]> Git Repo - qemu.git/blob - hw/block/nvme.c
Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2018-07-02' into staging
[qemu.git] / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <[email protected]>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21  *              cmb_size_mb=<cmb_size_mb[optional]>, \
22  *              num_queues=<N[optional]>
23  *
24  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
25  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
26  */
27
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "hw/block/block.h"
31 #include "hw/hw.h"
32 #include "hw/pci/msix.h"
33 #include "hw/pci/pci.h"
34 #include "sysemu/sysemu.h"
35 #include "qapi/error.h"
36 #include "qapi/visitor.h"
37 #include "sysemu/block-backend.h"
38
39 #include "qemu/log.h"
40 #include "qemu/cutils.h"
41 #include "trace.h"
42 #include "nvme.h"
43
44 #define NVME_GUEST_ERR(trace, fmt, ...) \
45     do { \
46         (trace_##trace)(__VA_ARGS__); \
47         qemu_log_mask(LOG_GUEST_ERROR, #trace \
48             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
49     } while (0)
50
51 static void nvme_process_sq(void *opaque);
52
53 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
54 {
55     if (n->cmbsz && addr >= n->ctrl_mem.addr &&
56                 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
57         memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
58     } else {
59         pci_dma_read(&n->parent_obj, addr, buf, size);
60     }
61 }
62
63 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
64 {
65     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
66 }
67
68 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
69 {
70     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
71 }
72
73 static void nvme_inc_cq_tail(NvmeCQueue *cq)
74 {
75     cq->tail++;
76     if (cq->tail >= cq->size) {
77         cq->tail = 0;
78         cq->phase = !cq->phase;
79     }
80 }
81
82 static void nvme_inc_sq_head(NvmeSQueue *sq)
83 {
84     sq->head = (sq->head + 1) % sq->size;
85 }
86
87 static uint8_t nvme_cq_full(NvmeCQueue *cq)
88 {
89     return (cq->tail + 1) % cq->size == cq->head;
90 }
91
92 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
93 {
94     return sq->head == sq->tail;
95 }
96
97 static void nvme_irq_check(NvmeCtrl *n)
98 {
99     if (msix_enabled(&(n->parent_obj))) {
100         return;
101     }
102     if (~n->bar.intms & n->irq_status) {
103         pci_irq_assert(&n->parent_obj);
104     } else {
105         pci_irq_deassert(&n->parent_obj);
106     }
107 }
108
109 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
110 {
111     if (cq->irq_enabled) {
112         if (msix_enabled(&(n->parent_obj))) {
113             trace_nvme_irq_msix(cq->vector);
114             msix_notify(&(n->parent_obj), cq->vector);
115         } else {
116             trace_nvme_irq_pin();
117             assert(cq->cqid < 64);
118             n->irq_status |= 1 << cq->cqid;
119             nvme_irq_check(n);
120         }
121     } else {
122         trace_nvme_irq_masked();
123     }
124 }
125
126 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
127 {
128     if (cq->irq_enabled) {
129         if (msix_enabled(&(n->parent_obj))) {
130             return;
131         } else {
132             assert(cq->cqid < 64);
133             n->irq_status &= ~(1 << cq->cqid);
134             nvme_irq_check(n);
135         }
136     }
137 }
138
139 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
140                              uint64_t prp2, uint32_t len, NvmeCtrl *n)
141 {
142     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
143     trans_len = MIN(len, trans_len);
144     int num_prps = (len >> n->page_bits) + 1;
145
146     if (unlikely(!prp1)) {
147         trace_nvme_err_invalid_prp();
148         return NVME_INVALID_FIELD | NVME_DNR;
149     } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
150                prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
151         qsg->nsg = 0;
152         qemu_iovec_init(iov, num_prps);
153         qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
154     } else {
155         pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
156         qemu_sglist_add(qsg, prp1, trans_len);
157     }
158     len -= trans_len;
159     if (len) {
160         if (unlikely(!prp2)) {
161             trace_nvme_err_invalid_prp2_missing();
162             goto unmap;
163         }
164         if (len > n->page_size) {
165             uint64_t prp_list[n->max_prp_ents];
166             uint32_t nents, prp_trans;
167             int i = 0;
168
169             nents = (len + n->page_size - 1) >> n->page_bits;
170             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
171             nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
172             while (len != 0) {
173                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
174
175                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
176                     if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
177                         trace_nvme_err_invalid_prplist_ent(prp_ent);
178                         goto unmap;
179                     }
180
181                     i = 0;
182                     nents = (len + n->page_size - 1) >> n->page_bits;
183                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
184                     nvme_addr_read(n, prp_ent, (void *)prp_list,
185                         prp_trans);
186                     prp_ent = le64_to_cpu(prp_list[i]);
187                 }
188
189                 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
190                     trace_nvme_err_invalid_prplist_ent(prp_ent);
191                     goto unmap;
192                 }
193
194                 trans_len = MIN(len, n->page_size);
195                 if (qsg->nsg){
196                     qemu_sglist_add(qsg, prp_ent, trans_len);
197                 } else {
198                     qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
199                 }
200                 len -= trans_len;
201                 i++;
202             }
203         } else {
204             if (unlikely(prp2 & (n->page_size - 1))) {
205                 trace_nvme_err_invalid_prp2_align(prp2);
206                 goto unmap;
207             }
208             if (qsg->nsg) {
209                 qemu_sglist_add(qsg, prp2, len);
210             } else {
211                 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
212             }
213         }
214     }
215     return NVME_SUCCESS;
216
217  unmap:
218     qemu_sglist_destroy(qsg);
219     return NVME_INVALID_FIELD | NVME_DNR;
220 }
221
222 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
223     uint64_t prp1, uint64_t prp2)
224 {
225     QEMUSGList qsg;
226     QEMUIOVector iov;
227     uint16_t status = NVME_SUCCESS;
228
229     trace_nvme_dma_read(prp1, prp2);
230
231     if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
232         return NVME_INVALID_FIELD | NVME_DNR;
233     }
234     if (qsg.nsg > 0) {
235         if (unlikely(dma_buf_read(ptr, len, &qsg))) {
236             trace_nvme_err_invalid_dma();
237             status = NVME_INVALID_FIELD | NVME_DNR;
238         }
239         qemu_sglist_destroy(&qsg);
240     } else {
241         if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
242             trace_nvme_err_invalid_dma();
243             status = NVME_INVALID_FIELD | NVME_DNR;
244         }
245         qemu_iovec_destroy(&iov);
246     }
247     return status;
248 }
249
250 static void nvme_post_cqes(void *opaque)
251 {
252     NvmeCQueue *cq = opaque;
253     NvmeCtrl *n = cq->ctrl;
254     NvmeRequest *req, *next;
255
256     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
257         NvmeSQueue *sq;
258         hwaddr addr;
259
260         if (nvme_cq_full(cq)) {
261             break;
262         }
263
264         QTAILQ_REMOVE(&cq->req_list, req, entry);
265         sq = req->sq;
266         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
267         req->cqe.sq_id = cpu_to_le16(sq->sqid);
268         req->cqe.sq_head = cpu_to_le16(sq->head);
269         addr = cq->dma_addr + cq->tail * n->cqe_size;
270         nvme_inc_cq_tail(cq);
271         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
272             sizeof(req->cqe));
273         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
274     }
275     nvme_irq_assert(n, cq);
276 }
277
278 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
279 {
280     assert(cq->cqid == req->sq->cqid);
281     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
282     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
283     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
284 }
285
286 static void nvme_rw_cb(void *opaque, int ret)
287 {
288     NvmeRequest *req = opaque;
289     NvmeSQueue *sq = req->sq;
290     NvmeCtrl *n = sq->ctrl;
291     NvmeCQueue *cq = n->cq[sq->cqid];
292
293     if (!ret) {
294         block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
295         req->status = NVME_SUCCESS;
296     } else {
297         block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
298         req->status = NVME_INTERNAL_DEV_ERROR;
299     }
300     if (req->has_sg) {
301         qemu_sglist_destroy(&req->qsg);
302     }
303     nvme_enqueue_req_completion(cq, req);
304 }
305
306 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
307     NvmeRequest *req)
308 {
309     req->has_sg = false;
310     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
311          BLOCK_ACCT_FLUSH);
312     req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
313
314     return NVME_NO_COMPLETE;
315 }
316
317 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
318     NvmeRequest *req)
319 {
320     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
321     const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
322     const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
323     uint64_t slba = le64_to_cpu(rw->slba);
324     uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
325     uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
326     uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
327
328     if (unlikely(slba + nlb > ns->id_ns.nsze)) {
329         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
330         return NVME_LBA_RANGE | NVME_DNR;
331     }
332
333     req->has_sg = false;
334     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
335                      BLOCK_ACCT_WRITE);
336     req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
337                                         BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
338     return NVME_NO_COMPLETE;
339 }
340
341 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
342     NvmeRequest *req)
343 {
344     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
345     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
346     uint64_t slba = le64_to_cpu(rw->slba);
347     uint64_t prp1 = le64_to_cpu(rw->prp1);
348     uint64_t prp2 = le64_to_cpu(rw->prp2);
349
350     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
351     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
352     uint64_t data_size = (uint64_t)nlb << data_shift;
353     uint64_t data_offset = slba << data_shift;
354     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
355     enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
356
357     trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
358
359     if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
360         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
361         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
362         return NVME_LBA_RANGE | NVME_DNR;
363     }
364
365     if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
366         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
367         return NVME_INVALID_FIELD | NVME_DNR;
368     }
369
370     dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
371     if (req->qsg.nsg > 0) {
372         req->has_sg = true;
373         req->aiocb = is_write ?
374             dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
375                           nvme_rw_cb, req) :
376             dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
377                          nvme_rw_cb, req);
378     } else {
379         req->has_sg = false;
380         req->aiocb = is_write ?
381             blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
382                             req) :
383             blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
384                            req);
385     }
386
387     return NVME_NO_COMPLETE;
388 }
389
390 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
391 {
392     NvmeNamespace *ns;
393     uint32_t nsid = le32_to_cpu(cmd->nsid);
394
395     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
396         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
397         return NVME_INVALID_NSID | NVME_DNR;
398     }
399
400     ns = &n->namespaces[nsid - 1];
401     switch (cmd->opcode) {
402     case NVME_CMD_FLUSH:
403         return nvme_flush(n, ns, cmd, req);
404     case NVME_CMD_WRITE_ZEROS:
405         return nvme_write_zeros(n, ns, cmd, req);
406     case NVME_CMD_WRITE:
407     case NVME_CMD_READ:
408         return nvme_rw(n, ns, cmd, req);
409     default:
410         trace_nvme_err_invalid_opc(cmd->opcode);
411         return NVME_INVALID_OPCODE | NVME_DNR;
412     }
413 }
414
415 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
416 {
417     n->sq[sq->sqid] = NULL;
418     timer_del(sq->timer);
419     timer_free(sq->timer);
420     g_free(sq->io_req);
421     if (sq->sqid) {
422         g_free(sq);
423     }
424 }
425
426 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
427 {
428     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
429     NvmeRequest *req, *next;
430     NvmeSQueue *sq;
431     NvmeCQueue *cq;
432     uint16_t qid = le16_to_cpu(c->qid);
433
434     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
435         trace_nvme_err_invalid_del_sq(qid);
436         return NVME_INVALID_QID | NVME_DNR;
437     }
438
439     trace_nvme_del_sq(qid);
440
441     sq = n->sq[qid];
442     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
443         req = QTAILQ_FIRST(&sq->out_req_list);
444         assert(req->aiocb);
445         blk_aio_cancel(req->aiocb);
446     }
447     if (!nvme_check_cqid(n, sq->cqid)) {
448         cq = n->cq[sq->cqid];
449         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
450
451         nvme_post_cqes(cq);
452         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
453             if (req->sq == sq) {
454                 QTAILQ_REMOVE(&cq->req_list, req, entry);
455                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
456             }
457         }
458     }
459
460     nvme_free_sq(sq, n);
461     return NVME_SUCCESS;
462 }
463
464 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
465     uint16_t sqid, uint16_t cqid, uint16_t size)
466 {
467     int i;
468     NvmeCQueue *cq;
469
470     sq->ctrl = n;
471     sq->dma_addr = dma_addr;
472     sq->sqid = sqid;
473     sq->size = size;
474     sq->cqid = cqid;
475     sq->head = sq->tail = 0;
476     sq->io_req = g_new(NvmeRequest, sq->size);
477
478     QTAILQ_INIT(&sq->req_list);
479     QTAILQ_INIT(&sq->out_req_list);
480     for (i = 0; i < sq->size; i++) {
481         sq->io_req[i].sq = sq;
482         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
483     }
484     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
485
486     assert(n->cq[cqid]);
487     cq = n->cq[cqid];
488     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
489     n->sq[sqid] = sq;
490 }
491
492 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
493 {
494     NvmeSQueue *sq;
495     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
496
497     uint16_t cqid = le16_to_cpu(c->cqid);
498     uint16_t sqid = le16_to_cpu(c->sqid);
499     uint16_t qsize = le16_to_cpu(c->qsize);
500     uint16_t qflags = le16_to_cpu(c->sq_flags);
501     uint64_t prp1 = le64_to_cpu(c->prp1);
502
503     trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
504
505     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
506         trace_nvme_err_invalid_create_sq_cqid(cqid);
507         return NVME_INVALID_CQID | NVME_DNR;
508     }
509     if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
510         trace_nvme_err_invalid_create_sq_sqid(sqid);
511         return NVME_INVALID_QID | NVME_DNR;
512     }
513     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
514         trace_nvme_err_invalid_create_sq_size(qsize);
515         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
516     }
517     if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
518         trace_nvme_err_invalid_create_sq_addr(prp1);
519         return NVME_INVALID_FIELD | NVME_DNR;
520     }
521     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
522         trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
523         return NVME_INVALID_FIELD | NVME_DNR;
524     }
525     sq = g_malloc0(sizeof(*sq));
526     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
527     return NVME_SUCCESS;
528 }
529
530 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
531 {
532     n->cq[cq->cqid] = NULL;
533     timer_del(cq->timer);
534     timer_free(cq->timer);
535     msix_vector_unuse(&n->parent_obj, cq->vector);
536     if (cq->cqid) {
537         g_free(cq);
538     }
539 }
540
541 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
542 {
543     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
544     NvmeCQueue *cq;
545     uint16_t qid = le16_to_cpu(c->qid);
546
547     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
548         trace_nvme_err_invalid_del_cq_cqid(qid);
549         return NVME_INVALID_CQID | NVME_DNR;
550     }
551
552     cq = n->cq[qid];
553     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
554         trace_nvme_err_invalid_del_cq_notempty(qid);
555         return NVME_INVALID_QUEUE_DEL;
556     }
557     trace_nvme_del_cq(qid);
558     nvme_free_cq(cq, n);
559     return NVME_SUCCESS;
560 }
561
562 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
563     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
564 {
565     cq->ctrl = n;
566     cq->cqid = cqid;
567     cq->size = size;
568     cq->dma_addr = dma_addr;
569     cq->phase = 1;
570     cq->irq_enabled = irq_enabled;
571     cq->vector = vector;
572     cq->head = cq->tail = 0;
573     QTAILQ_INIT(&cq->req_list);
574     QTAILQ_INIT(&cq->sq_list);
575     msix_vector_use(&n->parent_obj, cq->vector);
576     n->cq[cqid] = cq;
577     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
578 }
579
580 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
581 {
582     NvmeCQueue *cq;
583     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
584     uint16_t cqid = le16_to_cpu(c->cqid);
585     uint16_t vector = le16_to_cpu(c->irq_vector);
586     uint16_t qsize = le16_to_cpu(c->qsize);
587     uint16_t qflags = le16_to_cpu(c->cq_flags);
588     uint64_t prp1 = le64_to_cpu(c->prp1);
589
590     trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
591                          NVME_CQ_FLAGS_IEN(qflags) != 0);
592
593     if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
594         trace_nvme_err_invalid_create_cq_cqid(cqid);
595         return NVME_INVALID_CQID | NVME_DNR;
596     }
597     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
598         trace_nvme_err_invalid_create_cq_size(qsize);
599         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
600     }
601     if (unlikely(!prp1)) {
602         trace_nvme_err_invalid_create_cq_addr(prp1);
603         return NVME_INVALID_FIELD | NVME_DNR;
604     }
605     if (unlikely(vector > n->num_queues)) {
606         trace_nvme_err_invalid_create_cq_vector(vector);
607         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
608     }
609     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
610         trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
611         return NVME_INVALID_FIELD | NVME_DNR;
612     }
613
614     cq = g_malloc0(sizeof(*cq));
615     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
616         NVME_CQ_FLAGS_IEN(qflags));
617     return NVME_SUCCESS;
618 }
619
620 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
621 {
622     uint64_t prp1 = le64_to_cpu(c->prp1);
623     uint64_t prp2 = le64_to_cpu(c->prp2);
624
625     trace_nvme_identify_ctrl();
626
627     return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
628         prp1, prp2);
629 }
630
631 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
632 {
633     NvmeNamespace *ns;
634     uint32_t nsid = le32_to_cpu(c->nsid);
635     uint64_t prp1 = le64_to_cpu(c->prp1);
636     uint64_t prp2 = le64_to_cpu(c->prp2);
637
638     trace_nvme_identify_ns(nsid);
639
640     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
641         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
642         return NVME_INVALID_NSID | NVME_DNR;
643     }
644
645     ns = &n->namespaces[nsid - 1];
646
647     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
648         prp1, prp2);
649 }
650
651 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
652 {
653     static const int data_len = 4 * KiB;
654     uint32_t min_nsid = le32_to_cpu(c->nsid);
655     uint64_t prp1 = le64_to_cpu(c->prp1);
656     uint64_t prp2 = le64_to_cpu(c->prp2);
657     uint32_t *list;
658     uint16_t ret;
659     int i, j = 0;
660
661     trace_nvme_identify_nslist(min_nsid);
662
663     list = g_malloc0(data_len);
664     for (i = 0; i < n->num_namespaces; i++) {
665         if (i < min_nsid) {
666             continue;
667         }
668         list[j++] = cpu_to_le32(i + 1);
669         if (j == data_len / sizeof(uint32_t)) {
670             break;
671         }
672     }
673     ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
674     g_free(list);
675     return ret;
676 }
677
678
679 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
680 {
681     NvmeIdentify *c = (NvmeIdentify *)cmd;
682
683     switch (le32_to_cpu(c->cns)) {
684     case 0x00:
685         return nvme_identify_ns(n, c);
686     case 0x01:
687         return nvme_identify_ctrl(n, c);
688     case 0x02:
689         return nvme_identify_nslist(n, c);
690     default:
691         trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
692         return NVME_INVALID_FIELD | NVME_DNR;
693     }
694 }
695
696 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
697 {
698     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
699     uint32_t result;
700
701     switch (dw10) {
702     case NVME_VOLATILE_WRITE_CACHE:
703         result = blk_enable_write_cache(n->conf.blk);
704         trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
705         break;
706     case NVME_NUMBER_OF_QUEUES:
707         result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
708         trace_nvme_getfeat_numq(result);
709         break;
710     default:
711         trace_nvme_err_invalid_getfeat(dw10);
712         return NVME_INVALID_FIELD | NVME_DNR;
713     }
714
715     req->cqe.result = result;
716     return NVME_SUCCESS;
717 }
718
719 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
720 {
721     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
722     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
723
724     switch (dw10) {
725     case NVME_VOLATILE_WRITE_CACHE:
726         blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
727         break;
728     case NVME_NUMBER_OF_QUEUES:
729         trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
730                                 ((dw11 >> 16) & 0xFFFF) + 1,
731                                 n->num_queues - 1, n->num_queues - 1);
732         req->cqe.result =
733             cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
734         break;
735     default:
736         trace_nvme_err_invalid_setfeat(dw10);
737         return NVME_INVALID_FIELD | NVME_DNR;
738     }
739     return NVME_SUCCESS;
740 }
741
742 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
743 {
744     switch (cmd->opcode) {
745     case NVME_ADM_CMD_DELETE_SQ:
746         return nvme_del_sq(n, cmd);
747     case NVME_ADM_CMD_CREATE_SQ:
748         return nvme_create_sq(n, cmd);
749     case NVME_ADM_CMD_DELETE_CQ:
750         return nvme_del_cq(n, cmd);
751     case NVME_ADM_CMD_CREATE_CQ:
752         return nvme_create_cq(n, cmd);
753     case NVME_ADM_CMD_IDENTIFY:
754         return nvme_identify(n, cmd);
755     case NVME_ADM_CMD_SET_FEATURES:
756         return nvme_set_feature(n, cmd, req);
757     case NVME_ADM_CMD_GET_FEATURES:
758         return nvme_get_feature(n, cmd, req);
759     default:
760         trace_nvme_err_invalid_admin_opc(cmd->opcode);
761         return NVME_INVALID_OPCODE | NVME_DNR;
762     }
763 }
764
765 static void nvme_process_sq(void *opaque)
766 {
767     NvmeSQueue *sq = opaque;
768     NvmeCtrl *n = sq->ctrl;
769     NvmeCQueue *cq = n->cq[sq->cqid];
770
771     uint16_t status;
772     hwaddr addr;
773     NvmeCmd cmd;
774     NvmeRequest *req;
775
776     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
777         addr = sq->dma_addr + sq->head * n->sqe_size;
778         nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
779         nvme_inc_sq_head(sq);
780
781         req = QTAILQ_FIRST(&sq->req_list);
782         QTAILQ_REMOVE(&sq->req_list, req, entry);
783         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
784         memset(&req->cqe, 0, sizeof(req->cqe));
785         req->cqe.cid = cmd.cid;
786
787         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
788             nvme_admin_cmd(n, &cmd, req);
789         if (status != NVME_NO_COMPLETE) {
790             req->status = status;
791             nvme_enqueue_req_completion(cq, req);
792         }
793     }
794 }
795
796 static void nvme_clear_ctrl(NvmeCtrl *n)
797 {
798     int i;
799
800     for (i = 0; i < n->num_queues; i++) {
801         if (n->sq[i] != NULL) {
802             nvme_free_sq(n->sq[i], n);
803         }
804     }
805     for (i = 0; i < n->num_queues; i++) {
806         if (n->cq[i] != NULL) {
807             nvme_free_cq(n->cq[i], n);
808         }
809     }
810
811     blk_flush(n->conf.blk);
812     n->bar.cc = 0;
813 }
814
815 static int nvme_start_ctrl(NvmeCtrl *n)
816 {
817     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
818     uint32_t page_size = 1 << page_bits;
819
820     if (unlikely(n->cq[0])) {
821         trace_nvme_err_startfail_cq();
822         return -1;
823     }
824     if (unlikely(n->sq[0])) {
825         trace_nvme_err_startfail_sq();
826         return -1;
827     }
828     if (unlikely(!n->bar.asq)) {
829         trace_nvme_err_startfail_nbarasq();
830         return -1;
831     }
832     if (unlikely(!n->bar.acq)) {
833         trace_nvme_err_startfail_nbaracq();
834         return -1;
835     }
836     if (unlikely(n->bar.asq & (page_size - 1))) {
837         trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
838         return -1;
839     }
840     if (unlikely(n->bar.acq & (page_size - 1))) {
841         trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
842         return -1;
843     }
844     if (unlikely(NVME_CC_MPS(n->bar.cc) <
845                  NVME_CAP_MPSMIN(n->bar.cap))) {
846         trace_nvme_err_startfail_page_too_small(
847                     NVME_CC_MPS(n->bar.cc),
848                     NVME_CAP_MPSMIN(n->bar.cap));
849         return -1;
850     }
851     if (unlikely(NVME_CC_MPS(n->bar.cc) >
852                  NVME_CAP_MPSMAX(n->bar.cap))) {
853         trace_nvme_err_startfail_page_too_large(
854                     NVME_CC_MPS(n->bar.cc),
855                     NVME_CAP_MPSMAX(n->bar.cap));
856         return -1;
857     }
858     if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
859                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
860         trace_nvme_err_startfail_cqent_too_small(
861                     NVME_CC_IOCQES(n->bar.cc),
862                     NVME_CTRL_CQES_MIN(n->bar.cap));
863         return -1;
864     }
865     if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
866                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
867         trace_nvme_err_startfail_cqent_too_large(
868                     NVME_CC_IOCQES(n->bar.cc),
869                     NVME_CTRL_CQES_MAX(n->bar.cap));
870         return -1;
871     }
872     if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
873                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
874         trace_nvme_err_startfail_sqent_too_small(
875                     NVME_CC_IOSQES(n->bar.cc),
876                     NVME_CTRL_SQES_MIN(n->bar.cap));
877         return -1;
878     }
879     if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
880                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
881         trace_nvme_err_startfail_sqent_too_large(
882                     NVME_CC_IOSQES(n->bar.cc),
883                     NVME_CTRL_SQES_MAX(n->bar.cap));
884         return -1;
885     }
886     if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
887         trace_nvme_err_startfail_asqent_sz_zero();
888         return -1;
889     }
890     if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
891         trace_nvme_err_startfail_acqent_sz_zero();
892         return -1;
893     }
894
895     n->page_bits = page_bits;
896     n->page_size = page_size;
897     n->max_prp_ents = n->page_size / sizeof(uint64_t);
898     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
899     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
900     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
901         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
902     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
903         NVME_AQA_ASQS(n->bar.aqa) + 1);
904
905     return 0;
906 }
907
908 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
909     unsigned size)
910 {
911     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
912         NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
913                        "MMIO write not 32-bit aligned,"
914                        " offset=0x%"PRIx64"", offset);
915         /* should be ignored, fall through for now */
916     }
917
918     if (unlikely(size < sizeof(uint32_t))) {
919         NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
920                        "MMIO write smaller than 32-bits,"
921                        " offset=0x%"PRIx64", size=%u",
922                        offset, size);
923         /* should be ignored, fall through for now */
924     }
925
926     switch (offset) {
927     case 0xc:   /* INTMS */
928         if (unlikely(msix_enabled(&(n->parent_obj)))) {
929             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
930                            "undefined access to interrupt mask set"
931                            " when MSI-X is enabled");
932             /* should be ignored, fall through for now */
933         }
934         n->bar.intms |= data & 0xffffffff;
935         n->bar.intmc = n->bar.intms;
936         trace_nvme_mmio_intm_set(data & 0xffffffff,
937                                  n->bar.intmc);
938         nvme_irq_check(n);
939         break;
940     case 0x10:  /* INTMC */
941         if (unlikely(msix_enabled(&(n->parent_obj)))) {
942             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
943                            "undefined access to interrupt mask clr"
944                            " when MSI-X is enabled");
945             /* should be ignored, fall through for now */
946         }
947         n->bar.intms &= ~(data & 0xffffffff);
948         n->bar.intmc = n->bar.intms;
949         trace_nvme_mmio_intm_clr(data & 0xffffffff,
950                                  n->bar.intmc);
951         nvme_irq_check(n);
952         break;
953     case 0x14:  /* CC */
954         trace_nvme_mmio_cfg(data & 0xffffffff);
955         /* Windows first sends data, then sends enable bit */
956         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
957             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
958         {
959             n->bar.cc = data;
960         }
961
962         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
963             n->bar.cc = data;
964             if (unlikely(nvme_start_ctrl(n))) {
965                 trace_nvme_err_startfail();
966                 n->bar.csts = NVME_CSTS_FAILED;
967             } else {
968                 trace_nvme_mmio_start_success();
969                 n->bar.csts = NVME_CSTS_READY;
970             }
971         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
972             trace_nvme_mmio_stopped();
973             nvme_clear_ctrl(n);
974             n->bar.csts &= ~NVME_CSTS_READY;
975         }
976         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
977             trace_nvme_mmio_shutdown_set();
978             nvme_clear_ctrl(n);
979             n->bar.cc = data;
980             n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
981         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
982             trace_nvme_mmio_shutdown_cleared();
983             n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
984             n->bar.cc = data;
985         }
986         break;
987     case 0x1C:  /* CSTS */
988         if (data & (1 << 4)) {
989             NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
990                            "attempted to W1C CSTS.NSSRO"
991                            " but CAP.NSSRS is zero (not supported)");
992         } else if (data != 0) {
993             NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
994                            "attempted to set a read only bit"
995                            " of controller status");
996         }
997         break;
998     case 0x20:  /* NSSR */
999         if (data == 0x4E564D65) {
1000             trace_nvme_ub_mmiowr_ssreset_unsupported();
1001         } else {
1002             /* The spec says that writes of other values have no effect */
1003             return;
1004         }
1005         break;
1006     case 0x24:  /* AQA */
1007         n->bar.aqa = data & 0xffffffff;
1008         trace_nvme_mmio_aqattr(data & 0xffffffff);
1009         break;
1010     case 0x28:  /* ASQ */
1011         n->bar.asq = data;
1012         trace_nvme_mmio_asqaddr(data);
1013         break;
1014     case 0x2c:  /* ASQ hi */
1015         n->bar.asq |= data << 32;
1016         trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1017         break;
1018     case 0x30:  /* ACQ */
1019         trace_nvme_mmio_acqaddr(data);
1020         n->bar.acq = data;
1021         break;
1022     case 0x34:  /* ACQ hi */
1023         n->bar.acq |= data << 32;
1024         trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1025         break;
1026     case 0x38:  /* CMBLOC */
1027         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1028                        "invalid write to reserved CMBLOC"
1029                        " when CMBSZ is zero, ignored");
1030         return;
1031     case 0x3C:  /* CMBSZ */
1032         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1033                        "invalid write to read only CMBSZ, ignored");
1034         return;
1035     default:
1036         NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1037                        "invalid MMIO write,"
1038                        " offset=0x%"PRIx64", data=%"PRIx64"",
1039                        offset, data);
1040         break;
1041     }
1042 }
1043
1044 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1045 {
1046     NvmeCtrl *n = (NvmeCtrl *)opaque;
1047     uint8_t *ptr = (uint8_t *)&n->bar;
1048     uint64_t val = 0;
1049
1050     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1051         NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1052                        "MMIO read not 32-bit aligned,"
1053                        " offset=0x%"PRIx64"", addr);
1054         /* should RAZ, fall through for now */
1055     } else if (unlikely(size < sizeof(uint32_t))) {
1056         NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1057                        "MMIO read smaller than 32-bits,"
1058                        " offset=0x%"PRIx64"", addr);
1059         /* should RAZ, fall through for now */
1060     }
1061
1062     if (addr < sizeof(n->bar)) {
1063         memcpy(&val, ptr + addr, size);
1064     } else {
1065         NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1066                        "MMIO read beyond last register,"
1067                        " offset=0x%"PRIx64", returning 0", addr);
1068     }
1069
1070     return val;
1071 }
1072
1073 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1074 {
1075     uint32_t qid;
1076
1077     if (unlikely(addr & ((1 << 2) - 1))) {
1078         NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1079                        "doorbell write not 32-bit aligned,"
1080                        " offset=0x%"PRIx64", ignoring", addr);
1081         return;
1082     }
1083
1084     if (((addr - 0x1000) >> 2) & 1) {
1085         /* Completion queue doorbell write */
1086
1087         uint16_t new_head = val & 0xffff;
1088         int start_sqs;
1089         NvmeCQueue *cq;
1090
1091         qid = (addr - (0x1000 + (1 << 2))) >> 3;
1092         if (unlikely(nvme_check_cqid(n, qid))) {
1093             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1094                            "completion queue doorbell write"
1095                            " for nonexistent queue,"
1096                            " sqid=%"PRIu32", ignoring", qid);
1097             return;
1098         }
1099
1100         cq = n->cq[qid];
1101         if (unlikely(new_head >= cq->size)) {
1102             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1103                            "completion queue doorbell write value"
1104                            " beyond queue size, sqid=%"PRIu32","
1105                            " new_head=%"PRIu16", ignoring",
1106                            qid, new_head);
1107             return;
1108         }
1109
1110         start_sqs = nvme_cq_full(cq) ? 1 : 0;
1111         cq->head = new_head;
1112         if (start_sqs) {
1113             NvmeSQueue *sq;
1114             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1115                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1116             }
1117             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1118         }
1119
1120         if (cq->tail == cq->head) {
1121             nvme_irq_deassert(n, cq);
1122         }
1123     } else {
1124         /* Submission queue doorbell write */
1125
1126         uint16_t new_tail = val & 0xffff;
1127         NvmeSQueue *sq;
1128
1129         qid = (addr - 0x1000) >> 3;
1130         if (unlikely(nvme_check_sqid(n, qid))) {
1131             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1132                            "submission queue doorbell write"
1133                            " for nonexistent queue,"
1134                            " sqid=%"PRIu32", ignoring", qid);
1135             return;
1136         }
1137
1138         sq = n->sq[qid];
1139         if (unlikely(new_tail >= sq->size)) {
1140             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1141                            "submission queue doorbell write value"
1142                            " beyond queue size, sqid=%"PRIu32","
1143                            " new_tail=%"PRIu16", ignoring",
1144                            qid, new_tail);
1145             return;
1146         }
1147
1148         sq->tail = new_tail;
1149         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1150     }
1151 }
1152
1153 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1154     unsigned size)
1155 {
1156     NvmeCtrl *n = (NvmeCtrl *)opaque;
1157     if (addr < sizeof(n->bar)) {
1158         nvme_write_bar(n, addr, data, size);
1159     } else if (addr >= 0x1000) {
1160         nvme_process_db(n, addr, data);
1161     }
1162 }
1163
1164 static const MemoryRegionOps nvme_mmio_ops = {
1165     .read = nvme_mmio_read,
1166     .write = nvme_mmio_write,
1167     .endianness = DEVICE_LITTLE_ENDIAN,
1168     .impl = {
1169         .min_access_size = 2,
1170         .max_access_size = 8,
1171     },
1172 };
1173
1174 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1175     unsigned size)
1176 {
1177     NvmeCtrl *n = (NvmeCtrl *)opaque;
1178     memcpy(&n->cmbuf[addr], &data, size);
1179 }
1180
1181 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1182 {
1183     uint64_t val;
1184     NvmeCtrl *n = (NvmeCtrl *)opaque;
1185
1186     memcpy(&val, &n->cmbuf[addr], size);
1187     return val;
1188 }
1189
1190 static const MemoryRegionOps nvme_cmb_ops = {
1191     .read = nvme_cmb_read,
1192     .write = nvme_cmb_write,
1193     .endianness = DEVICE_LITTLE_ENDIAN,
1194     .impl = {
1195         .min_access_size = 2,
1196         .max_access_size = 8,
1197     },
1198 };
1199
1200 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1201 {
1202     NvmeCtrl *n = NVME(pci_dev);
1203     NvmeIdCtrl *id = &n->id_ctrl;
1204
1205     int i;
1206     int64_t bs_size;
1207     uint8_t *pci_conf;
1208
1209     if (!n->conf.blk) {
1210         error_setg(errp, "drive property not set");
1211         return;
1212     }
1213
1214     bs_size = blk_getlength(n->conf.blk);
1215     if (bs_size < 0) {
1216         error_setg(errp, "could not get backing file size");
1217         return;
1218     }
1219
1220     if (!n->serial) {
1221         error_setg(errp, "serial property not set");
1222         return;
1223     }
1224     blkconf_blocksizes(&n->conf);
1225     if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1226                                        false, errp)) {
1227         return;
1228     }
1229
1230     pci_conf = pci_dev->config;
1231     pci_conf[PCI_INTERRUPT_PIN] = 1;
1232     pci_config_set_prog_interface(pci_dev->config, 0x2);
1233     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1234     pcie_endpoint_cap_init(&n->parent_obj, 0x80);
1235
1236     n->num_namespaces = 1;
1237     n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1238     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1239
1240     n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1241     n->sq = g_new0(NvmeSQueue *, n->num_queues);
1242     n->cq = g_new0(NvmeCQueue *, n->num_queues);
1243
1244     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1245                           "nvme", n->reg_size);
1246     pci_register_bar(&n->parent_obj, 0,
1247         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1248         &n->iomem);
1249     msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
1250
1251     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1252     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1253     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1254     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1255     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1256     id->rab = 6;
1257     id->ieee[0] = 0x00;
1258     id->ieee[1] = 0x02;
1259     id->ieee[2] = 0xb3;
1260     id->oacs = cpu_to_le16(0);
1261     id->frmw = 7 << 1;
1262     id->lpa = 1 << 0;
1263     id->sqes = (0x6 << 4) | 0x6;
1264     id->cqes = (0x4 << 4) | 0x4;
1265     id->nn = cpu_to_le32(n->num_namespaces);
1266     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1267     id->psd[0].mp = cpu_to_le16(0x9c4);
1268     id->psd[0].enlat = cpu_to_le32(0x10);
1269     id->psd[0].exlat = cpu_to_le32(0x4);
1270     if (blk_enable_write_cache(n->conf.blk)) {
1271         id->vwc = 1;
1272     }
1273
1274     n->bar.cap = 0;
1275     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1276     NVME_CAP_SET_CQR(n->bar.cap, 1);
1277     NVME_CAP_SET_AMS(n->bar.cap, 1);
1278     NVME_CAP_SET_TO(n->bar.cap, 0xf);
1279     NVME_CAP_SET_CSS(n->bar.cap, 1);
1280     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1281
1282     n->bar.vs = 0x00010200;
1283     n->bar.intmc = n->bar.intms = 0;
1284
1285     if (n->cmb_size_mb) {
1286
1287         NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1288         NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1289
1290         NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1291         NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1292         NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1293         NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1294         NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1295         NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1296         NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1297
1298         n->cmbloc = n->bar.cmbloc;
1299         n->cmbsz = n->bar.cmbsz;
1300
1301         n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1302         memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1303                               "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1304         pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1305             PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1306             PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1307
1308     }
1309
1310     for (i = 0; i < n->num_namespaces; i++) {
1311         NvmeNamespace *ns = &n->namespaces[i];
1312         NvmeIdNs *id_ns = &ns->id_ns;
1313         id_ns->nsfeat = 0;
1314         id_ns->nlbaf = 0;
1315         id_ns->flbas = 0;
1316         id_ns->mc = 0;
1317         id_ns->dpc = 0;
1318         id_ns->dps = 0;
1319         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1320         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1321             cpu_to_le64(n->ns_size >>
1322                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1323     }
1324 }
1325
1326 static void nvme_exit(PCIDevice *pci_dev)
1327 {
1328     NvmeCtrl *n = NVME(pci_dev);
1329
1330     nvme_clear_ctrl(n);
1331     g_free(n->namespaces);
1332     g_free(n->cq);
1333     g_free(n->sq);
1334     if (n->cmbsz) {
1335         memory_region_unref(&n->ctrl_mem);
1336     }
1337
1338     msix_uninit_exclusive_bar(pci_dev);
1339 }
1340
1341 static Property nvme_props[] = {
1342     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1343     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1344     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1345     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1346     DEFINE_PROP_END_OF_LIST(),
1347 };
1348
1349 static const VMStateDescription nvme_vmstate = {
1350     .name = "nvme",
1351     .unmigratable = 1,
1352 };
1353
1354 static void nvme_class_init(ObjectClass *oc, void *data)
1355 {
1356     DeviceClass *dc = DEVICE_CLASS(oc);
1357     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1358
1359     pc->realize = nvme_realize;
1360     pc->exit = nvme_exit;
1361     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1362     pc->vendor_id = PCI_VENDOR_ID_INTEL;
1363     pc->device_id = 0x5845;
1364     pc->revision = 2;
1365
1366     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1367     dc->desc = "Non-Volatile Memory Express";
1368     dc->props = nvme_props;
1369     dc->vmsd = &nvme_vmstate;
1370 }
1371
1372 static void nvme_instance_init(Object *obj)
1373 {
1374     NvmeCtrl *s = NVME(obj);
1375
1376     device_add_bootindex_property(obj, &s->conf.bootindex,
1377                                   "bootindex", "/namespace@1,0",
1378                                   DEVICE(obj), &error_abort);
1379 }
1380
1381 static const TypeInfo nvme_info = {
1382     .name          = "nvme",
1383     .parent        = TYPE_PCI_DEVICE,
1384     .instance_size = sizeof(NvmeCtrl),
1385     .class_init    = nvme_class_init,
1386     .instance_init = nvme_instance_init,
1387     .interfaces = (InterfaceInfo[]) {
1388         { INTERFACE_PCIE_DEVICE },
1389         { }
1390     },
1391 };
1392
1393 static void nvme_register_types(void)
1394 {
1395     type_register_static(&nvme_info);
1396 }
1397
1398 type_init(nvme_register_types)
This page took 0.107864 seconds and 4 git commands to generate.