4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/units.h"
22 #include "qemu/main-loop.h"
24 #include "exec/helper-proto.h"
25 #include "internals.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
32 static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
33 uint32_t syndrome, uint32_t target_el)
35 CPUState *cs = env_cpu(env);
37 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
45 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
58 void raise_exception(CPUARMState *env, uint32_t excp,
59 uint32_t syndrome, uint32_t target_el)
61 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
65 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
66 uint32_t target_el, uintptr_t ra)
68 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
69 cpu_loop_exit_restore(cs, ra);
72 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
79 for (shift = 0; shift < 32; shift += 8) {
80 uint32_t index = (ireg >> shift) & 0xff;
81 if (index < maxindex) {
82 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
85 val |= def & (0xff << shift);
91 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
94 * Perform the v8M stack limit check for SP updates from translated code,
95 * raising an exception if the limit is breached.
97 if (newvalue < v7m_sp_limit(env)) {
98 CPUState *cs = env_cpu(env);
101 * Stack limit exceptions are a rare case, so rather than syncing
102 * PC/condbits before the call, we use cpu_restore_state() to
103 * get them right before raising the exception.
105 cpu_restore_state(cs, GETPC(), true);
106 raise_exception(env, EXCP_STKOF, 0, 1);
110 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
112 uint32_t res = a + b;
113 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
118 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
120 uint32_t res = a + b;
121 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
123 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
128 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
130 uint32_t res = a - b;
131 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
133 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
138 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
141 if (val >= 0x40000000) {
144 } else if (val <= (int32_t)0xc0000000) {
153 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
155 uint32_t res = a + b;
163 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
165 uint32_t res = a - b;
173 /* Signed saturation. */
174 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
180 mask = (1u << shift) - 1;
184 } else if (top < -1) {
191 /* Unsigned saturation. */
192 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
196 max = (1u << shift) - 1;
200 } else if (val > max) {
207 /* Signed saturate. */
208 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
210 return do_ssat(env, x, shift);
213 /* Dual halfword signed saturate. */
214 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
218 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
219 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
223 /* Unsigned saturate. */
224 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
226 return do_usat(env, x, shift);
229 /* Dual halfword unsigned saturate. */
230 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
234 res = (uint16_t)do_usat(env, (int16_t)x, shift);
235 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
239 void HELPER(setend)(CPUARMState *env)
241 env->uncached_cpsr ^= CPSR_E;
244 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
245 * The function returns the target EL (1-3) if the instruction is to be trapped;
246 * otherwise it returns 0 indicating it is not trapped.
248 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
250 int cur_el = arm_current_el(env);
253 if (arm_feature(env, ARM_FEATURE_M)) {
254 /* M profile cores can never trap WFI/WFE. */
258 /* If we are currently in EL0 then we need to check if SCTLR is set up for
259 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
261 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
264 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
265 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
266 /* Secure EL0 and Secure PL1 is at EL3 */
272 if (!(env->cp15.sctlr_el[target_el] & mask)) {
277 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
278 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
279 * bits will be zero indicating no trap.
282 mask = is_wfe ? HCR_TWE : HCR_TWI;
283 if (arm_hcr_el2_eff(env) & mask) {
288 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
290 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
291 if (env->cp15.scr_el3 & mask) {
299 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
301 CPUState *cs = env_cpu(env);
302 int target_el = check_wfx_trap(env, false);
304 if (cpu_has_work(cs)) {
305 /* Don't bother to go into our "low power state" if
306 * we would just wake up immediately.
313 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
317 cs->exception_index = EXCP_HLT;
322 void HELPER(wfe)(CPUARMState *env)
324 /* This is a hint instruction that is semantically different
325 * from YIELD even though we currently implement it identically.
326 * Don't actually halt the CPU, just yield back to top
327 * level loop. This is not going into a "low power state"
328 * (ie halting until some event occurs), so we never take
329 * a configurable trap to a different exception level.
334 void HELPER(yield)(CPUARMState *env)
336 CPUState *cs = env_cpu(env);
338 /* This is a non-trappable hint instruction that generally indicates
339 * that the guest is currently busy-looping. Yield control back to the
340 * top level loop so that a more deserving VCPU has a chance to run.
342 cs->exception_index = EXCP_YIELD;
346 /* Raise an internal-to-QEMU exception. This is limited to only
347 * those EXCP values which are special cases for QEMU to interrupt
348 * execution and not to be used for exceptions which are passed to
349 * the guest (those must all have syndrome information and thus should
350 * use exception_with_syndrome).
352 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
354 CPUState *cs = env_cpu(env);
356 assert(excp_is_internal(excp));
357 cs->exception_index = excp;
361 /* Raise an exception with the specified syndrome register value */
362 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
363 uint32_t syndrome, uint32_t target_el)
365 raise_exception(env, excp, syndrome, target_el);
368 /* Raise an EXCP_BKPT with the specified syndrome register value,
369 * targeting the correct exception level for debug exceptions.
371 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
373 /* FSR will only be used if the debug target EL is AArch32. */
374 env->exception.fsr = arm_debug_exception_fsr(env);
375 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
376 * values to the guest that it shouldn't be able to see at its
377 * exception/security level.
379 env->exception.vaddress = 0;
380 raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
383 uint32_t HELPER(cpsr_read)(CPUARMState *env)
385 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
388 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
390 cpsr_write(env, val, mask, CPSRWriteByInstr);
393 /* Write the CPSR for a 32-bit exception return */
394 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
396 qemu_mutex_lock_iothread();
397 arm_call_pre_el_change_hook(env_archcpu(env));
398 qemu_mutex_unlock_iothread();
400 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
402 /* Generated code has already stored the new PC value, but
403 * without masking out its low bits, because which bits need
404 * masking depends on whether we're returning to Thumb or ARM
405 * state. Do the masking now.
407 env->regs[15] &= (env->thumb ? ~1 : ~3);
409 qemu_mutex_lock_iothread();
410 arm_call_el_change_hook(env_archcpu(env));
411 qemu_mutex_unlock_iothread();
414 /* Access to user mode registers from privileged modes. */
415 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
420 val = env->banked_r13[BANK_USRSYS];
421 } else if (regno == 14) {
422 val = env->banked_r14[BANK_USRSYS];
423 } else if (regno >= 8
424 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
425 val = env->usr_regs[regno - 8];
427 val = env->regs[regno];
432 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
435 env->banked_r13[BANK_USRSYS] = val;
436 } else if (regno == 14) {
437 env->banked_r14[BANK_USRSYS] = val;
438 } else if (regno >= 8
439 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
440 env->usr_regs[regno - 8] = val;
442 env->regs[regno] = val;
446 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
448 if ((env->uncached_cpsr & CPSR_M) == mode) {
451 env->banked_r13[bank_number(mode)] = val;
455 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
457 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
458 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
459 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
461 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
462 exception_target_el(env));
465 if ((env->uncached_cpsr & CPSR_M) == mode) {
466 return env->regs[13];
468 return env->banked_r13[bank_number(mode)];
472 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
475 /* Raise an exception if the requested access is one of the UNPREDICTABLE
476 * cases; otherwise return. This broadly corresponds to the pseudocode
477 * BankedRegisterAccessValid() and SPSRAccessValid(),
478 * except that we have already handled some cases at translate time.
480 int curmode = env->uncached_cpsr & CPSR_M;
483 /* ELR_Hyp: a special case because access from tgtmode is OK */
484 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
490 if (curmode == tgtmode) {
494 if (tgtmode == ARM_CPU_MODE_USR) {
497 if (curmode != ARM_CPU_MODE_FIQ) {
502 if (curmode == ARM_CPU_MODE_SYS) {
507 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
516 if (tgtmode == ARM_CPU_MODE_HYP) {
517 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
518 if (curmode != ARM_CPU_MODE_MON) {
526 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
527 exception_target_el(env));
530 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
533 msr_mrs_banked_exc_checks(env, tgtmode, regno);
537 env->banked_spsr[bank_number(tgtmode)] = value;
539 case 17: /* ELR_Hyp */
540 env->elr_el[2] = value;
543 env->banked_r13[bank_number(tgtmode)] = value;
546 env->banked_r14[r14_bank_number(tgtmode)] = value;
550 case ARM_CPU_MODE_USR:
551 env->usr_regs[regno - 8] = value;
553 case ARM_CPU_MODE_FIQ:
554 env->fiq_regs[regno - 8] = value;
557 g_assert_not_reached();
561 g_assert_not_reached();
565 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
567 msr_mrs_banked_exc_checks(env, tgtmode, regno);
571 return env->banked_spsr[bank_number(tgtmode)];
572 case 17: /* ELR_Hyp */
573 return env->elr_el[2];
575 return env->banked_r13[bank_number(tgtmode)];
577 return env->banked_r14[r14_bank_number(tgtmode)];
580 case ARM_CPU_MODE_USR:
581 return env->usr_regs[regno - 8];
582 case ARM_CPU_MODE_FIQ:
583 return env->fiq_regs[regno - 8];
585 g_assert_not_reached();
588 g_assert_not_reached();
592 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
595 const ARMCPRegInfo *ri = rip;
598 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
599 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
600 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
607 switch (ri->accessfn(env, ri, isread)) {
611 target_el = exception_target_el(env);
613 case CP_ACCESS_TRAP_EL2:
614 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
615 * a bug in the access function.
617 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
620 case CP_ACCESS_TRAP_EL3:
623 case CP_ACCESS_TRAP_UNCATEGORIZED:
624 target_el = exception_target_el(env);
625 syndrome = syn_uncategorized();
627 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
629 syndrome = syn_uncategorized();
631 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
633 syndrome = syn_uncategorized();
635 case CP_ACCESS_TRAP_FP_EL2:
637 /* Since we are an implementation that takes exceptions on a trapped
638 * conditional insn only if the insn has passed its condition code
639 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
640 * (which is also the required value for AArch64 traps).
642 syndrome = syn_fp_access_trap(1, 0xe, false);
644 case CP_ACCESS_TRAP_FP_EL3:
646 syndrome = syn_fp_access_trap(1, 0xe, false);
649 g_assert_not_reached();
652 raise_exception(env, EXCP_UDEF, syndrome, target_el);
655 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
657 const ARMCPRegInfo *ri = rip;
659 if (ri->type & ARM_CP_IO) {
660 qemu_mutex_lock_iothread();
661 ri->writefn(env, ri, value);
662 qemu_mutex_unlock_iothread();
664 ri->writefn(env, ri, value);
668 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
670 const ARMCPRegInfo *ri = rip;
673 if (ri->type & ARM_CP_IO) {
674 qemu_mutex_lock_iothread();
675 res = ri->readfn(env, ri);
676 qemu_mutex_unlock_iothread();
678 res = ri->readfn(env, ri);
684 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
686 const ARMCPRegInfo *ri = rip;
688 if (ri->type & ARM_CP_IO) {
689 qemu_mutex_lock_iothread();
690 ri->writefn(env, ri, value);
691 qemu_mutex_unlock_iothread();
693 ri->writefn(env, ri, value);
697 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
699 const ARMCPRegInfo *ri = rip;
702 if (ri->type & ARM_CP_IO) {
703 qemu_mutex_lock_iothread();
704 res = ri->readfn(env, ri);
705 qemu_mutex_unlock_iothread();
707 res = ri->readfn(env, ri);
713 void HELPER(pre_hvc)(CPUARMState *env)
715 ARMCPU *cpu = env_archcpu(env);
716 int cur_el = arm_current_el(env);
717 /* FIXME: Use actual secure state. */
721 if (arm_is_psci_call(cpu, EXCP_HVC)) {
722 /* If PSCI is enabled and this looks like a valid PSCI call then
723 * that overrides the architecturally mandated HVC behaviour.
728 if (!arm_feature(env, ARM_FEATURE_EL2)) {
729 /* If EL2 doesn't exist, HVC always UNDEFs */
731 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
732 /* EL3.HCE has priority over EL2.HCD. */
733 undef = !(env->cp15.scr_el3 & SCR_HCE);
735 undef = env->cp15.hcr_el2 & HCR_HCD;
738 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
739 * For ARMv8/AArch64, HVC is allowed in EL3.
740 * Note that we've already trapped HVC from EL0 at translation
743 if (secure && (!is_a64(env) || cur_el == 1)) {
748 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
749 exception_target_el(env));
753 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
755 ARMCPU *cpu = env_archcpu(env);
756 int cur_el = arm_current_el(env);
757 bool secure = arm_is_secure(env);
758 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
761 * SMC behaviour is summarized in the following table.
762 * This helper handles the "Trap to EL2" and "Undef insn" cases.
763 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
766 * -> ARM_FEATURE_EL3 and !SMD
767 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
769 * Conduit SMC, valid call Trap to EL2 PSCI Call
770 * Conduit SMC, inval call Trap to EL2 Trap to EL3
771 * Conduit not SMC Trap to EL2 Trap to EL3
774 * -> ARM_FEATURE_EL3 and SMD
775 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
777 * Conduit SMC, valid call Trap to EL2 PSCI Call
778 * Conduit SMC, inval call Trap to EL2 Undef insn
779 * Conduit not SMC Trap to EL2 Undef insn
782 * -> !ARM_FEATURE_EL3
783 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
785 * Conduit SMC, valid call Trap to EL2 PSCI Call
786 * Conduit SMC, inval call Trap to EL2 Undef insn
787 * Conduit not SMC Undef insn Undef insn
790 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
791 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
792 * extensions, SMD only applies to NS state.
793 * On ARMv7 without the Virtualization extensions, the SMD bit
794 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
795 * so we need not special case this here.
797 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
798 : smd_flag && !secure;
800 if (!arm_feature(env, ARM_FEATURE_EL3) &&
801 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
802 /* If we have no EL3 then SMC always UNDEFs and can't be
803 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
804 * firmware within QEMU, and we want an EL2 guest to be able
805 * to forbid its EL1 from making PSCI calls into QEMU's
806 * "firmware" via HCR.TSC, so for these purposes treat
807 * PSCI-via-SMC as implying an EL3.
808 * This handles the very last line of the previous table.
810 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
811 exception_target_el(env));
814 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
815 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
816 * We also want an EL2 guest to be able to forbid its EL1 from
817 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
818 * This handles all the "Trap to EL2" cases of the previous table.
820 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
823 /* Catch the two remaining "Undef insn" cases of the previous table:
824 * - PSCI conduit is SMC but we don't have a valid PCSI call,
825 * - We don't have EL3 or SMD is set.
827 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
828 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
829 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
830 exception_target_el(env));
834 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
835 The only way to do that in TCG is a conditional branch, which clobbers
836 all our temporaries. For now implement these as helper functions. */
838 /* Similarly for variable shift instructions. */
840 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
842 int shift = i & 0xff;
849 } else if (shift != 0) {
850 env->CF = (x >> (32 - shift)) & 1;
856 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
858 int shift = i & 0xff;
861 env->CF = (x >> 31) & 1;
865 } else if (shift != 0) {
866 env->CF = (x >> (shift - 1)) & 1;
872 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
874 int shift = i & 0xff;
876 env->CF = (x >> 31) & 1;
877 return (int32_t)x >> 31;
878 } else if (shift != 0) {
879 env->CF = (x >> (shift - 1)) & 1;
880 return (int32_t)x >> shift;
885 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
889 shift = shift1 & 0x1f;
892 env->CF = (x >> 31) & 1;
895 env->CF = (x >> (shift - 1)) & 1;
896 return ((uint32_t)x >> shift) | (x << (32 - shift));
900 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
903 * Implement DC ZVA, which zeroes a fixed-length block of memory.
904 * Note that we do not implement the (architecturally mandated)
905 * alignment fault for attempts to use this on Device memory
906 * (which matches the usual QEMU behaviour of not implementing either
907 * alignment faults or any memory attribute handling).
910 ARMCPU *cpu = env_archcpu(env);
911 uint64_t blocklen = 4 << cpu->dcz_blocksize;
912 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
914 #ifndef CONFIG_USER_ONLY
917 * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
918 * the block size so we might have to do more than one TLB lookup.
919 * We know that in fact for any v8 CPU the page size is at least 4K
920 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
921 * 1K as an artefact of legacy v5 subpage support being present in the
922 * same QEMU executable. So in practice the hostaddr[] array has
923 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
925 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
926 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
928 unsigned mmu_idx = cpu_mmu_index(env, false);
929 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
931 assert(maxidx <= ARRAY_SIZE(hostaddr));
933 for (try = 0; try < 2; try++) {
935 for (i = 0; i < maxidx; i++) {
936 hostaddr[i] = tlb_vaddr_to_host(env,
937 vaddr + TARGET_PAGE_SIZE * i,
945 * If it's all in the TLB it's fair game for just writing to;
946 * we know we don't need to update dirty status, etc.
948 for (i = 0; i < maxidx - 1; i++) {
949 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
951 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
955 * OK, try a store and see if we can populate the tlb. This
956 * might cause an exception if the memory isn't writable,
957 * in which case we will longjmp out of here. We must for
958 * this purpose use the actual register value passed to us
959 * so that we get the fault address right.
961 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
962 /* Now we can populate the other TLB entries, if any */
963 for (i = 0; i < maxidx; i++) {
964 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
965 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
966 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
972 * Slow path (probably attempt to do this to an I/O device or
973 * similar, or clearing of a block of code we have translations
974 * cached for). Just do a series of byte writes as the architecture
975 * demands. It's not worth trying to use a cpu_physical_memory_map(),
976 * memset(), unmap() sequence here because:
977 * + we'd need to account for the blocksize being larger than a page
978 * + the direct-RAM access case is almost always going to be dealt
979 * with in the fastpath code above, so there's no speed benefit
980 * + we would have to deal with the map returning NULL because the
981 * bounce buffer was in use
983 for (i = 0; i < blocklen; i++) {
984 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
988 memset(g2h(vaddr), 0, blocklen);