4 struct in_addr our_addr;
6 struct in_addr dns_addr;
7 /* host loopback address */
8 struct in_addr loopback_addr;
10 /* address for slirp virtual addresses */
11 struct in_addr special_addr;
13 const uint8_t special_ethaddr[6] = {
14 0x52, 0x54, 0x00, 0x12, 0x35, 0x00
17 uint8_t client_ethaddr[6];
24 /* XXX: suppress those select globals */
25 fd_set *global_readfds, *global_writefds, *global_xfds;
29 static int get_dns_addr(struct in_addr *pdns_addr)
31 FIXED_INFO *FixedInfo=NULL;
34 IP_ADDR_STRING *pIPAddr;
35 struct in_addr tmp_addr;
37 FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
38 BufLen = sizeof(FIXED_INFO);
40 if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
42 GlobalFree(FixedInfo);
45 FixedInfo = GlobalAlloc(GPTR, BufLen);
48 if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
49 printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
51 GlobalFree(FixedInfo);
57 pIPAddr = &(FixedInfo->DnsServerList);
58 inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
59 *pdns_addr = tmp_addr;
61 printf( "DNS Servers:\n" );
62 printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String );
64 pIPAddr = FixedInfo -> DnsServerList.Next;
66 printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String );
67 pIPAddr = pIPAddr ->Next;
71 GlobalFree(FixedInfo);
79 static int get_dns_addr(struct in_addr *pdns_addr)
85 struct in_addr tmp_addr;
87 f = fopen("/etc/resolv.conf", "r");
91 lprint("IP address of your DNS(s): ");
92 while (fgets(buff, 512, f) != NULL) {
93 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
94 if (!inet_aton(buff2, &tmp_addr))
96 if (tmp_addr.s_addr == loopback_addr.s_addr)
98 /* If it's the first one, set it to dns_addr */
100 *pdns_addr = tmp_addr;
107 lprint("%s", inet_ntoa(tmp_addr));
119 void slirp_cleanup(void)
125 void slirp_init(void)
127 // debug_init("/tmp/slirp.log", DEBUG_DEFAULT);
132 WSAStartup(MAKEWORD(2,0), &Data);
133 atexit(slirp_cleanup);
142 /* Initialise mbufs *after* setting the MTU */
145 /* set default addresses */
147 inet_aton("127.0.0.1", &loopback_addr);
149 if (get_dns_addr(&dns_addr) < 0) {
150 fprintf(stderr, "Could not get DNS address\n");
154 inet_aton(CTL_SPECIAL, &special_addr);
157 #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
158 #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
159 #define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
162 * curtime kept to an accuracy of 1ms
165 static void updtime(void)
170 curtime = (u_int)tb.time * (u_int)1000;
171 curtime += (u_int)tb.millitm;
174 static void updtime(void)
176 gettimeofday(&tt, 0);
178 curtime = (u_int)tt.tv_sec * (u_int)1000;
179 curtime += (u_int)tt.tv_usec / (u_int)1000;
181 if ((tt.tv_usec % 1000) >= 500)
186 void slirp_select_fill(int *pnfds,
187 fd_set *readfds, fd_set *writefds, fd_set *xfds)
189 struct socket *so, *so_next;
190 struct timeval timeout;
195 global_readfds = NULL;
196 global_writefds = NULL;
206 * *_slowtimo needs calling if there are IP fragments
207 * in the fragment queue, or there are TCP connections active
209 do_slowtimo = ((tcb.so_next != &tcb) ||
210 ((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next));
212 for (so = tcb.so_next; so != &tcb; so = so_next) {
213 so_next = so->so_next;
216 * See if we need a tcp_fasttimo
218 if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
219 time_fasttimo = curtime; /* Flag when we want a fasttimo */
222 * NOFDREF can include still connecting to local-host,
223 * newly socreated() sockets etc. Don't want to select these.
225 if (so->so_state & SS_NOFDREF || so->s == -1)
229 * Set for reading sockets which are accepting
231 if (so->so_state & SS_FACCEPTCONN) {
232 FD_SET(so->s, readfds);
238 * Set for writing sockets which are connecting
240 if (so->so_state & SS_ISFCONNECTING) {
241 FD_SET(so->s, writefds);
247 * Set for writing if we are connected, can send more, and
248 * we have something to send
250 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
251 FD_SET(so->s, writefds);
256 * Set for reading (and urgent data) if we are connected, can
257 * receive more, and we have room for it XXX /2 ?
259 if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
260 FD_SET(so->s, readfds);
269 for (so = udb.so_next; so != &udb; so = so_next) {
270 so_next = so->so_next;
273 * See if it's timed out
276 if (so->so_expire <= curtime) {
280 do_slowtimo = 1; /* Let socket expire */
284 * When UDP packets are received from over the
285 * link, they're sendto()'d straight away, so
286 * no need for setting for writing
287 * Limit the number of packets queued by this session
288 * to 4. Note that even though we try and limit this
289 * to 4 packets, the session could have more queued
290 * if the packets needed to be fragmented
293 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
294 FD_SET(so->s, readfds);
301 * Setup timeout to use minimum CPU usage, especially when idle
305 * First, see the timeout needed by *timo
308 timeout.tv_usec = -1;
310 * If a slowtimo is needed, set timeout to 500ms from the last
311 * slow timeout. If a fast timeout is needed, set timeout within
312 * 200ms of when it was requested.
315 /* XXX + 10000 because some select()'s aren't that accurate */
316 timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
317 if (timeout.tv_usec < 0)
319 else if (timeout.tv_usec > 510000)
320 timeout.tv_usec = 510000;
322 /* Can only fasttimo if we also slowtimo */
324 tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
328 /* Choose the smallest of the 2 */
329 if (tmp_time < timeout.tv_usec)
330 timeout.tv_usec = (u_int)tmp_time;
336 void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds)
338 struct socket *so, *so_next;
341 global_readfds = readfds;
342 global_writefds = writefds;
349 * See if anything has timed out
352 if (time_fasttimo && ((curtime - time_fasttimo) >= 199)) {
356 if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
359 last_slowtimo = curtime;
370 for (so = tcb.so_next; so != &tcb; so = so_next) {
371 so_next = so->so_next;
374 * FD_ISSET is meaningless on these sockets
375 * (and they can crash the program)
377 if (so->so_state & SS_NOFDREF || so->s == -1)
382 * This will soread as well, so no need to
383 * test for readfds below if this succeeds
385 if (FD_ISSET(so->s, xfds))
388 * Check sockets for reading
390 else if (FD_ISSET(so->s, readfds)) {
392 * Check for incoming connections
394 if (so->so_state & SS_FACCEPTCONN) {
400 /* Output it if we read something */
402 tcp_output(sototcpcb(so));
406 * Check sockets for writing
408 if (FD_ISSET(so->s, writefds)) {
410 * Check for non-blocking, still-connecting sockets
412 if (so->so_state & SS_ISFCONNECTING) {
414 so->so_state &= ~SS_ISFCONNECTING;
416 ret = write(so->s, &ret, 0);
418 /* XXXXX Must fix, zero bytes is a NOP */
419 if (errno == EAGAIN || errno == EWOULDBLOCK ||
420 errno == EINPROGRESS || errno == ENOTCONN)
424 so->so_state = SS_NOFDREF;
426 /* else so->so_state &= ~SS_ISFCONNECTING; */
431 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
436 * XXXXX If we wrote something (a lot), there
437 * could be a need for a window update.
438 * In the worst case, the remote will send
439 * a window probe to get things going again
444 * Probe a still-connecting, non-blocking socket
445 * to check if it's still alive
448 if (so->so_state & SS_ISFCONNECTING) {
449 ret = read(so->s, (char *)&ret, 0);
453 if (errno == EAGAIN || errno == EWOULDBLOCK ||
454 errno == EINPROGRESS || errno == ENOTCONN)
455 continue; /* Still connecting, continue */
458 so->so_state = SS_NOFDREF;
460 /* tcp_input will take care of it */
462 ret = write(so->s, &ret, 0);
465 if (errno == EAGAIN || errno == EWOULDBLOCK ||
466 errno == EINPROGRESS || errno == ENOTCONN)
469 so->so_state = SS_NOFDREF;
471 so->so_state &= ~SS_ISFCONNECTING;
474 tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
475 } /* SS_ISFCONNECTING */
481 * Incoming packets are sent straight away, they're not buffered.
482 * Incoming UDP data isn't buffered either.
484 for (so = udb.so_next; so != &udb; so = so_next) {
485 so_next = so->so_next;
487 if (so->s != -1 && FD_ISSET(so->s, readfds)) {
494 * See if we can start outputting
496 if (if_queued && link_up)
503 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
504 #define ETH_P_ARP 0x0806 /* Address Resolution packet */
506 #define ARPOP_REQUEST 1 /* ARP request */
507 #define ARPOP_REPLY 2 /* ARP reply */
511 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
512 unsigned char h_source[ETH_ALEN]; /* source ether addr */
513 unsigned short h_proto; /* packet type ID field */
518 unsigned short ar_hrd; /* format of hardware address */
519 unsigned short ar_pro; /* format of protocol address */
520 unsigned char ar_hln; /* length of hardware address */
521 unsigned char ar_pln; /* length of protocol address */
522 unsigned short ar_op; /* ARP opcode (command) */
525 * Ethernet looks like this : This bit is variable sized however...
527 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
528 unsigned char ar_sip[4]; /* sender IP address */
529 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
530 unsigned char ar_tip[4]; /* target IP address */
533 void arp_input(const uint8_t *pkt, int pkt_len)
535 struct ethhdr *eh = (struct ethhdr *)pkt;
536 struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
537 uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
538 struct ethhdr *reh = (struct ethhdr *)arp_reply;
539 struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
542 ar_op = ntohs(ah->ar_op);
545 if (!memcmp(ah->ar_tip, &special_addr, 3) &&
546 (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS)) {
548 /* XXX: make an ARP request to have the client address */
549 memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
551 /* ARP request for alias/dns mac address */
552 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
553 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
554 reh->h_source[5] = ah->ar_tip[3];
555 reh->h_proto = htons(ETH_P_ARP);
557 rah->ar_hrd = htons(1);
558 rah->ar_pro = htons(ETH_P_IP);
559 rah->ar_hln = ETH_ALEN;
561 rah->ar_op = htons(ARPOP_REPLY);
562 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
563 memcpy(rah->ar_sip, ah->ar_tip, 4);
564 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
565 memcpy(rah->ar_tip, ah->ar_sip, 4);
566 slirp_output(arp_reply, sizeof(arp_reply));
574 void slirp_input(const uint8_t *pkt, int pkt_len)
579 if (pkt_len < ETH_HLEN)
582 proto = ntohs(*(uint16_t *)(pkt + 12));
585 arp_input(pkt, pkt_len);
592 memcpy(m->m_data, pkt, pkt_len);
594 m->m_data += ETH_HLEN;
595 m->m_len -= ETH_HLEN;
604 /* output the IP packet to the ethernet device */
605 void if_encap(const uint8_t *ip_data, int ip_data_len)
608 struct ethhdr *eh = (struct ethhdr *)buf;
610 if (ip_data_len + ETH_HLEN > sizeof(buf))
613 memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
614 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1);
615 eh->h_source[5] = CTL_ALIAS;
616 eh->h_proto = htons(ETH_P_IP);
617 memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
618 slirp_output(buf, ip_data_len + ETH_HLEN);
621 int slirp_redir(int is_udp, int host_port,
622 struct in_addr guest_addr, int guest_port)
625 if (!udp_listen(htons(host_port), guest_addr.s_addr,
626 htons(guest_port), 0))
629 if (!solisten(htons(host_port), guest_addr.s_addr,
630 htons(guest_port), 0))