4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
23 #define NO_CPU_IO_DEFS
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
29 #if defined(CONFIG_USER_ONLY)
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd /* avoid redefinition */
37 #include <machine/profile.h>
46 #include "exec/ram_addr.h"
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
69 #define DEBUG_TB_INVALIDATE_GATE 0
73 #define DEBUG_TB_FLUSH_GATE 1
75 #define DEBUG_TB_FLUSH_GATE 0
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation. */
84 #define DEBUG_TB_CHECK_GATE 1
86 #define DEBUG_TB_CHECK_GATE 0
89 /* Access to the various translations structures need to be serialised via locks
91 * In user-mode emulation access to the memory related structures are protected
93 * In !user-mode we use per-page locks.
96 #define assert_memory_lock()
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
101 #define SMC_BITMAP_USE_THRESHOLD 10
103 typedef struct PageDesc {
104 /* list of TBs intersecting this ram page */
106 #ifdef CONFIG_SOFTMMU
107 /* in order to optimize self modifying code, we count the number
108 of lookups we do to a given page to use a bitmap */
109 unsigned long *code_bitmap;
110 unsigned int code_write_count;
114 #ifndef CONFIG_USER_ONLY
120 * struct page_entry - page descriptor entry
121 * @pd: pointer to the &struct PageDesc of the page this entry represents
122 * @index: page index of the page
123 * @locked: whether the page is locked
125 * This struct helps us keep track of the locked state of a page, without
126 * bloating &struct PageDesc.
128 * A page lock protects accesses to all fields of &struct PageDesc.
130 * See also: &struct page_collection.
134 tb_page_addr_t index;
139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140 * @tree: Binary search tree (BST) of the pages, with key == page index
141 * @max: Pointer to the page in @tree with the highest page index
143 * To avoid deadlock we lock pages in ascending order of page index.
144 * When operating on a set of pages, we need to keep track of them so that
145 * we can lock them in order and also unlock them later. For this we collect
146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147 * @tree implementation we use does not provide an O(1) operation to obtain the
148 * highest-ranked element, we use @max to keep track of the inserted page
149 * with the highest index. This is valuable because if a page is not in
150 * the tree and its index is higher than @max's, then we can lock it
151 * without breaking the locking order rule.
153 * Note on naming: 'struct page_set' would be shorter, but we already have a few
154 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156 * See also: page_collection_lock().
158 struct page_collection {
160 struct page_entry *max;
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 /* In system mode we want L1_MAP to be based on ram offsets,
176 while in user mode we want it to be based on virtual addresses. */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
187 /* Size of the L2 (and L3, etc) page tables. */
189 #define V_L2_SIZE (1 << V_L2_BITS)
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193 sizeof_field(TranslationBlock, trace_vcpu_dstate)
197 * L1 Mapping properties
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
203 /* The bottom level has pointers to PageDesc, and is indexed by
204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 static void *l1_map[V_L1_MAX_SIZE];
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
218 static void page_table_config_init(void)
222 assert(TARGET_PAGE_BITS);
223 /* The bits remaining after N lower levels of page tables. */
224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225 if (v_l1_bits < V_L1_MIN_BITS) {
226 v_l1_bits += V_L2_BITS;
229 v_l1_size = 1 << v_l1_bits;
230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 assert(v_l1_bits <= V_L1_MAX_BITS);
234 assert(v_l1_shift % V_L2_BITS == 0);
235 assert(v_l2_levels >= 0);
238 void cpu_gen_init(void)
240 tcg_context_init(&tcg_init_ctx);
243 /* Encode VAL as a signed leb128 sequence at P.
244 Return P incremented past the encoded value. */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
252 more = !((val == 0 && (byte & 0x40) == 0)
253 || (val == -1 && (byte & 0x40) != 0));
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264 decoded value. Return the decoded value. */
265 static target_long decode_sleb128(uint8_t **pp)
273 val |= (target_ulong)(byte & 0x7f) << shift;
275 } while (byte & 0x80);
276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277 val |= -(target_ulong)1 << shift;
284 /* Encode the data collected about the instructions while compiling TB.
285 Place the data at BLOCK, and return the number of bytes consumed.
287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288 which come from the target's insn_start data, followed by a uintptr_t
289 which comes from the host pc of the end of the code implementing the insn.
291 Each line of the table is encoded as sleb128 deltas from the previous
292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293 That is, the first column is seeded with the guest pc, the last column
294 with the host pc, and the middle columns with zeros. */
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 uint8_t *highwater = tcg_ctx->code_gen_highwater;
302 for (i = 0, n = tb->icount; i < n; ++i) {
305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307 prev = (j == 0 ? tb->pc : 0);
309 prev = tcg_ctx->gen_insn_data[i - 1][j];
311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 /* Test for (pending) buffer overflow. The assumption is that any
317 one row beginning below the high water mark cannot overrun
318 the buffer completely. Thus we can test for overflow after
319 encoding a row without having to check during encoding. */
320 if (unlikely(p > highwater)) {
328 /* The cpu state corresponding to 'searched_pc' is restored.
329 * When reset_icount is true, current TB will be interrupted and
330 * icount should be recalculated.
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333 uintptr_t searched_pc, bool reset_icount)
335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337 CPUArchState *env = cpu->env_ptr;
338 uint8_t *p = tb->tc.ptr + tb->tc.size;
339 int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341 TCGProfile *prof = &tcg_ctx->prof;
342 int64_t ti = profile_getclock();
345 searched_pc -= GETPC_ADJ;
347 if (searched_pc < host_pc) {
351 /* Reconstruct the stored insn data while looking for the point at
352 which the end of the insn exceeds the searched_pc. */
353 for (i = 0; i < num_insns; ++i) {
354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355 data[j] += decode_sleb128(&p);
357 host_pc += decode_sleb128(&p);
358 if (host_pc > searched_pc) {
365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367 /* Reset the cycle counter to the start of the block
368 and shift if to the number of actually executed instructions */
369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
371 restore_state_to_opc(env, tb, data);
373 #ifdef CONFIG_PROFILER
374 atomic_set(&prof->restore_time,
375 prof->restore_time + profile_getclock() - ti);
376 atomic_set(&prof->restore_count, prof->restore_count + 1);
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 TranslationBlock *tb;
385 uintptr_t check_offset;
387 /* The host_pc has to be in the region of current code buffer. If
388 * it is not we will not be able to resolve it here. The two cases
389 * where host_pc will not be correct are:
391 * - fault during translation (instruction fetch)
392 * - fault from helper (not using GETPC() macro)
394 * Either way we need return early as we can't resolve it here.
396 * We are using unsigned arithmetic so if host_pc <
397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398 * above the code_gen_buffer_size
400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403 tb = tcg_tb_lookup(host_pc);
405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406 if (tb_cflags(tb) & CF_NOCACHE) {
407 /* one-shot translation, invalidate it immediately */
408 tb_phys_invalidate(tb, -1);
418 static void page_init(void)
421 page_table_config_init();
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425 #ifdef HAVE_KINFO_GETVMMAP
426 struct kinfo_vmentry *freep;
429 freep = kinfo_getvmmap(getpid(), &cnt);
432 for (i = 0; i < cnt; i++) {
433 unsigned long startaddr, endaddr;
435 startaddr = freep[i].kve_start;
436 endaddr = freep[i].kve_end;
437 if (h2g_valid(startaddr)) {
438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 if (h2g_valid(endaddr)) {
441 endaddr = h2g(endaddr);
442 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
457 last_brk = (unsigned long)sbrk(0);
459 f = fopen("/compat/linux/proc/self/maps", "r");
464 unsigned long startaddr, endaddr;
467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 if (n == 2 && h2g_valid(startaddr)) {
470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 if (h2g_valid(endaddr)) {
473 endaddr = h2g(endaddr);
477 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
495 /* Level 1. Always allocated. */
496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
499 for (i = v_l2_levels; i > 0; i--) {
500 void **p = atomic_rcu_read(lp);
508 p = g_new0(void *, V_L2_SIZE);
509 existing = atomic_cmpxchg(lp, NULL, p);
510 if (unlikely(existing)) {
516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
519 pd = atomic_rcu_read(lp);
526 pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
531 for (i = 0; i < V_L2_SIZE; i++) {
532 qemu_spin_init(&pd[i].lock);
536 existing = atomic_cmpxchg(lp, NULL, pd);
537 if (unlikely(existing)) {
543 return pd + (index & (V_L2_SIZE - 1));
546 static inline PageDesc *page_find(tb_page_addr_t index)
548 return page_find_alloc(index, 0);
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 static inline void page_lock(PageDesc *pd)
562 static inline void page_unlock(PageDesc *pd)
565 static inline void page_lock_tb(const TranslationBlock *tb)
568 static inline void page_unlock_tb(const TranslationBlock *tb)
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
577 void page_collection_unlock(struct page_collection *set)
579 #else /* !CONFIG_USER_ONLY */
581 #ifdef CONFIG_DEBUG_TCG
583 static __thread GHashTable *ht_pages_locked_debug;
585 static void ht_pages_locked_debug_init(void)
587 if (ht_pages_locked_debug) {
590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
593 static bool page_is_locked(const PageDesc *pd)
597 ht_pages_locked_debug_init();
598 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
602 static void page_lock__debug(PageDesc *pd)
604 ht_pages_locked_debug_init();
605 g_assert(!page_is_locked(pd));
606 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
609 static void page_unlock__debug(const PageDesc *pd)
613 ht_pages_locked_debug_init();
614 g_assert(page_is_locked(pd));
615 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 if (unlikely(!page_is_locked(pd))) {
623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 void assert_no_pages_locked(void)
633 ht_pages_locked_debug_init();
634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
637 #else /* !CONFIG_DEBUG_TCG */
639 #define assert_page_locked(pd)
641 static inline void page_lock__debug(const PageDesc *pd)
645 static inline void page_unlock__debug(const PageDesc *pd)
649 #endif /* CONFIG_DEBUG_TCG */
651 static inline void page_lock(PageDesc *pd)
653 page_lock__debug(pd);
654 qemu_spin_lock(&pd->lock);
657 static inline void page_unlock(PageDesc *pd)
659 qemu_spin_unlock(&pd->lock);
660 page_unlock__debug(pd);
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
669 static inline void page_unlock_tb(const TranslationBlock *tb)
671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
674 if (unlikely(tb->page_addr[1] != -1)) {
675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 struct page_entry *pe = g_malloc(sizeof(*pe));
694 static void page_entry_destroy(gpointer p)
696 struct page_entry *pe = p;
698 g_assert(pe->locked);
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
708 busy = qemu_spin_trylock(&pe->pd->lock);
710 g_assert(!pe->locked);
712 page_lock__debug(pe->pd);
717 static void do_page_entry_lock(struct page_entry *pe)
720 g_assert(!pe->locked);
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 struct page_entry *pe = value;
728 do_page_entry_lock(pe);
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 struct page_entry *pe = value;
744 * Trylock a page, and if successful, add the page to a collection.
745 * Returns true ("busy") if the page could not be locked; false otherwise.
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750 struct page_entry *pe;
753 pe = g_tree_lookup(set->tree, &index);
758 pd = page_find(index);
763 pe = page_entry_new(pd, index);
764 g_tree_insert(set->tree, &pe->index, pe);
767 * If this is either (1) the first insertion or (2) a page whose index
768 * is higher than any other so far, just lock the page and move on.
770 if (set->max == NULL || pe->index > set->max->index) {
772 do_page_entry_lock(pe);
776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
779 return page_entry_trylock(pe);
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
796 * Lock a range of pages ([@start,@end[) as well as the pages of all
798 * Locking order: acquire locks in ascending order of page index.
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 struct page_collection *set = g_malloc(sizeof(*set));
804 tb_page_addr_t index;
807 start >>= TARGET_PAGE_BITS;
808 end >>= TARGET_PAGE_BITS;
809 g_assert(start <= end);
811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
814 assert_no_pages_locked();
817 g_tree_foreach(set->tree, page_entry_lock, NULL);
819 for (index = start; index <= end; index++) {
820 TranslationBlock *tb;
823 pd = page_find(index);
827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828 g_tree_foreach(set->tree, page_entry_unlock, NULL);
831 assert_page_locked(pd);
832 PAGE_FOR_EACH_TB(pd, tb, n) {
833 if (page_trylock_add(set, tb->page_addr[0]) ||
834 (tb->page_addr[1] != -1 &&
835 page_trylock_add(set, tb->page_addr[1]))) {
836 /* drop all locks, and reacquire in order */
837 g_tree_foreach(set->tree, page_entry_unlock, NULL);
845 void page_collection_unlock(struct page_collection *set)
847 /* entries are unlocked and freed via page_entry_destroy */
848 g_tree_destroy(set->tree);
852 #endif /* !CONFIG_USER_ONLY */
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
858 tb_page_addr_t page1;
859 tb_page_addr_t page2;
861 assert_memory_lock();
862 g_assert(phys1 != -1);
864 page1 = phys1 >> TARGET_PAGE_BITS;
865 page2 = phys2 >> TARGET_PAGE_BITS;
867 p1 = page_find_alloc(page1, alloc);
871 if (likely(phys2 == -1)) {
874 } else if (page1 == page2) {
881 p2 = page_find_alloc(page2, alloc);
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896 user mode. It will change when a dedicated libc will be used. */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898 region in which the guest needs to run. Revisit this. */
899 #define USE_STATIC_CODE_GEN_BUFFER
902 /* Minimum size of the code gen buffer. This number is randomly chosen,
903 but not so small that we can't have a fair number of TB's live. */
904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
907 indicated, this is constrained by the range of direct branches on the
908 host cpu, as used by the TCG implementation of goto_tb. */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920 /* We have a +- 4GB range on the branches; leave some slop. */
921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923 /* We have a 256MB branch region, but leave room to make sure the
924 main executable is also within that region. */
925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
936 static inline size_t size_code_gen_buffer(size_t tb_size)
938 /* Size the buffer. */
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
943 /* ??? Needs adjustments. */
944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945 static buffer, we could size this on RESERVED_VA, on the text
946 segment size of the executable, or continue to use the default. */
947 tb_size = (unsigned long)(ram_size / 4);
950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
960 /* In order to use J and JAL within the code_gen_buffer, we require
961 that the buffer not cross a 256MB boundary. */
962 static inline bool cross_256mb(void *addr, size_t size)
964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
967 /* We weren't able to allocate a buffer without crossing that boundary,
968 so make do with the larger portion of the buffer that doesn't cross.
969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973 size_t size2 = buf1 + size1 - buf2;
981 tcg_ctx->code_gen_buffer_size = size1;
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988 __attribute__((aligned(CODE_GEN_ALIGN)));
990 static inline void *alloc_code_gen_buffer(void)
992 void *buf = static_code_gen_buffer;
993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
996 /* page-align the beginning and end of the buffer */
997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1002 /* Honor a command-line option limiting the size of the buffer. */
1003 if (size > tcg_ctx->code_gen_buffer_size) {
1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005 qemu_real_host_page_size);
1007 tcg_ctx->code_gen_buffer_size = size;
1010 if (cross_256mb(buf, size)) {
1011 buf = split_cross_256mb(buf, size);
1012 size = tcg_ctx->code_gen_buffer_size;
1016 if (qemu_mprotect_rwx(buf, size)) {
1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1026 size_t size = tcg_ctx->code_gen_buffer_size;
1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028 PAGE_EXECUTE_READWRITE);
1031 static inline void *alloc_code_gen_buffer(void)
1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035 uintptr_t start = 0;
1036 size_t size = tcg_ctx->code_gen_buffer_size;
1039 /* Constrain the position of the buffer based on the host cpu.
1040 Note that these addresses are chosen in concert with the
1041 addresses assigned in the relevant linker script file. */
1042 # if defined(__PIE__) || defined(__PIC__)
1043 /* Don't bother setting a preferred location if we're building
1044 a position-independent executable. We're more likely to get
1045 an address near the main executable if we let the kernel
1046 choose the address. */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048 /* Force the memory down into low memory with the executable.
1049 Leave the choice of exact location with the kernel. */
1051 /* Cannot expect to map more than 800MB in low memory. */
1052 if (size > 800u * 1024 * 1024) {
1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1055 # elif defined(__sparc__)
1056 start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058 start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 # if _MIPS_SIM == _ABI64
1061 start = 0x128000000ul;
1063 start = 0x08000000ul;
1067 buf = mmap((void *)start, size, prot, flags, -1, 0);
1068 if (buf == MAP_FAILED) {
1073 if (cross_256mb(buf, size)) {
1074 /* Try again, with the original still mapped, to avoid re-acquiring
1075 that 256mb crossing. This time don't specify an address. */
1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078 switch ((int)(buf2 != MAP_FAILED)) {
1080 if (!cross_256mb(buf2, size)) {
1081 /* Success! Use the new buffer. */
1085 /* Failure. Work with what we had. */
1089 /* Split the original buffer. Free the smaller half. */
1090 buf2 = split_cross_256mb(buf, size);
1091 size2 = tcg_ctx->code_gen_buffer_size;
1093 munmap(buf + size2, size - size2);
1095 munmap(buf, size - size2);
1104 /* Request large pages for the buffer. */
1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1111 static inline void code_gen_alloc(size_t tb_size)
1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115 if (tcg_ctx->code_gen_buffer == NULL) {
1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1121 static bool tb_cmp(const void *ap, const void *bp)
1123 const TranslationBlock *a = ap;
1124 const TranslationBlock *b = bp;
1126 return a->pc == b->pc &&
1127 a->cs_base == b->cs_base &&
1128 a->flags == b->flags &&
1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131 a->page_addr[0] == b->page_addr[0] &&
1132 a->page_addr[1] == b->page_addr[1];
1135 static void tb_htable_init(void)
1137 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143 (in bytes) allocated to the translation buffer. Zero means default
1145 void tcg_exec_init(unsigned long tb_size)
1151 code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153 /* There's no guest base to take into account, so go ahead and
1154 initialize the prologue now. */
1155 tcg_prologue_init(tcg_ctx);
1159 /* call with @p->lock held */
1160 static inline void invalidate_page_bitmap(PageDesc *p)
1162 assert_page_locked(p);
1163 #ifdef CONFIG_SOFTMMU
1164 g_free(p->code_bitmap);
1165 p->code_bitmap = NULL;
1166 p->code_write_count = 0;
1170 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1171 static void page_flush_tb_1(int level, void **lp)
1181 for (i = 0; i < V_L2_SIZE; ++i) {
1183 pd[i].first_tb = (uintptr_t)NULL;
1184 invalidate_page_bitmap(pd + i);
1185 page_unlock(&pd[i]);
1190 for (i = 0; i < V_L2_SIZE; ++i) {
1191 page_flush_tb_1(level - 1, pp + i);
1196 static void page_flush_tb(void)
1198 int i, l1_sz = v_l1_size;
1200 for (i = 0; i < l1_sz; i++) {
1201 page_flush_tb_1(v_l2_levels, l1_map + i);
1205 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1207 const TranslationBlock *tb = value;
1208 size_t *size = data;
1210 *size += tb->tc.size;
1214 /* flush all the translation blocks */
1215 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1217 bool did_flush = false;
1220 /* If it is already been done on request of another CPU,
1223 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1228 if (DEBUG_TB_FLUSH_GATE) {
1229 size_t nb_tbs = tcg_nb_tbs();
1230 size_t host_size = 0;
1232 tcg_tb_foreach(tb_host_size_iter, &host_size);
1233 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1234 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1238 cpu_tb_jmp_cache_clear(cpu);
1241 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1244 tcg_region_reset_all();
1245 /* XXX: flush processor icache at this point if cache flush is
1247 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1252 qemu_plugin_flush_cb();
1256 void tb_flush(CPUState *cpu)
1258 if (tcg_enabled()) {
1259 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1261 if (cpu_in_exclusive_context(cpu)) {
1262 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1264 async_safe_run_on_cpu(cpu, do_tb_flush,
1265 RUN_ON_CPU_HOST_INT(tb_flush_count));
1271 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1272 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1273 * and let the optimizer get rid of them by wrapping their user-only callers
1274 * with if (DEBUG_TB_CHECK_GATE).
1276 #ifdef CONFIG_USER_ONLY
1278 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1280 TranslationBlock *tb = p;
1281 target_ulong addr = *(target_ulong *)userp;
1283 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1284 printf("ERROR invalidate: address=" TARGET_FMT_lx
1285 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1289 /* verify that all the pages have correct rights for code
1291 * Called with mmap_lock held.
1293 static void tb_invalidate_check(target_ulong address)
1295 address &= TARGET_PAGE_MASK;
1296 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1299 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1301 TranslationBlock *tb = p;
1304 flags1 = page_get_flags(tb->pc);
1305 flags2 = page_get_flags(tb->pc + tb->size - 1);
1306 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1307 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1308 (long)tb->pc, tb->size, flags1, flags2);
1312 /* verify that all the pages have correct rights for code */
1313 static void tb_page_check(void)
1315 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1318 #endif /* CONFIG_USER_ONLY */
1321 * user-mode: call with mmap_lock held
1322 * !user-mode: call with @pd->lock held
1324 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1326 TranslationBlock *tb1;
1330 assert_page_locked(pd);
1331 pprev = &pd->first_tb;
1332 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1334 *pprev = tb1->page_next[n1];
1337 pprev = &tb1->page_next[n1];
1339 g_assert_not_reached();
1342 /* remove @orig from its @n_orig-th jump list */
1343 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1345 uintptr_t ptr, ptr_locked;
1346 TranslationBlock *dest;
1347 TranslationBlock *tb;
1351 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1352 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1353 dest = (TranslationBlock *)(ptr & ~1);
1358 qemu_spin_lock(&dest->jmp_lock);
1360 * While acquiring the lock, the jump might have been removed if the
1361 * destination TB was invalidated; check again.
1363 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1364 if (ptr_locked != ptr) {
1365 qemu_spin_unlock(&dest->jmp_lock);
1367 * The only possibility is that the jump was unlinked via
1368 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1369 * because we set the LSB above.
1371 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1375 * We first acquired the lock, and since the destination pointer matches,
1376 * we know for sure that @orig is in the jmp list.
1378 pprev = &dest->jmp_list_head;
1379 TB_FOR_EACH_JMP(dest, tb, n) {
1380 if (tb == orig && n == n_orig) {
1381 *pprev = tb->jmp_list_next[n];
1382 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1383 qemu_spin_unlock(&dest->jmp_lock);
1386 pprev = &tb->jmp_list_next[n];
1388 g_assert_not_reached();
1391 /* reset the jump entry 'n' of a TB so that it is not chained to
1393 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1395 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1396 tb_set_jmp_target(tb, n, addr);
1399 /* remove any jumps to the TB */
1400 static inline void tb_jmp_unlink(TranslationBlock *dest)
1402 TranslationBlock *tb;
1405 qemu_spin_lock(&dest->jmp_lock);
1407 TB_FOR_EACH_JMP(dest, tb, n) {
1408 tb_reset_jump(tb, n);
1409 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1410 /* No need to clear the list entry; setting the dest ptr is enough */
1412 dest->jmp_list_head = (uintptr_t)NULL;
1414 qemu_spin_unlock(&dest->jmp_lock);
1418 * In user-mode, call with mmap_lock held.
1419 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1422 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1427 tb_page_addr_t phys_pc;
1429 assert_memory_lock();
1431 /* make sure no further incoming jumps will be chained to this TB */
1432 qemu_spin_lock(&tb->jmp_lock);
1433 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1434 qemu_spin_unlock(&tb->jmp_lock);
1436 /* remove the TB from the hash list */
1437 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1438 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1439 tb->trace_vcpu_dstate);
1440 if (!(tb->cflags & CF_NOCACHE) &&
1441 !qht_remove(&tb_ctx.htable, tb, h)) {
1445 /* remove the TB from the page list */
1446 if (rm_from_page_list) {
1447 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1448 tb_page_remove(p, tb);
1449 invalidate_page_bitmap(p);
1450 if (tb->page_addr[1] != -1) {
1451 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1452 tb_page_remove(p, tb);
1453 invalidate_page_bitmap(p);
1457 /* remove the TB from the hash list */
1458 h = tb_jmp_cache_hash_func(tb->pc);
1460 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1461 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1465 /* suppress this TB from the two jump lists */
1466 tb_remove_from_jmp_list(tb, 0);
1467 tb_remove_from_jmp_list(tb, 1);
1469 /* suppress any remaining jumps to this TB */
1472 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1473 tcg_ctx->tb_phys_invalidate_count + 1);
1476 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1478 do_tb_phys_invalidate(tb, true);
1481 /* invalidate one TB
1483 * Called with mmap_lock held in user-mode.
1485 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1487 if (page_addr == -1 && tb->page_addr[0] != -1) {
1489 do_tb_phys_invalidate(tb, true);
1492 do_tb_phys_invalidate(tb, false);
1496 #ifdef CONFIG_SOFTMMU
1497 /* call with @p->lock held */
1498 static void build_page_bitmap(PageDesc *p)
1500 int n, tb_start, tb_end;
1501 TranslationBlock *tb;
1503 assert_page_locked(p);
1504 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1506 PAGE_FOR_EACH_TB(p, tb, n) {
1507 /* NOTE: this is subtle as a TB may span two physical pages */
1509 /* NOTE: tb_end may be after the end of the page, but
1510 it is not a problem */
1511 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1512 tb_end = tb_start + tb->size;
1513 if (tb_end > TARGET_PAGE_SIZE) {
1514 tb_end = TARGET_PAGE_SIZE;
1518 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1520 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1525 /* add the tb in the target page and protect it if necessary
1527 * Called with mmap_lock held for user-mode emulation.
1528 * Called with @p->lock held in !user-mode.
1530 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1531 unsigned int n, tb_page_addr_t page_addr)
1533 #ifndef CONFIG_USER_ONLY
1534 bool page_already_protected;
1537 assert_page_locked(p);
1539 tb->page_addr[n] = page_addr;
1540 tb->page_next[n] = p->first_tb;
1541 #ifndef CONFIG_USER_ONLY
1542 page_already_protected = p->first_tb != (uintptr_t)NULL;
1544 p->first_tb = (uintptr_t)tb | n;
1545 invalidate_page_bitmap(p);
1547 #if defined(CONFIG_USER_ONLY)
1548 if (p->flags & PAGE_WRITE) {
1553 /* force the host page as non writable (writes will have a
1554 page fault + mprotect overhead) */
1555 page_addr &= qemu_host_page_mask;
1557 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1558 addr += TARGET_PAGE_SIZE) {
1560 p2 = page_find(addr >> TARGET_PAGE_BITS);
1565 p2->flags &= ~PAGE_WRITE;
1567 mprotect(g2h(page_addr), qemu_host_page_size,
1568 (prot & PAGE_BITS) & ~PAGE_WRITE);
1569 if (DEBUG_TB_INVALIDATE_GATE) {
1570 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1574 /* if some code is already present, then the pages are already
1575 protected. So we handle the case where only the first TB is
1576 allocated in a physical page */
1577 if (!page_already_protected) {
1578 tlb_protect_code(page_addr);
1583 /* add a new TB and link it to the physical page tables. phys_page2 is
1584 * (-1) to indicate that only one page contains the TB.
1586 * Called with mmap_lock held for user-mode emulation.
1588 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1589 * Note that in !user-mode, another thread might have already added a TB
1590 * for the same block of guest code that @tb corresponds to. In that case,
1591 * the caller should discard the original @tb, and use instead the returned TB.
1593 static TranslationBlock *
1594 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1595 tb_page_addr_t phys_page2)
1598 PageDesc *p2 = NULL;
1600 assert_memory_lock();
1602 if (phys_pc == -1) {
1604 * If the TB is not associated with a physical RAM page then
1605 * it must be a temporary one-insn TB, and we have nothing to do
1606 * except fill in the page_addr[] fields.
1608 assert(tb->cflags & CF_NOCACHE);
1609 tb->page_addr[0] = tb->page_addr[1] = -1;
1614 * Add the TB to the page list, acquiring first the pages's locks.
1615 * We keep the locks held until after inserting the TB in the hash table,
1616 * so that if the insertion fails we know for sure that the TBs are still
1617 * in the page descriptors.
1618 * Note that inserting into the hash table first isn't an option, since
1619 * we can only insert TBs that are fully initialized.
1621 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1622 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1624 tb_page_add(p2, tb, 1, phys_page2);
1626 tb->page_addr[1] = -1;
1629 if (!(tb->cflags & CF_NOCACHE)) {
1630 void *existing_tb = NULL;
1633 /* add in the hash table */
1634 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1635 tb->trace_vcpu_dstate);
1636 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1638 /* remove TB from the page(s) if we couldn't insert it */
1639 if (unlikely(existing_tb)) {
1640 tb_page_remove(p, tb);
1641 invalidate_page_bitmap(p);
1643 tb_page_remove(p2, tb);
1644 invalidate_page_bitmap(p2);
1650 if (p2 && p2 != p) {
1655 #ifdef CONFIG_USER_ONLY
1656 if (DEBUG_TB_CHECK_GATE) {
1663 /* Called with mmap_lock held for user mode emulation. */
1664 TranslationBlock *tb_gen_code(CPUState *cpu,
1665 target_ulong pc, target_ulong cs_base,
1666 uint32_t flags, int cflags)
1668 CPUArchState *env = cpu->env_ptr;
1669 TranslationBlock *tb, *existing_tb;
1670 tb_page_addr_t phys_pc, phys_page2;
1671 target_ulong virt_page2;
1672 tcg_insn_unit *gen_code_buf;
1673 int gen_code_size, search_size, max_insns;
1674 #ifdef CONFIG_PROFILER
1675 TCGProfile *prof = &tcg_ctx->prof;
1679 assert_memory_lock();
1681 phys_pc = get_page_addr_code(env, pc);
1683 if (phys_pc == -1) {
1684 /* Generate a temporary TB with 1 insn in it */
1685 cflags &= ~CF_COUNT_MASK;
1686 cflags |= CF_NOCACHE | 1;
1689 cflags &= ~CF_CLUSTER_MASK;
1690 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1692 max_insns = cflags & CF_COUNT_MASK;
1693 if (max_insns == 0) {
1694 max_insns = CF_COUNT_MASK;
1696 if (max_insns > TCG_MAX_INSNS) {
1697 max_insns = TCG_MAX_INSNS;
1699 if (cpu->singlestep_enabled || singlestep) {
1704 tb = tcg_tb_alloc(tcg_ctx);
1705 if (unlikely(!tb)) {
1706 /* flush must be done */
1709 /* Make the execution loop process the flush as soon as possible. */
1710 cpu->exception_index = EXCP_INTERRUPT;
1714 gen_code_buf = tcg_ctx->code_gen_ptr;
1715 tb->tc.ptr = gen_code_buf;
1717 tb->cs_base = cs_base;
1719 tb->cflags = cflags;
1721 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1722 tcg_ctx->tb_cflags = cflags;
1725 #ifdef CONFIG_PROFILER
1726 /* includes aborted translations because of exceptions */
1727 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1728 ti = profile_getclock();
1731 tcg_func_start(tcg_ctx);
1733 tcg_ctx->cpu = env_cpu(env);
1734 gen_intermediate_code(cpu, tb, max_insns);
1735 tcg_ctx->cpu = NULL;
1737 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1739 /* generate machine code */
1740 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1741 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1742 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1743 if (TCG_TARGET_HAS_direct_jump) {
1744 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1745 tcg_ctx->tb_jmp_target_addr = NULL;
1747 tcg_ctx->tb_jmp_insn_offset = NULL;
1748 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1751 #ifdef CONFIG_PROFILER
1752 atomic_set(&prof->tb_count, prof->tb_count + 1);
1753 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1754 ti = profile_getclock();
1757 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1758 if (unlikely(gen_code_size < 0)) {
1759 switch (gen_code_size) {
1762 * Overflow of code_gen_buffer, or the current slice of it.
1764 * TODO: We don't need to re-do gen_intermediate_code, nor
1765 * should we re-do the tcg optimization currently hidden
1766 * inside tcg_gen_code. All that should be required is to
1767 * flush the TBs, allocate a new TB, re-initialize it per
1768 * above, and re-do the actual code generation.
1770 goto buffer_overflow;
1774 * The code generated for the TranslationBlock is too large.
1775 * The maximum size allowed by the unwind info is 64k.
1776 * There may be stricter constraints from relocations
1777 * in the tcg backend.
1779 * Try again with half as many insns as we attempted this time.
1780 * If a single insn overflows, there's a bug somewhere...
1782 max_insns = tb->icount;
1783 assert(max_insns > 1);
1788 g_assert_not_reached();
1791 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1792 if (unlikely(search_size < 0)) {
1793 goto buffer_overflow;
1795 tb->tc.size = gen_code_size;
1797 #ifdef CONFIG_PROFILER
1798 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1799 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1800 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1801 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1805 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1806 qemu_log_in_addr_range(tb->pc)) {
1808 qemu_log("OUT: [size=%d]\n", gen_code_size);
1809 if (tcg_ctx->data_gen_ptr) {
1810 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1811 size_t data_size = gen_code_size - code_size;
1814 log_disas(tb->tc.ptr, code_size);
1816 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1817 if (sizeof(tcg_target_ulong) == 8) {
1818 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1819 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1820 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1822 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1823 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1828 log_disas(tb->tc.ptr, gen_code_size);
1836 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1837 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1840 /* init jump list */
1841 qemu_spin_init(&tb->jmp_lock);
1842 tb->jmp_list_head = (uintptr_t)NULL;
1843 tb->jmp_list_next[0] = (uintptr_t)NULL;
1844 tb->jmp_list_next[1] = (uintptr_t)NULL;
1845 tb->jmp_dest[0] = (uintptr_t)NULL;
1846 tb->jmp_dest[1] = (uintptr_t)NULL;
1848 /* init original jump addresses which have been set during tcg_gen_code() */
1849 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1850 tb_reset_jump(tb, 0);
1852 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1853 tb_reset_jump(tb, 1);
1856 /* check next page if needed */
1857 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1859 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1860 phys_page2 = get_page_addr_code(env, virt_page2);
1863 * No explicit memory barrier is required -- tb_link_page() makes the
1864 * TB visible in a consistent state.
1866 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1867 /* if the TB already exists, discard what we just translated */
1868 if (unlikely(existing_tb != tb)) {
1869 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1871 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1872 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1880 * @p must be non-NULL.
1881 * user-mode: call with mmap_lock held.
1882 * !user-mode: call with all @pages locked.
1885 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1886 PageDesc *p, tb_page_addr_t start,
1890 TranslationBlock *tb;
1891 tb_page_addr_t tb_start, tb_end;
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894 CPUState *cpu = current_cpu;
1895 CPUArchState *env = NULL;
1896 bool current_tb_not_found = retaddr != 0;
1897 bool current_tb_modified = false;
1898 TranslationBlock *current_tb = NULL;
1899 target_ulong current_pc = 0;
1900 target_ulong current_cs_base = 0;
1901 uint32_t current_flags = 0;
1902 #endif /* TARGET_HAS_PRECISE_SMC */
1904 assert_page_locked(p);
1906 #if defined(TARGET_HAS_PRECISE_SMC)
1912 /* we remove all the TBs in the range [start, end[ */
1913 /* XXX: see if in some cases it could be faster to invalidate all
1915 PAGE_FOR_EACH_TB(p, tb, n) {
1916 assert_page_locked(p);
1917 /* NOTE: this is subtle as a TB may span two physical pages */
1919 /* NOTE: tb_end may be after the end of the page, but
1920 it is not a problem */
1921 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1922 tb_end = tb_start + tb->size;
1924 tb_start = tb->page_addr[1];
1925 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1927 if (!(tb_end <= start || tb_start >= end)) {
1928 #ifdef TARGET_HAS_PRECISE_SMC
1929 if (current_tb_not_found) {
1930 current_tb_not_found = false;
1931 /* now we have a real cpu fault */
1932 current_tb = tcg_tb_lookup(retaddr);
1934 if (current_tb == tb &&
1935 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1937 * If we are modifying the current TB, we must stop
1938 * its execution. We could be more precise by checking
1939 * that the modification is after the current PC, but it
1940 * would require a specialized function to partially
1941 * restore the CPU state.
1943 current_tb_modified = true;
1944 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1945 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1948 #endif /* TARGET_HAS_PRECISE_SMC */
1949 tb_phys_invalidate__locked(tb);
1952 #if !defined(CONFIG_USER_ONLY)
1953 /* if no code remaining, no need to continue to use slow writes */
1955 invalidate_page_bitmap(p);
1956 tlb_unprotect_code(start);
1959 #ifdef TARGET_HAS_PRECISE_SMC
1960 if (current_tb_modified) {
1961 page_collection_unlock(pages);
1962 /* Force execution of one insn next time. */
1963 cpu->cflags_next_tb = 1 | curr_cflags();
1965 cpu_loop_exit_noexc(cpu);
1971 * Invalidate all TBs which intersect with the target physical address range
1972 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1973 * 'is_cpu_write_access' should be true if called from a real cpu write
1974 * access: the virtual CPU will exit the current TB if code is modified inside
1977 * Called with mmap_lock held for user-mode emulation
1979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1981 struct page_collection *pages;
1984 assert_memory_lock();
1986 p = page_find(start >> TARGET_PAGE_BITS);
1990 pages = page_collection_lock(start, end);
1991 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1992 page_collection_unlock(pages);
1996 * Invalidate all TBs which intersect with the target physical address range
1997 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1998 * 'is_cpu_write_access' should be true if called from a real cpu write
1999 * access: the virtual CPU will exit the current TB if code is modified inside
2002 * Called with mmap_lock held for user-mode emulation.
2004 #ifdef CONFIG_SOFTMMU
2005 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2007 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2010 struct page_collection *pages;
2011 tb_page_addr_t next;
2013 assert_memory_lock();
2015 pages = page_collection_lock(start, end);
2016 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2018 start = next, next += TARGET_PAGE_SIZE) {
2019 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2020 tb_page_addr_t bound = MIN(next, end);
2025 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2027 page_collection_unlock(pages);
2030 #ifdef CONFIG_SOFTMMU
2031 /* len must be <= 8 and start must be a multiple of len.
2032 * Called via softmmu_template.h when code areas are written to with
2033 * iothread mutex not held.
2035 * Call with all @pages in the range [@start, @start + len[ locked.
2037 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2038 tb_page_addr_t start, int len,
2043 assert_memory_lock();
2045 p = page_find(start >> TARGET_PAGE_BITS);
2050 assert_page_locked(p);
2051 if (!p->code_bitmap &&
2052 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2053 build_page_bitmap(p);
2055 if (p->code_bitmap) {
2059 nr = start & ~TARGET_PAGE_MASK;
2060 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2061 if (b & ((1 << len) - 1)) {
2066 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2071 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2072 * host PC of the faulting store instruction that caused this invalidate.
2073 * Returns true if the caller needs to abort execution of the current
2074 * TB (because it was modified by this store and the guest CPU has
2075 * precise-SMC semantics).
2077 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2079 TranslationBlock *tb;
2082 #ifdef TARGET_HAS_PRECISE_SMC
2083 TranslationBlock *current_tb = NULL;
2084 CPUState *cpu = current_cpu;
2085 CPUArchState *env = NULL;
2086 int current_tb_modified = 0;
2087 target_ulong current_pc = 0;
2088 target_ulong current_cs_base = 0;
2089 uint32_t current_flags = 0;
2092 assert_memory_lock();
2094 addr &= TARGET_PAGE_MASK;
2095 p = page_find(addr >> TARGET_PAGE_BITS);
2100 #ifdef TARGET_HAS_PRECISE_SMC
2101 if (p->first_tb && pc != 0) {
2102 current_tb = tcg_tb_lookup(pc);
2108 assert_page_locked(p);
2109 PAGE_FOR_EACH_TB(p, tb, n) {
2110 #ifdef TARGET_HAS_PRECISE_SMC
2111 if (current_tb == tb &&
2112 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2113 /* If we are modifying the current TB, we must stop
2114 its execution. We could be more precise by checking
2115 that the modification is after the current PC, but it
2116 would require a specialized function to partially
2117 restore the CPU state */
2119 current_tb_modified = 1;
2120 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2121 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2124 #endif /* TARGET_HAS_PRECISE_SMC */
2125 tb_phys_invalidate(tb, addr);
2127 p->first_tb = (uintptr_t)NULL;
2128 #ifdef TARGET_HAS_PRECISE_SMC
2129 if (current_tb_modified) {
2130 /* Force execution of one insn next time. */
2131 cpu->cflags_next_tb = 1 | curr_cflags();
2140 /* user-mode: call with mmap_lock held */
2141 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2143 TranslationBlock *tb;
2145 assert_memory_lock();
2147 tb = tcg_tb_lookup(retaddr);
2149 /* We can use retranslation to find the PC. */
2150 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2151 tb_phys_invalidate(tb, -1);
2153 /* The exception probably happened in a helper. The CPU state should
2154 have been saved before calling it. Fetch the PC from there. */
2155 CPUArchState *env = cpu->env_ptr;
2156 target_ulong pc, cs_base;
2157 tb_page_addr_t addr;
2160 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2161 addr = get_page_addr_code(env, pc);
2163 tb_invalidate_phys_range(addr, addr + 1);
2168 #ifndef CONFIG_USER_ONLY
2169 /* in deterministic execution mode, instructions doing device I/Os
2170 * must be at the end of the TB.
2172 * Called by softmmu_template.h, with iothread mutex not held.
2174 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2176 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2177 CPUArchState *env = cpu->env_ptr;
2179 TranslationBlock *tb;
2182 tb = tcg_tb_lookup(retaddr);
2184 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2187 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2189 /* On MIPS and SH, delay slot instructions can only be restarted if
2190 they were already the first instruction in the TB. If this is not
2191 the first instruction in a TB then re-execute the preceding
2194 #if defined(TARGET_MIPS)
2195 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2196 && env->active_tc.PC != tb->pc) {
2197 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2198 cpu_neg(cpu)->icount_decr.u16.low++;
2199 env->hflags &= ~MIPS_HFLAG_BMASK;
2202 #elif defined(TARGET_SH4)
2203 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2204 && env->pc != tb->pc) {
2206 cpu_neg(cpu)->icount_decr.u16.low++;
2207 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2212 /* Generate a new TB executing the I/O insn. */
2213 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2215 if (tb_cflags(tb) & CF_NOCACHE) {
2217 /* Invalidate original TB if this TB was generated in
2218 * cpu_exec_nocache() */
2219 tb_phys_invalidate(tb->orig_tb, -1);
2224 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2225 * the first in the TB) then we end up generating a whole new TB and
2226 * repeating the fault, which is horribly inefficient.
2227 * Better would be to execute just this insn uncached, or generate a
2230 cpu_loop_exit_noexc(cpu);
2233 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2235 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2237 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2238 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2242 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2244 /* Discard jump cache entries for any tb which might potentially
2245 overlap the flushed page. */
2246 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2247 tb_jmp_cache_clear_page(cpu, addr);
2250 static void print_qht_statistics(struct qht_stats hst)
2252 uint32_t hgram_opts;
2256 if (!hst.head_buckets) {
2259 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2260 hst.used_head_buckets, hst.head_buckets,
2261 (double)hst.used_head_buckets / hst.head_buckets * 100);
2263 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2264 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2265 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2266 hgram_opts |= QDIST_PR_NODECIMAL;
2268 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2269 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2270 qdist_avg(&hst.occupancy) * 100, hgram);
2273 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2274 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2275 if (hgram_bins > 10) {
2279 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2281 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2282 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2283 qdist_avg(&hst.chain), hgram);
2287 struct tb_tree_stats {
2291 size_t max_target_size;
2292 size_t direct_jmp_count;
2293 size_t direct_jmp2_count;
2297 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2299 const TranslationBlock *tb = value;
2300 struct tb_tree_stats *tst = data;
2303 tst->host_size += tb->tc.size;
2304 tst->target_size += tb->size;
2305 if (tb->size > tst->max_target_size) {
2306 tst->max_target_size = tb->size;
2308 if (tb->page_addr[1] != -1) {
2311 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2312 tst->direct_jmp_count++;
2313 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2314 tst->direct_jmp2_count++;
2320 void dump_exec_info(void)
2322 struct tb_tree_stats tst = {};
2323 struct qht_stats hst;
2324 size_t nb_tbs, flush_full, flush_part, flush_elide;
2326 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2327 nb_tbs = tst.nb_tbs;
2328 /* XXX: avoid using doubles ? */
2329 qemu_printf("Translation buffer state:\n");
2331 * Report total code size including the padding and TB structs;
2332 * otherwise users might think "-tb-size" is not honoured.
2333 * For avg host size we use the precise numbers from tb_tree_stats though.
2335 qemu_printf("gen code size %zu/%zu\n",
2336 tcg_code_size(), tcg_code_capacity());
2337 qemu_printf("TB count %zu\n", nb_tbs);
2338 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2339 nb_tbs ? tst.target_size / nb_tbs : 0,
2340 tst.max_target_size);
2341 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2342 nb_tbs ? tst.host_size / nb_tbs : 0,
2343 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2344 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2345 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2346 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2347 tst.direct_jmp_count,
2348 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2349 tst.direct_jmp2_count,
2350 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2352 qht_statistics_init(&tb_ctx.htable, &hst);
2353 print_qht_statistics(hst);
2354 qht_statistics_destroy(&hst);
2356 qemu_printf("\nStatistics:\n");
2357 qemu_printf("TB flush count %u\n",
2358 atomic_read(&tb_ctx.tb_flush_count));
2359 qemu_printf("TB invalidate count %zu\n",
2360 tcg_tb_phys_invalidate_count());
2362 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2363 qemu_printf("TLB full flushes %zu\n", flush_full);
2364 qemu_printf("TLB partial flushes %zu\n", flush_part);
2365 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2369 void dump_opcount_info(void)
2371 tcg_dump_op_count();
2374 #else /* CONFIG_USER_ONLY */
2376 void cpu_interrupt(CPUState *cpu, int mask)
2378 g_assert(qemu_mutex_iothread_locked());
2379 cpu->interrupt_request |= mask;
2380 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2384 * Walks guest process memory "regions" one by one
2385 * and calls callback function 'fn' for each region.
2387 struct walk_memory_regions_data {
2388 walk_memory_regions_fn fn;
2394 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2395 target_ulong end, int new_prot)
2397 if (data->start != -1u) {
2398 int rc = data->fn(data->priv, data->start, end, data->prot);
2404 data->start = (new_prot ? end : -1u);
2405 data->prot = new_prot;
2410 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2411 target_ulong base, int level, void **lp)
2417 return walk_memory_regions_end(data, base, 0);
2423 for (i = 0; i < V_L2_SIZE; ++i) {
2424 int prot = pd[i].flags;
2426 pa = base | (i << TARGET_PAGE_BITS);
2427 if (prot != data->prot) {
2428 rc = walk_memory_regions_end(data, pa, prot);
2437 for (i = 0; i < V_L2_SIZE; ++i) {
2438 pa = base | ((target_ulong)i <<
2439 (TARGET_PAGE_BITS + V_L2_BITS * level));
2440 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2450 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2452 struct walk_memory_regions_data data;
2453 uintptr_t i, l1_sz = v_l1_size;
2460 for (i = 0; i < l1_sz; i++) {
2461 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2462 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2468 return walk_memory_regions_end(&data, 0, 0);
2471 static int dump_region(void *priv, target_ulong start,
2472 target_ulong end, unsigned long prot)
2474 FILE *f = (FILE *)priv;
2476 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2477 " "TARGET_FMT_lx" %c%c%c\n",
2478 start, end, end - start,
2479 ((prot & PAGE_READ) ? 'r' : '-'),
2480 ((prot & PAGE_WRITE) ? 'w' : '-'),
2481 ((prot & PAGE_EXEC) ? 'x' : '-'));
2486 /* dump memory mappings */
2487 void page_dump(FILE *f)
2489 const int length = sizeof(target_ulong) * 2;
2490 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2491 length, "start", length, "end", length, "size", "prot");
2492 walk_memory_regions(f, dump_region);
2495 int page_get_flags(target_ulong address)
2499 p = page_find(address >> TARGET_PAGE_BITS);
2506 /* Modify the flags of a page and invalidate the code if necessary.
2507 The flag PAGE_WRITE_ORG is positioned automatically depending
2508 on PAGE_WRITE. The mmap_lock should already be held. */
2509 void page_set_flags(target_ulong start, target_ulong end, int flags)
2511 target_ulong addr, len;
2513 /* This function should never be called with addresses outside the
2514 guest address space. If this assert fires, it probably indicates
2515 a missing call to h2g_valid. */
2516 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2517 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2519 assert(start < end);
2520 assert_memory_lock();
2522 start = start & TARGET_PAGE_MASK;
2523 end = TARGET_PAGE_ALIGN(end);
2525 if (flags & PAGE_WRITE) {
2526 flags |= PAGE_WRITE_ORG;
2529 for (addr = start, len = end - start;
2531 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2532 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2534 /* If the write protection bit is set, then we invalidate
2536 if (!(p->flags & PAGE_WRITE) &&
2537 (flags & PAGE_WRITE) &&
2539 tb_invalidate_phys_page(addr, 0);
2545 int page_check_range(target_ulong start, target_ulong len, int flags)
2551 /* This function should never be called with addresses outside the
2552 guest address space. If this assert fires, it probably indicates
2553 a missing call to h2g_valid. */
2554 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2555 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2561 if (start + len - 1 < start) {
2562 /* We've wrapped around. */
2566 /* must do before we loose bits in the next step */
2567 end = TARGET_PAGE_ALIGN(start + len);
2568 start = start & TARGET_PAGE_MASK;
2570 for (addr = start, len = end - start;
2572 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2573 p = page_find(addr >> TARGET_PAGE_BITS);
2577 if (!(p->flags & PAGE_VALID)) {
2581 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2584 if (flags & PAGE_WRITE) {
2585 if (!(p->flags & PAGE_WRITE_ORG)) {
2588 /* unprotect the page if it was put read-only because it
2589 contains translated code */
2590 if (!(p->flags & PAGE_WRITE)) {
2591 if (!page_unprotect(addr, 0)) {
2600 /* called from signal handler: invalidate the code and unprotect the
2601 * page. Return 0 if the fault was not handled, 1 if it was handled,
2602 * and 2 if it was handled but the caller must cause the TB to be
2603 * immediately exited. (We can only return 2 if the 'pc' argument is
2606 int page_unprotect(target_ulong address, uintptr_t pc)
2609 bool current_tb_invalidated;
2611 target_ulong host_start, host_end, addr;
2613 /* Technically this isn't safe inside a signal handler. However we
2614 know this only ever happens in a synchronous SEGV handler, so in
2615 practice it seems to be ok. */
2618 p = page_find(address >> TARGET_PAGE_BITS);
2624 /* if the page was really writable, then we change its
2625 protection back to writable */
2626 if (p->flags & PAGE_WRITE_ORG) {
2627 current_tb_invalidated = false;
2628 if (p->flags & PAGE_WRITE) {
2629 /* If the page is actually marked WRITE then assume this is because
2630 * this thread raced with another one which got here first and
2631 * set the page to PAGE_WRITE and did the TB invalidate for us.
2633 #ifdef TARGET_HAS_PRECISE_SMC
2634 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2636 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2640 host_start = address & qemu_host_page_mask;
2641 host_end = host_start + qemu_host_page_size;
2644 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2645 p = page_find(addr >> TARGET_PAGE_BITS);
2646 p->flags |= PAGE_WRITE;
2649 /* and since the content will be modified, we must invalidate
2650 the corresponding translated code. */
2651 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2652 #ifdef CONFIG_USER_ONLY
2653 if (DEBUG_TB_CHECK_GATE) {
2654 tb_invalidate_check(addr);
2658 mprotect((void *)g2h(host_start), qemu_host_page_size,
2662 /* If current TB was invalidated return to main loop */
2663 return current_tb_invalidated ? 2 : 1;
2668 #endif /* CONFIG_USER_ONLY */
2670 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2671 void tcg_flush_softmmu_tlb(CPUState *cs)
2673 #ifdef CONFIG_SOFTMMU