fp_status is the "normal" fp status. standard_fp_status retains
269          * values corresponding to the ARM "Standard FPSCR Value", ie
270          * default-NaN, flush-to-zero, round-to-nearest and is used by
271          * any operations (generally Neon) which the architecture defines
272          * as controlled by the standard FPSCR value rather than the FPSCR.
273          *
274          * To avoid having to transfer exception bits around, we simply
275          * say that the FPSCR cumulative exception flags are the logical
276          * OR of the flags in the two fp statuses. This relies on the
277          * only thing which needs to read the exception flags being
278          * an explicit FPSCR read.
279          */
280         float_status fp_status;
281         float_status standard_fp_status;
282     } vfp;
283     uint64_t exclusive_addr;
284     uint64_t exclusive_val;
285     uint64_t exclusive_high;
286 #if defined(CONFIG_USER_ONLY)
287     uint64_t exclusive_test;
288     uint32_t exclusive_info;
289 #endif
290
291     /* iwMMXt coprocessor state.  */
292     struct {
293         uint64_t regs[16];
294         uint64_t val;
295
296         uint32_t cregs[16];
297     } iwmmxt;
298
299     /* For mixed endian mode.  */
300     bool bswap_code;
301
302 #if defined(CONFIG_USER_ONLY)
303     /* For usermode syscall translation.  */
304     int eabi;
305 #endif
306
307     CPU_COMMON
308
309     /* These fields after the common ones so they are preserved on reset.  */
310
311     /* Internal CPU feature flags.  */
312     uint64_t features;
313
314     void *nvic;
315     const struct arm_boot_info *boot_info;
316 } CPUARMState;
317
318 #include "cpu-qom.h"
319
320 ARMCPU *cpu_arm_init(const char *cpu_model);
321 void arm_translate_init(void);
322 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
323 int cpu_arm_exec(CPUARMState *s);
324 int bank_number(int mode);
325 void switch_mode(CPUARMState *, int);
326 uint32_t do_arm_semihosting(CPUARMState *env);
327
328 static inline bool is_a64(CPUARMState *env)
329 {
330     return env->aarch64;
331 }
332
333 /* you can call this signal handler from your SIGBUS and SIGSEGV
334    signal handlers to inform the virtual CPU of exceptions. non zero
335    is returned if the signal was handled by the virtual CPU.  */
336 int cpu_arm_signal_handler(int host_signum, void *pinfo,
337                            void *puc);
338 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
339                               int mmu_idx);
340 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
341
342 /* SCTLR bit meanings. Several bits have been reused in newer
343  * versions of the architecture; in that case we define constants
344  * for both old and new bit meanings. Code which tests against those
345  * bits should probably check or otherwise arrange that the CPU
346  * is the architectural version it expects.
347  */
348 #define SCTLR_M       (1U << 0)
349 #define SCTLR_A       (1U << 1)
350 #define SCTLR_C       (1U << 2)
351 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
352 #define SCTLR_SA      (1U << 3)
353 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
354 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
355 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
356 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
357 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
358 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
359 #define SCTLR_ITD     (1U << 7) /* v8 onward */
360 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
361 #define SCTLR_SED     (1U << 8) /* v8 onward */
362 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
363 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
364 #define SCTLR_F       (1U << 10) /* up to v6 */
365 #define SCTLR_SW      (1U << 10) /* v7 onward */
366 #define SCTLR_Z       (1U << 11)
367 #define SCTLR_I       (1U << 12)
368 #define SCTLR_V       (1U << 13)
369 #define SCTLR_RR      (1U << 14) /* up to v7 */
370 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
371 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
372 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
373 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
374 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
375 #define SCTLR_HA      (1U << 17)
376 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
377 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
378 #define SCTLR_WXN     (1U << 19)
379 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
380 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
381 #define SCTLR_FI      (1U << 21)
382 #define SCTLR_U       (1U << 22)
383 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
384 #define SCTLR_VE      (1U << 24) /* up to v7 */
385 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
386 #define SCTLR_EE      (1U << 25)
387 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
388 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
389 #define SCTLR_NMFI    (1U << 27)
390 #define SCTLR_TRE     (1U << 28)
391 #define SCTLR_AFE     (1U << 29)
392 #define SCTLR_TE      (1U << 30)
393
394 #define CPSR_M (0x1fU)
395 #define CPSR_T (1U << 5)
396 #define CPSR_F (1U << 6)
397 #define CPSR_I (1U << 7)
398 #define CPSR_A (1U << 8)
399 #define CPSR_E (1U << 9)
400 #define CPSR_IT_2_7 (0xfc00U)
401 #define CPSR_GE (0xfU << 16)
402 #define CPSR_RESERVED (0xfU << 20)
403 #define CPSR_J (1U << 24)
404 #define CPSR_IT_0_1 (3U << 25)
405 #define CPSR_Q (1U << 27)
406 #define CPSR_V (1U << 28)
407 #define CPSR_C (1U << 29)
408 #define CPSR_Z (1U << 30)
409 #define CPSR_N (1U << 31)
410 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
411 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
412
413 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
414 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
415     | CPSR_NZCV)
416 /* Bits writable in user mode.  */
417 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
418 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
419 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
420
421 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
422  * Only these are valid when in AArch64 mode; in
423  * AArch32 mode SPSRs are basically CPSR-format.
424  */
425 #define PSTATE_M (0xFU)
426 #define PSTATE_nRW (1U << 4)
427 #define PSTATE_F (1U << 6)
428 #define PSTATE_I (1U << 7)
429 #define PSTATE_A (1U << 8)
430 #define PSTATE_D (1U << 9)
431 #define PSTATE_IL (1U << 20)
432 #define PSTATE_SS (1U << 21)
433 #define PSTATE_V (1U << 28)
434 #define PSTATE_C (1U << 29)
435 #define PSTATE_Z (1U << 30)
436 #define PSTATE_N (1U << 31)
437 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
438 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
439 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
440 /* Mode values for AArch64 */
441 #define PSTATE_MODE_EL3h 13
442 #define PSTATE_MODE_EL3t 12
443 #define PSTATE_MODE_EL2h 9
444 #define PSTATE_MODE_EL2t 8
445 #define PSTATE_MODE_EL1h 5
446 #define PSTATE_MODE_EL1t 4
447 #define PSTATE_MODE_EL0t 0
448
449 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
450  * interprocessing, so we don't attempt to sync with the cpsr state used by
451  * the 32 bit decoder.
452  */
453 static inline uint32_t pstate_read(CPUARMState *env)
454 {
455     int ZF;
456
457     ZF = (env->ZF == 0);
458     return (env->NF & 0x80000000) | (ZF << 30)
459         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
460         | env->pstate | env->daif;
461 }
462
463 static inline void pstate_write(CPUARMState *env, uint32_t val)
464 {
465     env->ZF = (~val) & PSTATE_Z;
466     env->NF = val;
467     env->CF = (val >> 29) & 1;
468     env->VF = (val << 3) & 0x80000000;
469     env->daif = val & PSTATE_DAIF;
470     env->pstate = val & ~CACHED_PSTATE_BITS;
471 }
472
473 /* Return the current CPSR value.  */
474 uint32_t cpsr_read(CPUARMState *env);
475 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
476 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
477
478 /* Return the current xPSR value.  */
479 static inline uint32_t xpsr_read(CPUARMState *env)
480 {
481     int ZF;
482     ZF = (env->ZF == 0);
483     return (env->NF & 0x80000000) | (ZF << 30)
484         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
485         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
486         | ((env->condexec_bits & 0xfc) << 8)
487         | env->v7m.exception;
488 }
489
490 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
491 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
492 {
493     if (mask & CPSR_NZCV) {
494         env->ZF = (~val) & CPSR_Z;
495         env->NF = val;
496         env->CF = (val >> 29) & 1;
497         env->VF = (val << 3) & 0x80000000;
498     }
499     if (mask & CPSR_Q)
500         env->QF = ((val & CPSR_Q) != 0);
501     if (mask & (1 << 24))
502         env->thumb = ((val & (1 << 24)) != 0);
503     if (mask & CPSR_IT_0_1) {
504         env->condexec_bits &= ~3;
505         env->condexec_bits |= (val >> 25) & 3;
506     }
507     if (mask & CPSR_IT_2_7) {
508         env->condexec_bits &= 3;
509         env->condexec_bits |= (val >> 8) & 0xfc;
510     }
511     if (mask & 0x1ff) {
512         env->v7m.exception = val & 0x1ff;
513     }
514 }
515
516 /* Return the current FPSCR value.  */
517 uint32_t vfp_get_fpscr(CPUARMState *env);
518 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
519
520 /* For A64 the FPSCR is split into two logically distinct registers,
521  * FPCR and FPSR. However since they still use non-overlapping bits
522  * we store the underlying state in fpscr and just mask on read/write.
523  */
524 #define FPSR_MASK 0xf800009f
525 #define FPCR_MASK 0x07f79f00
526 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
527 {
528     return vfp_get_fpscr(env) & FPSR_MASK;
529 }
530
531 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
532 {
533     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
534     vfp_set_fpscr(env, new_fpscr);
535 }
536
537 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
538 {
539     return vfp_get_fpscr(env) & FPCR_MASK;
540 }
541
542 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
543 {
544     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
545     vfp_set_fpscr(env, new_fpscr);
546 }
547
548 enum arm_fprounding {
549     FPROUNDING_TIEEVEN,
550     FPROUNDING_POSINF,
551     FPROUNDING_NEGINF,
552     FPROUNDING_ZERO,
553     FPROUNDING_TIEAWAY,
554     FPROUNDING_ODD
555 };
556
557 int arm_rmode_to_sf(int rmode);
558
559 enum arm_cpu_mode {
560   ARM_CPU_MODE_USR = 0x10,
561   ARM_CPU_MODE_FIQ = 0x11,
562   ARM_CPU_MODE_IRQ = 0x12,
563   ARM_CPU_MODE_SVC = 0x13,
564   ARM_CPU_MODE_ABT = 0x17,
565   ARM_CPU_MODE_UND = 0x1b,
566   ARM_CPU_MODE_SYS = 0x1f
567 };
568
569 /* VFP system registers.  */
570 #define ARM_VFP_FPSID   0
571 #define ARM_VFP_FPSCR   1
572 #define ARM_VFP_MVFR1   6
573 #define ARM_VFP_MVFR0   7
574 #define ARM_VFP_FPEXC   8
575 #define ARM_VFP_FPINST  9
576 #define ARM_VFP_FPINST2 10
577
578 /* iwMMXt coprocessor control registers.  */
579 #define ARM_IWMMXT_wCID         0
580 #define ARM_IWMMXT_wCon         1
581 #define ARM_IWMMXT_wCSSF        2
582 #define ARM_IWMMXT_wCASF        3
583 #define ARM_IWMMXT_wCGR0        8
584 #define ARM_IWMMXT_wCGR1        9
585 #define ARM_IWMMXT_wCGR2        10
586 #define ARM_IWMMXT_wCGR3        11
587
588 /* If adding a feature bit which corresponds to a Linux ELF
589  * HWCAP bit, remember to update the feature-bit-to-hwcap
590  * mapping in linux-user/elfload.c:get_elf_hwcap().
591  */
592 enum arm_features {
593     ARM_FEATURE_VFP,
594     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
595     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
596     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
597     ARM_FEATURE_V6,
598     ARM_FEATURE_V6K,
599     ARM_FEATURE_V7,
600     ARM_FEATURE_THUMB2,
601     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
602     ARM_FEATURE_VFP3,
603     ARM_FEATURE_VFP_FP16,
604     ARM_FEATURE_NEON,
605     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
606     ARM_FEATURE_M, /* Microcontroller profile.  */
607     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
608     ARM_FEATURE_THUMB2EE,
609     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
610     ARM_FEATURE_V4T,
611     ARM_FEATURE_V5,
612     ARM_FEATURE_STRONGARM,
613     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
614     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
615     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
616     ARM_FEATURE_GENERIC_TIMER,
617     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
618     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
619     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
620     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
621     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
622     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
623     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
624     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
625     ARM_FEATURE_V8,
626     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
627     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
628     ARM_FEATURE_CBAR, /* has cp15 CBAR */
629     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
630 };
631
632 static inline int arm_feature(CPUARMState *env, int feature)
633 {
634     return (env->features & (1ULL << feature)) != 0;
635 }
636
637 /* Return true if the specified exception level is running in AArch64 state. */
638 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
639 {
640     /* We don't currently support EL2 or EL3, and this isn't valid for EL0
641      * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
642      * then the state of EL0 isn't well defined.)
643      */
644     assert(el == 1);
645     /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
646      * is a QEMU-imposed simplification which we may wish to change later.
647      * If we in future support EL2 and/or EL3, then the state of lower
648      * exception levels is controlled by the HCR.RW and SCR.RW bits.
649      */
650     return arm_feature(env, ARM_FEATURE_AARCH64);
651 }
652
653 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
654
655 /* Interface between CPU and Interrupt controller.  */
656 void armv7m_nvic_set_pending(void *opaque, int irq);
657 int armv7m_nvic_acknowledge_irq(void *opaque);
658 void armv7m_nvic_complete_irq(void *opaque, int irq);
659
660 /* Interface for defining coprocessor registers.
661  * Registers are defined in tables of arm_cp_reginfo structs
662  * which are passed to define_arm_cp_regs().
663  */
664
665 /* When looking up a coprocessor register we look for it
666  * via an integer which encodes all of:
667  *  coprocessor number
668  *  Crn, Crm, opc1, opc2 fields
669  *  32 or 64 bit register (ie is it accessed via MRC/MCR
670  *    or via MRRC/MCRR?)
671  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
672  * (In this case crn and opc2 should be zero.)
673  * For AArch64, there is no 32/64 bit size distinction;
674  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
675  * and 4 bit CRn and CRm. The encoding patterns are chosen
676  * to be easy to convert to and from the KVM encodings, and also
677  * so that the hashtable can contain both AArch32 and AArch64
678  * registers (to allow for interprocessing where we might run
679  * 32 bit code on a 64 bit core).
680  */
681 /* This bit is private to our hashtable cpreg; in KVM register
682  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
683  * in the upper bits of the 64 bit ID.
684  */
685 #define CP_REG_AA64_SHIFT 28
686 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
687
688 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
689     (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
690      ((crm) << 7) | ((opc1) << 3) | (opc2))
691
692 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
693     (CP_REG_AA64_MASK |                                 \
694      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
695      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
696      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
697      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
698      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
699      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
700
701 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
702  * version used as a key for the coprocessor register hashtable
703  */
704 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
705 {
706     uint32_t cpregid = kvmid;
707     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
708         cpregid |= CP_REG_AA64_MASK;
709     } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
710         cpregid |= (1 << 15);
711     }
712     return cpregid;
713 }
714
715 /* Convert a truncated 32 bit hashtable key into the full
716  * 64 bit KVM register ID.
717  */
718 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
719 {
720     uint64_t kvmid;
721
722     if (cpregid & CP_REG_AA64_MASK) {
723         kvmid = cpregid & ~CP_REG_AA64_MASK;
724         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
725     } else {
726         kvmid = cpregid & ~(1 << 15);
727         if (cpregid & (1 << 15)) {
728             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
729         } else {
730             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
731         }
732     }
733     return kvmid;
734 }
735
736 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
737  * special-behaviour cp reg and bits [15..8] indicate what behaviour
738  * it has. Otherwise it is a simple cp reg, where CONST indicates that
739  * TCG can assume the value to be constant (ie load at translate time)
740  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
741  * indicates that the TB should not be ended after a write to this register
742  * (the default is that the TB ends after cp writes). OVERRIDE permits
743  * a register definition to override a previous definition for the
744  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
745  * old must have the OVERRIDE bit set.
746  * NO_MIGRATE indicates that this register should be ignored for migration;
747  * (eg because any state is accessed via some other coprocessor register).
748  * IO indicates that this register does I/O and therefore its accesses
749  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
750  * registers which implement clocks or timers require this.
751  */
752 #define ARM_CP_SPECIAL 1
753 #define ARM_CP_CONST 2
754 #define ARM_CP_64BIT 4
755 #define ARM_CP_SUPPRESS_TB_END 8
756 #define ARM_CP_OVERRIDE 16
757 #define ARM_CP_NO_MIGRATE 32
758 #define ARM_CP_IO 64
759 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
760 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
761 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
762 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
763 #define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
764 /* Used only as a terminator for ARMCPRegInfo lists */
765 #define ARM_CP_SENTINEL 0xffff
766 /* Mask of only the flag bits in a type field */
767 #define ARM_CP_FLAG_MASK 0x7f
768
769 /* Valid values for ARMCPRegInfo state field, indicating which of
770  * the AArch32 and AArch64 execution states this register is visible in.
771  * If the reginfo doesn't explicitly specify then it is AArch32 only.
772  * If the reginfo is declared to be visible in both states then a second
773  * reginfo is synthesised for the AArch32 view of the AArch64 register,
774  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
775  * Note that we rely on the values of these enums as we iterate through
776  * the various states in some places.
777  */
778 enum {
779     ARM_CP_STATE_AA32 = 0,
780     ARM_CP_STATE_AA64 = 1,
781     ARM_CP_STATE_BOTH = 2,
782 };
783
784 /* Return true if cptype is a valid type field. This is used to try to
785  * catch errors where the sentinel has been accidentally left off the end
786  * of a list of registers.
787  */
788 static inline bool cptype_valid(int cptype)
789 {
790     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
791         || ((cptype & ARM_CP_SPECIAL) &&
792             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
793 }
794
795 /* Access rights:
796  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
797  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
798  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
799  * (ie any of the privileged modes in Secure state, or Monitor mode).
800  * If a register is accessible in one privilege level it's always accessible
801  * in higher privilege levels too. Since "Secure PL1" also follows this rule
802  * (ie anything visible in PL2 is visible in S-PL1, some things are only
803  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
804  * terminology a little and call this PL3.
805  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
806  * with the ELx exception levels.
807  *
808  * If access permissions for a register are more complex than can be
809  * described with these bits, then use a laxer set of restrictions, and
810  * do the more restrictive/complex check inside a helper function.
811  */
812 #define PL3_R 0x80
813 #define PL3_W 0x40
814 #define PL2_R (0x20 | PL3_R)
815 #define PL2_W (0x10 | PL3_W)
816 #define PL1_R (0x08 | PL2_R)
817 #define PL1_W (0x04 | PL2_W)
818 #define PL0_R (0x02 | PL1_R)
819 #define PL0_W (0x01 | PL1_W)
820
821 #define PL3_RW (PL3_R | PL3_W)
822 #define PL2_RW (PL2_R | PL2_W)
823 #define PL1_RW (PL1_R | PL1_W)
824 #define PL0_RW (PL0_R | PL0_W)
825
826 static inline int arm_current_pl(CPUARMState *env)
827 {
828     if (env->aarch64) {
829         return extract32(env->pstate, 2, 2);
830     }
831
832     if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
833         return 0;
834     }
835     /* We don't currently implement the Virtualization or TrustZone
836      * extensions, so PL2 and PL3 don't exist for us.
837      */
838     return 1;
839 }
840
841 typedef struct ARMCPRegInfo ARMCPRegInfo;
842
843 typedef enum CPAccessResult {
844     /* Access is permitted */
845     CP_ACCESS_OK = 0,
846     /* Access fails due to a configurable trap or enable which would
847      * result in a categorized exception syndrome giving information about
848      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
849      * 0xc or 0x18).
850      */
851     CP_ACCESS_TRAP = 1,
852     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
853      * Note that this is not a catch-all case -- the set of cases which may
854      * result in this failure is specifically defined by the architecture.
855      */
856     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
857 } CPAccessResult;
858
859 /* Access functions for coprocessor registers. These cannot fail and
860  * may not raise exceptions.
861  */
862 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
863 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
864                        uint64_t value);
865 /* Access permission check functions for coprocessor registers. */
866 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
867 /* Hook function for register reset */
868 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
869
870 #define CP_ANY 0xff
871
872 /* Definition of an ARM coprocessor register */
873 struct ARMCPRegInfo {
874     /* Name of register (useful mainly for debugging, need not be unique) */
875     const char *name;
876     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
877      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
878      * 'wildcard' field -- any value of that field in the MRC/MCR insn
879      * will be decoded to this register. The register read and write
880      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
881      * used by the program, so it is possible to register a wildcard and
882      * then behave differently on read/write if necessary.
883      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
884      * must both be zero.
885      * For AArch64-visible registers, opc0 is also used.
886      * Since there are no "coprocessors" in AArch64, cp is purely used as a
887      * way to distinguish (for KVM's benefit) guest-visible system registers
888      * from demuxed ones provided to preserve the "no side effects on
889      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
890      * visible (to match KVM's encoding); cp==0 will be converted to
891      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
892      */
893     uint8_t cp;
894     uint8_t crn;
895     uint8_t crm;
896     uint8_t opc0;
897     uint8_t opc1;
898     uint8_t opc2;
899     /* Execution state in which this register is visible: ARM_CP_STATE_* */
900     int state;
901     /* Register type: ARM_CP_* bits/values */
902     int type;
903     /* Access rights: PL*_[RW] */
904     int access;
905     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
906      * this register was defined: can be used to hand data through to the
907      * register read/write functions, since they are passed the ARMCPRegInfo*.
908      */
909     void *opaque;
910     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
911      * fieldoffset is non-zero, the reset value of the register.
912      */
913     uint64_t resetvalue;
914     /* Offset of the field in CPUARMState for this register. This is not
915      * needed if either:
916      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
917      *  2. both readfn and writefn are specified
918      */
919     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
920     /* Function for making any access checks for this register in addition to
921      * those specified by the 'access' permissions bits. If NULL, no extra
922      * checks required. The access check is performed at runtime, not at
923      * translate time.
924      */
925     CPAccessFn *accessfn;
926     /* Function for handling reads of this register. If NULL, then reads
927      * will be done by loading from the offset into CPUARMState specified
928      * by fieldoffset.
929      */
930     CPReadFn *readfn;
931     /* Function for handling writes of this register. If NULL, then writes
932      * will be done by writing to the offset into CPUARMState specified
933      * by fieldoffset.
934      */
935     CPWriteFn *writefn;
936     /* Function for doing a "raw" read; used when we need to copy
937      * coprocessor state to the kernel for KVM or out for
938      * migration. This only needs to be provided if there is also a
939      * readfn and it has side effects (for instance clear-on-read bits).
940      */
941     CPReadFn *raw_readfn;
942     /* Function for doing a "raw" write; used when we need to copy KVM
943      * kernel coprocessor state into userspace, or for inbound
944      * migration. This only needs to be provided if there is also a
945      * writefn and it masks out "unwritable" bits or has write-one-to-clear
946      * or similar behaviour.
947      */
948     CPWriteFn *raw_writefn;
949     /* Function for resetting the register. If NULL, then reset will be done
950      * by writing resetvalue to the field specified in fieldoffset. If
951      * fieldoffset is 0 then no reset will be done.
952      */
953     CPResetFn *resetfn;
954 };
955
956 /* Macros which are lvalues for the field in CPUARMState for the
957  * ARMCPRegInfo *ri.
958  */
959 #define CPREG_FIELD32(env, ri) \
960     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
961 #define CPREG_FIELD64(env, ri) \
962     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
963
964 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
965
966 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
967                                     const ARMCPRegInfo *regs, void *opaque);
968 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
969                                        const ARMCPRegInfo *regs, void *opaque);
970 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
971 {
972     define_arm_cp_regs_with_opaque(cpu, regs, 0);
973 }
974 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
975 {
976     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
977 }
978 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
979
980 /* CPWriteFn that can be used to implement writes-ignored behaviour */
981 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
982                          uint64_t value);
983 /* CPReadFn that can be used for read-as-zero behaviour */
984 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
985
986 /* CPResetFn that does nothing, for use if no reset is required even
987  * if fieldoffset is non zero.
988  */
989 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
990
991 /* Return true if this reginfo struct's field in the cpu state struct
992  * is 64 bits wide.
993  */
994 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
995 {
996     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
997 }
998
999 static inline bool cp_access_ok(int current_pl,
1000                                 const ARMCPRegInfo *ri, int isread)
1001 {
1002     return (ri->access >> ((current_pl * 2) + isread)) & 1;
1003 }
1004
1005 /**
1006  * write_list_to_cpustate
1007  * @cpu: ARMCPU
1008  *
1009  * For each register listed in the ARMCPU cpreg_indexes list, write
1010  * its value from the cpreg_values list into the ARMCPUState structure.
1011  * This updates TCG's working data structures from KVM data or
1012  * from incoming migration state.
1013  *
1014  * Returns: true if all register values were updated correctly,
1015  * false if some register was unknown or could not be written.
1016  * Note that we do not stop early on failure -- we will attempt
1017  * writing all registers in the list.
1018  */
1019 bool write_list_to_cpustate(ARMCPU *cpu);
1020
1021 /**
1022  * write_cpustate_to_list:
1023  * @cpu: ARMCPU
1024  *
1025  * For each register listed in the ARMCPU cpreg_indexes list, write
1026  * its value from the ARMCPUState structure into the cpreg_values list.
1027  * This is used to copy info from TCG's working data structures into
1028  * KVM or for outbound migration.
1029  *
1030  * Returns: true if all register values were read correctly,
1031  * false if some register was unknown or could not be read.
1032  * Note that we do not stop early on failure -- we will attempt
1033  * reading all registers in the list.
1034  */
1035 bool write_cpustate_to_list(ARMCPU *cpu);
1036
1037 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1038    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1039    conventional cores (ie. Application or Realtime profile).  */
1040
1041 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1042
1043 #define ARM_CPUID_TI915T      0x54029152
1044 #define ARM_CPUID_TI925T      0x54029252
1045
1046 #if defined(CONFIG_USER_ONLY)
1047 #define TARGET_PAGE_BITS 12
1048 #else
1049 /* The ARM MMU allows 1k pages.  */
1050 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1051    architecture revisions.  Maybe a configure option to disable them.  */
1052 #define TARGET_PAGE_BITS 10
1053 #endif
1054
1055 #if defined(TARGET_AARCH64)
1056 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1057 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1058 #else
1059 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1060 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1061 #endif
1062
1063 static inline CPUARMState *cpu_init(const char *cpu_model)
1064 {
1065     ARMCPU *cpu = cpu_arm_init(cpu_model);
1066     if (cpu) {
1067         return &cpu->env;
1068     }
1069     return NULL;
1070 }
1071
1072 #define cpu_exec cpu_arm_exec
1073 #define cpu_gen_code cpu_arm_gen_code
1074 #define cpu_signal_handler cpu_arm_signal_handler
1075 #define cpu_list arm_cpu_list
1076
1077 /* MMU modes definitions */
1078 #define MMU_MODE0_SUFFIX _kernel
1079 #define MMU_MODE1_SUFFIX _user
1080 #define MMU_USER_IDX 1
1081 static inline int cpu_mmu_index (CPUARMState *env)
1082 {
1083     return arm_current_pl(env) ? 0 : 1;
1084 }
1085
1086 #include "exec/cpu-all.h"
1087
1088 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1089  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1090  */
1091 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1092 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1093
1094 /* Bit usage when in AArch32 state: */
1095 #define ARM_TBFLAG_THUMB_SHIFT      0
1096 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
1097 #define ARM_TBFLAG_VECLEN_SHIFT     1
1098 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1099 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
1100 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1101 #define ARM_TBFLAG_PRIV_SHIFT       6
1102 #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
1103 #define ARM_TBFLAG_VFPEN_SHIFT      7
1104 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
1105 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
1106 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1107 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1108 #define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1109
1110 /* Bit usage when in AArch64 state */
1111 #define ARM_TBFLAG_AA64_EL_SHIFT    0
1112 #define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1113
1114 /* some convenience accessor macros */
1115 #define ARM_TBFLAG_AARCH64_STATE(F) \
1116     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1117 #define ARM_TBFLAG_THUMB(F) \
1118     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1119 #define ARM_TBFLAG_VECLEN(F) \
1120     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1121 #define ARM_TBFLAG_VECSTRIDE(F) \
1122     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1123 #define ARM_TBFLAG_PRIV(F) \
1124     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1125 #define ARM_TBFLAG_VFPEN(F) \
1126     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1127 #define ARM_TBFLAG_CONDEXEC(F) \
1128     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1129 #define ARM_TBFLAG_BSWAP_CODE(F) \
1130     (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1131 #define ARM_TBFLAG_AA64_EL(F) \
1132     (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1133
1134 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1135                                         target_ulong *cs_base, int *flags)
1136 {
1137     if (is_a64(env)) {
1138         *pc = env->pc;
1139         *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1140             | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1141     } else {
1142         int privmode;
1143         *pc = env->regs[15];
1144         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1145             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1146             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1147             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1148             | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1149         if (arm_feature(env, ARM_FEATURE_M)) {
1150             privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1151         } else {
1152             privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1153         }
1154         if (privmode) {
1155             *flags |= ARM_TBFLAG_PRIV_MASK;
1156         }
1157         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1158             *flags |= ARM_TBFLAG_VFPEN_MASK;
1159         }
1160     }
1161
1162     *cs_base = 0;
1163 }
1164
1165 static inline bool cpu_has_work(CPUState *cpu)
1166 {
1167     return cpu->interrupt_request &
1168         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1169 }
1170
1171 #include "exec/exec-all.h"
1172
1173 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1174 {
1175     if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1176         env->pc = tb->pc;
1177     } else {
1178         env->regs[15] = tb->pc;
1179     }
1180 }
1181
1182 /* Load an instruction and return it in the standard little-endian order */
1183 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1184                                     bool do_swap)
1185 {
1186     uint32_t insn = cpu_ldl_code(env, addr);
1187     if (do_swap) {
1188         return bswap32(insn);
1189     }
1190     return insn;
1191 }
1192
1193 /* Ditto, for a halfword (Thumb) instruction */
1194 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1195                                      bool do_swap)
1196 {
1197     uint16_t insn = cpu_lduw_code(env, addr);
1198     if (do_swap) {
1199         return bswap16(insn);
1200     }
1201     return insn;
1202 }
1203
1204 #endif
This page took 0.090011 seconds and 4 git commands to generate.