4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
58 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 bool coalesced_flush_in_progress;
68 int broken_set_mem_region;
71 int robust_singlestep;
73 #ifdef KVM_CAP_SET_GUEST_DEBUG
74 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 int irqchip_in_kernel;
84 static const KVMCapabilityInfo kvm_required_capabilites[] = {
85 KVM_CAP_INFO(USER_MEMORY),
86 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
90 static KVMSlot *kvm_alloc_slot(KVMState *s)
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 if (s->slots[i].memory_size == 0) {
100 fprintf(stderr, "%s: no free slot available\n", __func__);
104 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
110 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
111 KVMSlot *mem = &s->slots[i];
113 if (start_addr == mem->start_addr &&
114 end_addr == mem->start_addr + mem->memory_size) {
123 * Find overlapping slot with lowest start address
125 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
129 KVMSlot *found = NULL;
132 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
133 KVMSlot *mem = &s->slots[i];
135 if (mem->memory_size == 0 ||
136 (found && found->start_addr < mem->start_addr)) {
140 if (end_addr > mem->start_addr &&
141 start_addr < mem->start_addr + mem->memory_size) {
149 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
150 target_phys_addr_t *phys_addr)
154 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
155 KVMSlot *mem = &s->slots[i];
157 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram - mem->ram);
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)slot->ram;
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 DPRINTF("kvm_create_vcpu failed\n");
214 env->kvm_vcpu_dirty = 1;
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 if (env->kvm_run == MAP_FAILED) {
227 DPRINTF("mmap'ing vcpu state failed\n");
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
236 ret = kvm_arch_init_vcpu(env);
238 qemu_register_reset(kvm_reset_vcpu, env);
239 kvm_arch_reset_vcpu(env);
246 * dirty pages logging control
249 static int kvm_mem_flags(KVMState *s, bool log_dirty)
251 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
254 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
256 KVMState *s = kvm_state;
257 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
260 old_flags = mem->flags;
262 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 if (flags == old_flags) {
274 return kvm_set_user_memory_region(s, mem);
277 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
278 ram_addr_t size, bool log_dirty)
280 KVMState *s = kvm_state;
281 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
284 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
285 TARGET_FMT_plx "\n", __func__, phys_addr,
286 (target_phys_addr_t)(phys_addr + size - 1));
289 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
292 static int kvm_log_start(CPUPhysMemoryClient *client,
293 target_phys_addr_t phys_addr, ram_addr_t size)
295 return kvm_dirty_pages_log_change(phys_addr, size, true);
298 static int kvm_log_stop(CPUPhysMemoryClient *client,
299 target_phys_addr_t phys_addr, ram_addr_t size)
301 return kvm_dirty_pages_log_change(phys_addr, size, false);
304 static int kvm_set_migration_log(int enable)
306 KVMState *s = kvm_state;
310 s->migration_log = enable;
312 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
315 if (!mem->memory_size) {
318 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
321 err = kvm_set_user_memory_region(s, mem);
329 /* get kvm's dirty pages bitmap and update qemu's */
330 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
331 unsigned long *bitmap,
332 unsigned long offset,
333 unsigned long mem_size)
336 unsigned long page_number, addr, addr1, c;
338 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
342 * bitmap-traveling is faster than memory-traveling (for addr...)
343 * especially when most of the memory is not dirty.
345 for (i = 0; i < len; i++) {
346 if (bitmap[i] != 0) {
347 c = leul_to_cpu(bitmap[i]);
351 page_number = i * HOST_LONG_BITS + j;
352 addr1 = page_number * TARGET_PAGE_SIZE;
353 addr = offset + addr1;
354 ram_addr = cpu_get_physical_page_desc(addr);
355 cpu_physical_memory_set_dirty(ram_addr);
362 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
365 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367 * This means all bits are set to dirty.
369 * @start_add: start of logged region.
370 * @end_addr: end of logged region.
372 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
373 target_phys_addr_t end_addr)
375 KVMState *s = kvm_state;
376 unsigned long size, allocated_size = 0;
381 d.dirty_bitmap = NULL;
382 while (start_addr < end_addr) {
383 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
388 /* XXX bad kernel interface alert
389 * For dirty bitmap, kernel allocates array of size aligned to
390 * bits-per-long. But for case when the kernel is 64bits and
391 * the userspace is 32bits, userspace can't align to the same
392 * bits-per-long, since sizeof(long) is different between kernel
393 * and user space. This way, userspace will provide buffer which
394 * may be 4 bytes less than the kernel will use, resulting in
395 * userspace memory corruption (which is not detectable by valgrind
396 * too, in most cases).
397 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
398 * a hope that sizeof(long) wont become >8 any time soon.
400 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
401 /*HOST_LONG_BITS*/ 64) / 8;
402 if (!d.dirty_bitmap) {
403 d.dirty_bitmap = g_malloc(size);
404 } else if (size > allocated_size) {
405 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
407 allocated_size = size;
408 memset(d.dirty_bitmap, 0, allocated_size);
412 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
413 DPRINTF("ioctl failed %d\n", errno);
418 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
419 mem->start_addr, mem->memory_size);
420 start_addr = mem->start_addr + mem->memory_size;
422 g_free(d.dirty_bitmap);
427 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
430 KVMState *s = kvm_state;
432 if (s->coalesced_mmio) {
433 struct kvm_coalesced_mmio_zone zone;
438 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
444 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
447 KVMState *s = kvm_state;
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
455 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
461 int kvm_check_extension(KVMState *s, unsigned int extension)
465 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
473 static int kvm_check_many_ioeventfds(void)
475 /* Userspace can use ioeventfd for io notification. This requires a host
476 * that supports eventfd(2) and an I/O thread; since eventfd does not
477 * support SIGIO it cannot interrupt the vcpu.
479 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
480 * can avoid creating too many ioeventfds.
482 #if defined(CONFIG_EVENTFD)
485 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
486 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
487 if (ioeventfds[i] < 0) {
490 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
492 close(ioeventfds[i]);
497 /* Decide whether many devices are supported or not */
498 ret = i == ARRAY_SIZE(ioeventfds);
501 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
502 close(ioeventfds[i]);
510 static const KVMCapabilityInfo *
511 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
514 if (!kvm_check_extension(s, list->value)) {
522 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
523 ram_addr_t phys_offset, bool log_dirty)
525 KVMState *s = kvm_state;
526 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
531 /* kvm works in page size chunks, but the function may be called
532 with sub-page size and unaligned start address. */
533 size = TARGET_PAGE_ALIGN(size);
534 start_addr = TARGET_PAGE_ALIGN(start_addr);
536 /* KVM does not support read-only slots */
537 phys_offset &= ~IO_MEM_ROM;
539 if ((phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
540 ram = qemu_safe_ram_ptr(phys_offset);
544 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
549 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
550 (start_addr + size <= mem->start_addr + mem->memory_size) &&
551 (ram - start_addr == mem->ram - mem->start_addr)) {
552 /* The new slot fits into the existing one and comes with
553 * identical parameters - update flags and done. */
554 kvm_slot_dirty_pages_log_change(mem, log_dirty);
560 /* unregister the overlapping slot */
561 mem->memory_size = 0;
562 err = kvm_set_user_memory_region(s, mem);
564 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
565 __func__, strerror(-err));
569 /* Workaround for older KVM versions: we can't join slots, even not by
570 * unregistering the previous ones and then registering the larger
571 * slot. We have to maintain the existing fragmentation. Sigh.
573 * This workaround assumes that the new slot starts at the same
574 * address as the first existing one. If not or if some overlapping
575 * slot comes around later, we will fail (not seen in practice so far)
576 * - and actually require a recent KVM version. */
577 if (s->broken_set_mem_region &&
578 old.start_addr == start_addr && old.memory_size < size &&
579 flags < IO_MEM_UNASSIGNED) {
580 mem = kvm_alloc_slot(s);
581 mem->memory_size = old.memory_size;
582 mem->start_addr = old.start_addr;
584 mem->flags = kvm_mem_flags(s, log_dirty);
586 err = kvm_set_user_memory_region(s, mem);
588 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
593 start_addr += old.memory_size;
594 phys_offset += old.memory_size;
595 ram += old.memory_size;
596 size -= old.memory_size;
600 /* register prefix slot */
601 if (old.start_addr < start_addr) {
602 mem = kvm_alloc_slot(s);
603 mem->memory_size = start_addr - old.start_addr;
604 mem->start_addr = old.start_addr;
606 mem->flags = kvm_mem_flags(s, log_dirty);
608 err = kvm_set_user_memory_region(s, mem);
610 fprintf(stderr, "%s: error registering prefix slot: %s\n",
611 __func__, strerror(-err));
613 fprintf(stderr, "%s: This is probably because your kernel's " \
614 "PAGE_SIZE is too big. Please try to use 4k " \
615 "PAGE_SIZE!\n", __func__);
621 /* register suffix slot */
622 if (old.start_addr + old.memory_size > start_addr + size) {
623 ram_addr_t size_delta;
625 mem = kvm_alloc_slot(s);
626 mem->start_addr = start_addr + size;
627 size_delta = mem->start_addr - old.start_addr;
628 mem->memory_size = old.memory_size - size_delta;
629 mem->ram = old.ram + size_delta;
630 mem->flags = kvm_mem_flags(s, log_dirty);
632 err = kvm_set_user_memory_region(s, mem);
634 fprintf(stderr, "%s: error registering suffix slot: %s\n",
635 __func__, strerror(-err));
641 /* in case the KVM bug workaround already "consumed" the new slot */
645 /* KVM does not need to know about this memory */
646 if (flags >= IO_MEM_UNASSIGNED) {
649 mem = kvm_alloc_slot(s);
650 mem->memory_size = size;
651 mem->start_addr = start_addr;
653 mem->flags = kvm_mem_flags(s, log_dirty);
655 err = kvm_set_user_memory_region(s, mem);
657 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
663 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
664 target_phys_addr_t start_addr,
665 ram_addr_t size, ram_addr_t phys_offset,
668 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
671 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
672 target_phys_addr_t start_addr,
673 target_phys_addr_t end_addr)
675 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
678 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
681 return kvm_set_migration_log(enable);
684 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
685 .set_memory = kvm_client_set_memory,
686 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
687 .migration_log = kvm_client_migration_log,
688 .log_start = kvm_log_start,
689 .log_stop = kvm_log_stop,
692 static void kvm_handle_interrupt(CPUState *env, int mask)
694 env->interrupt_request |= mask;
696 if (!qemu_cpu_is_self(env)) {
703 static const char upgrade_note[] =
704 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
705 "(see http://sourceforge.net/projects/kvm).\n";
707 const KVMCapabilityInfo *missing_cap;
711 s = g_malloc0(sizeof(KVMState));
713 #ifdef KVM_CAP_SET_GUEST_DEBUG
714 QTAILQ_INIT(&s->kvm_sw_breakpoints);
716 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
717 s->slots[i].slot = i;
720 s->fd = qemu_open("/dev/kvm", O_RDWR);
722 fprintf(stderr, "Could not access KVM kernel module: %m\n");
727 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
728 if (ret < KVM_API_VERSION) {
732 fprintf(stderr, "kvm version too old\n");
736 if (ret > KVM_API_VERSION) {
738 fprintf(stderr, "kvm version not supported\n");
742 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
745 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
746 "your host kernel command line\n");
752 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
755 kvm_check_extension_list(s, kvm_arch_required_capabilities);
759 fprintf(stderr, "kvm does not support %s\n%s",
760 missing_cap->name, upgrade_note);
764 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
766 s->broken_set_mem_region = 1;
767 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
769 s->broken_set_mem_region = 0;
772 #ifdef KVM_CAP_VCPU_EVENTS
773 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
776 s->robust_singlestep =
777 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
779 #ifdef KVM_CAP_DEBUGREGS
780 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
784 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
788 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
791 ret = kvm_arch_init(s);
797 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
799 s->many_ioeventfds = kvm_check_many_ioeventfds();
801 cpu_interrupt_handler = kvm_handle_interrupt;
819 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
825 for (i = 0; i < count; i++) {
826 if (direction == KVM_EXIT_IO_IN) {
829 stb_p(ptr, cpu_inb(port));
832 stw_p(ptr, cpu_inw(port));
835 stl_p(ptr, cpu_inl(port));
841 cpu_outb(port, ldub_p(ptr));
844 cpu_outw(port, lduw_p(ptr));
847 cpu_outl(port, ldl_p(ptr));
856 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
858 fprintf(stderr, "KVM internal error.");
859 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
862 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
863 for (i = 0; i < run->internal.ndata; ++i) {
864 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
865 i, (uint64_t)run->internal.data[i]);
868 fprintf(stderr, "\n");
870 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
871 fprintf(stderr, "emulation failure\n");
872 if (!kvm_arch_stop_on_emulation_error(env)) {
873 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
874 return EXCP_INTERRUPT;
877 /* FIXME: Should trigger a qmp message to let management know
878 * something went wrong.
883 void kvm_flush_coalesced_mmio_buffer(void)
885 KVMState *s = kvm_state;
887 if (s->coalesced_flush_in_progress) {
891 s->coalesced_flush_in_progress = true;
893 if (s->coalesced_mmio_ring) {
894 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
895 while (ring->first != ring->last) {
896 struct kvm_coalesced_mmio *ent;
898 ent = &ring->coalesced_mmio[ring->first];
900 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
902 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
906 s->coalesced_flush_in_progress = false;
909 static void do_kvm_cpu_synchronize_state(void *_env)
911 CPUState *env = _env;
913 if (!env->kvm_vcpu_dirty) {
914 kvm_arch_get_registers(env);
915 env->kvm_vcpu_dirty = 1;
919 void kvm_cpu_synchronize_state(CPUState *env)
921 if (!env->kvm_vcpu_dirty) {
922 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
926 void kvm_cpu_synchronize_post_reset(CPUState *env)
928 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
929 env->kvm_vcpu_dirty = 0;
932 void kvm_cpu_synchronize_post_init(CPUState *env)
934 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
935 env->kvm_vcpu_dirty = 0;
938 int kvm_cpu_exec(CPUState *env)
940 struct kvm_run *run = env->kvm_run;
943 DPRINTF("kvm_cpu_exec()\n");
945 if (kvm_arch_process_async_events(env)) {
946 env->exit_request = 0;
950 cpu_single_env = env;
953 if (env->kvm_vcpu_dirty) {
954 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
955 env->kvm_vcpu_dirty = 0;
958 kvm_arch_pre_run(env, run);
959 if (env->exit_request) {
960 DPRINTF("interrupt exit requested\n");
962 * KVM requires us to reenter the kernel after IO exits to complete
963 * instruction emulation. This self-signal will ensure that we
966 qemu_cpu_kick_self();
968 cpu_single_env = NULL;
969 qemu_mutex_unlock_iothread();
971 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
973 qemu_mutex_lock_iothread();
974 cpu_single_env = env;
975 kvm_arch_post_run(env, run);
977 kvm_flush_coalesced_mmio_buffer();
980 if (run_ret == -EINTR || run_ret == -EAGAIN) {
981 DPRINTF("io window exit\n");
982 ret = EXCP_INTERRUPT;
985 fprintf(stderr, "error: kvm run failed %s\n",
990 switch (run->exit_reason) {
992 DPRINTF("handle_io\n");
993 kvm_handle_io(run->io.port,
994 (uint8_t *)run + run->io.data_offset,
1001 DPRINTF("handle_mmio\n");
1002 cpu_physical_memory_rw(run->mmio.phys_addr,
1005 run->mmio.is_write);
1008 case KVM_EXIT_IRQ_WINDOW_OPEN:
1009 DPRINTF("irq_window_open\n");
1010 ret = EXCP_INTERRUPT;
1012 case KVM_EXIT_SHUTDOWN:
1013 DPRINTF("shutdown\n");
1014 qemu_system_reset_request();
1015 ret = EXCP_INTERRUPT;
1017 case KVM_EXIT_UNKNOWN:
1018 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1019 (uint64_t)run->hw.hardware_exit_reason);
1022 case KVM_EXIT_INTERNAL_ERROR:
1023 ret = kvm_handle_internal_error(env, run);
1026 DPRINTF("kvm_arch_handle_exit\n");
1027 ret = kvm_arch_handle_exit(env, run);
1033 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1034 vm_stop(RUN_STATE_INTERNAL_ERROR);
1037 env->exit_request = 0;
1038 cpu_single_env = NULL;
1042 int kvm_ioctl(KVMState *s, int type, ...)
1049 arg = va_arg(ap, void *);
1052 ret = ioctl(s->fd, type, arg);
1059 int kvm_vm_ioctl(KVMState *s, int type, ...)
1066 arg = va_arg(ap, void *);
1069 ret = ioctl(s->vmfd, type, arg);
1076 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1083 arg = va_arg(ap, void *);
1086 ret = ioctl(env->kvm_fd, type, arg);
1093 int kvm_has_sync_mmu(void)
1095 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1098 int kvm_has_vcpu_events(void)
1100 return kvm_state->vcpu_events;
1103 int kvm_has_robust_singlestep(void)
1105 return kvm_state->robust_singlestep;
1108 int kvm_has_debugregs(void)
1110 return kvm_state->debugregs;
1113 int kvm_has_xsave(void)
1115 return kvm_state->xsave;
1118 int kvm_has_xcrs(void)
1120 return kvm_state->xcrs;
1123 int kvm_has_many_ioeventfds(void)
1125 if (!kvm_enabled()) {
1128 return kvm_state->many_ioeventfds;
1131 void kvm_setup_guest_memory(void *start, size_t size)
1133 if (!kvm_has_sync_mmu()) {
1134 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1137 perror("qemu_madvise");
1139 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1145 #ifdef KVM_CAP_SET_GUEST_DEBUG
1146 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1149 struct kvm_sw_breakpoint *bp;
1151 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1159 int kvm_sw_breakpoints_active(CPUState *env)
1161 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1164 struct kvm_set_guest_debug_data {
1165 struct kvm_guest_debug dbg;
1170 static void kvm_invoke_set_guest_debug(void *data)
1172 struct kvm_set_guest_debug_data *dbg_data = data;
1173 CPUState *env = dbg_data->env;
1175 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1178 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1180 struct kvm_set_guest_debug_data data;
1182 data.dbg.control = reinject_trap;
1184 if (env->singlestep_enabled) {
1185 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1187 kvm_arch_update_guest_debug(env, &data.dbg);
1190 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1194 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1195 target_ulong len, int type)
1197 struct kvm_sw_breakpoint *bp;
1201 if (type == GDB_BREAKPOINT_SW) {
1202 bp = kvm_find_sw_breakpoint(current_env, addr);
1208 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1215 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1221 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1224 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1230 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1231 err = kvm_update_guest_debug(env, 0);
1239 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1240 target_ulong len, int type)
1242 struct kvm_sw_breakpoint *bp;
1246 if (type == GDB_BREAKPOINT_SW) {
1247 bp = kvm_find_sw_breakpoint(current_env, addr);
1252 if (bp->use_count > 1) {
1257 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1262 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1265 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1271 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1272 err = kvm_update_guest_debug(env, 0);
1280 void kvm_remove_all_breakpoints(CPUState *current_env)
1282 struct kvm_sw_breakpoint *bp, *next;
1283 KVMState *s = current_env->kvm_state;
1286 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1287 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1288 /* Try harder to find a CPU that currently sees the breakpoint. */
1289 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1290 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1296 kvm_arch_remove_all_hw_breakpoints();
1298 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1299 kvm_update_guest_debug(env, 0);
1303 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1305 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1310 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1311 target_ulong len, int type)
1316 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1317 target_ulong len, int type)
1322 void kvm_remove_all_breakpoints(CPUState *current_env)
1325 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1327 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1329 struct kvm_signal_mask *sigmask;
1333 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1336 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1339 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1340 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1346 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1349 struct kvm_ioeventfd iofd;
1351 iofd.datamatch = val;
1354 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1357 if (!kvm_enabled()) {
1362 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1365 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1374 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1376 struct kvm_ioeventfd kick = {
1380 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1384 if (!kvm_enabled()) {
1388 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1390 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1397 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1399 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1402 int kvm_on_sigbus(int code, void *addr)
1404 return kvm_arch_on_sigbus(code, addr);