]> Git Repo - qemu.git/blob - hw/omap1.c
esp: avoid structure holes spotted by pahole
[qemu.git] / hw / omap1.c
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
25 #include "soc_dma.h"
26 /* We use pc-style serial ports.  */
27 #include "pc.h"
28 #include "blockdev.h"
29 #include "range.h"
30 #include "sysbus.h"
31
32 /* Should signal the TCMI/GPMC */
33 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
34 {
35     uint8_t ret;
36
37     OMAP_8B_REG(addr);
38     cpu_physical_memory_read(addr, (void *) &ret, 1);
39     return ret;
40 }
41
42 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
43                 uint32_t value)
44 {
45     uint8_t val8 = value;
46
47     OMAP_8B_REG(addr);
48     cpu_physical_memory_write(addr, (void *) &val8, 1);
49 }
50
51 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
52 {
53     uint16_t ret;
54
55     OMAP_16B_REG(addr);
56     cpu_physical_memory_read(addr, (void *) &ret, 2);
57     return ret;
58 }
59
60 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
61                 uint32_t value)
62 {
63     uint16_t val16 = value;
64
65     OMAP_16B_REG(addr);
66     cpu_physical_memory_write(addr, (void *) &val16, 2);
67 }
68
69 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
70 {
71     uint32_t ret;
72
73     OMAP_32B_REG(addr);
74     cpu_physical_memory_read(addr, (void *) &ret, 4);
75     return ret;
76 }
77
78 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
79                 uint32_t value)
80 {
81     OMAP_32B_REG(addr);
82     cpu_physical_memory_write(addr, (void *) &value, 4);
83 }
84
85 /* MPU OS timers */
86 struct omap_mpu_timer_s {
87     qemu_irq irq;
88     omap_clk clk;
89     uint32_t val;
90     int64_t time;
91     QEMUTimer *timer;
92     QEMUBH *tick;
93     int64_t rate;
94     int it_ena;
95
96     int enable;
97     int ptv;
98     int ar;
99     int st;
100     uint32_t reset_val;
101 };
102
103 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
104 {
105     uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
106
107     if (timer->st && timer->enable && timer->rate)
108         return timer->val - muldiv64(distance >> (timer->ptv + 1),
109                                      timer->rate, get_ticks_per_sec());
110     else
111         return timer->val;
112 }
113
114 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
115 {
116     timer->val = omap_timer_read(timer);
117     timer->time = qemu_get_clock_ns(vm_clock);
118 }
119
120 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
121 {
122     int64_t expires;
123
124     if (timer->enable && timer->st && timer->rate) {
125         timer->val = timer->reset_val;  /* Should skip this on clk enable */
126         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
127                            get_ticks_per_sec(), timer->rate);
128
129         /* If timer expiry would be sooner than in about 1 ms and
130          * auto-reload isn't set, then fire immediately.  This is a hack
131          * to make systems like PalmOS run in acceptable time.  PalmOS
132          * sets the interval to a very low value and polls the status bit
133          * in a busy loop when it wants to sleep just a couple of CPU
134          * ticks.  */
135         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
136             qemu_mod_timer(timer->timer, timer->time + expires);
137         else
138             qemu_bh_schedule(timer->tick);
139     } else
140         qemu_del_timer(timer->timer);
141 }
142
143 static void omap_timer_fire(void *opaque)
144 {
145     struct omap_mpu_timer_s *timer = opaque;
146
147     if (!timer->ar) {
148         timer->val = 0;
149         timer->st = 0;
150     }
151
152     if (timer->it_ena)
153         /* Edge-triggered irq */
154         qemu_irq_pulse(timer->irq);
155 }
156
157 static void omap_timer_tick(void *opaque)
158 {
159     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
160
161     omap_timer_sync(timer);
162     omap_timer_fire(timer);
163     omap_timer_update(timer);
164 }
165
166 static void omap_timer_clk_update(void *opaque, int line, int on)
167 {
168     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
169
170     omap_timer_sync(timer);
171     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
172     omap_timer_update(timer);
173 }
174
175 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
176 {
177     omap_clk_adduser(timer->clk,
178                     qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
179     timer->rate = omap_clk_getrate(timer->clk);
180 }
181
182 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
183 {
184     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
185
186     switch (addr) {
187     case 0x00:  /* CNTL_TIMER */
188         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
189
190     case 0x04:  /* LOAD_TIM */
191         break;
192
193     case 0x08:  /* READ_TIM */
194         return omap_timer_read(s);
195     }
196
197     OMAP_BAD_REG(addr);
198     return 0;
199 }
200
201 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
202                 uint32_t value)
203 {
204     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
205
206     switch (addr) {
207     case 0x00:  /* CNTL_TIMER */
208         omap_timer_sync(s);
209         s->enable = (value >> 5) & 1;
210         s->ptv = (value >> 2) & 7;
211         s->ar = (value >> 1) & 1;
212         s->st = value & 1;
213         omap_timer_update(s);
214         return;
215
216     case 0x04:  /* LOAD_TIM */
217         s->reset_val = value;
218         return;
219
220     case 0x08:  /* READ_TIM */
221         OMAP_RO_REG(addr);
222         break;
223
224     default:
225         OMAP_BAD_REG(addr);
226     }
227 }
228
229 static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
230     omap_badwidth_read32,
231     omap_badwidth_read32,
232     omap_mpu_timer_read,
233 };
234
235 static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
236     omap_badwidth_write32,
237     omap_badwidth_write32,
238     omap_mpu_timer_write,
239 };
240
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
242 {
243     qemu_del_timer(s->timer);
244     s->enable = 0;
245     s->reset_val = 31337;
246     s->val = 0;
247     s->ptv = 0;
248     s->ar = 0;
249     s->st = 0;
250     s->it_ena = 1;
251 }
252
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
254                 qemu_irq irq, omap_clk clk)
255 {
256     int iomemtype;
257     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258             g_malloc0(sizeof(struct omap_mpu_timer_s));
259
260     s->irq = irq;
261     s->clk = clk;
262     s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
263     s->tick = qemu_bh_new(omap_timer_fire, s);
264     omap_mpu_timer_reset(s);
265     omap_timer_clk_setup(s);
266
267     iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
268                     omap_mpu_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
269     cpu_register_physical_memory(base, 0x100, iomemtype);
270
271     return s;
272 }
273
274 /* Watchdog timer */
275 struct omap_watchdog_timer_s {
276     struct omap_mpu_timer_s timer;
277     uint8_t last_wr;
278     int mode;
279     int free;
280     int reset;
281 };
282
283 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
284 {
285     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
286
287     switch (addr) {
288     case 0x00:  /* CNTL_TIMER */
289         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
290                 (s->timer.st << 7) | (s->free << 1);
291
292     case 0x04:  /* READ_TIMER */
293         return omap_timer_read(&s->timer);
294
295     case 0x08:  /* TIMER_MODE */
296         return s->mode << 15;
297     }
298
299     OMAP_BAD_REG(addr);
300     return 0;
301 }
302
303 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
304                 uint32_t value)
305 {
306     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
307
308     switch (addr) {
309     case 0x00:  /* CNTL_TIMER */
310         omap_timer_sync(&s->timer);
311         s->timer.ptv = (value >> 9) & 7;
312         s->timer.ar = (value >> 8) & 1;
313         s->timer.st = (value >> 7) & 1;
314         s->free = (value >> 1) & 1;
315         omap_timer_update(&s->timer);
316         break;
317
318     case 0x04:  /* LOAD_TIMER */
319         s->timer.reset_val = value & 0xffff;
320         break;
321
322     case 0x08:  /* TIMER_MODE */
323         if (!s->mode && ((value >> 15) & 1))
324             omap_clk_get(s->timer.clk);
325         s->mode |= (value >> 15) & 1;
326         if (s->last_wr == 0xf5) {
327             if ((value & 0xff) == 0xa0) {
328                 if (s->mode) {
329                     s->mode = 0;
330                     omap_clk_put(s->timer.clk);
331                 }
332             } else {
333                 /* XXX: on T|E hardware somehow this has no effect,
334                  * on Zire 71 it works as specified.  */
335                 s->reset = 1;
336                 qemu_system_reset_request();
337             }
338         }
339         s->last_wr = value & 0xff;
340         break;
341
342     default:
343         OMAP_BAD_REG(addr);
344     }
345 }
346
347 static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
348     omap_badwidth_read16,
349     omap_wd_timer_read,
350     omap_badwidth_read16,
351 };
352
353 static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
354     omap_badwidth_write16,
355     omap_wd_timer_write,
356     omap_badwidth_write16,
357 };
358
359 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
360 {
361     qemu_del_timer(s->timer.timer);
362     if (!s->mode)
363         omap_clk_get(s->timer.clk);
364     s->mode = 1;
365     s->free = 1;
366     s->reset = 0;
367     s->timer.enable = 1;
368     s->timer.it_ena = 1;
369     s->timer.reset_val = 0xffff;
370     s->timer.val = 0;
371     s->timer.st = 0;
372     s->timer.ptv = 0;
373     s->timer.ar = 0;
374     omap_timer_update(&s->timer);
375 }
376
377 static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
378                 qemu_irq irq, omap_clk clk)
379 {
380     int iomemtype;
381     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
382             g_malloc0(sizeof(struct omap_watchdog_timer_s));
383
384     s->timer.irq = irq;
385     s->timer.clk = clk;
386     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
387     omap_wd_timer_reset(s);
388     omap_timer_clk_setup(&s->timer);
389
390     iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
391                     omap_wd_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
392     cpu_register_physical_memory(base, 0x100, iomemtype);
393
394     return s;
395 }
396
397 /* 32-kHz timer */
398 struct omap_32khz_timer_s {
399     struct omap_mpu_timer_s timer;
400 };
401
402 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
403 {
404     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
405     int offset = addr & OMAP_MPUI_REG_MASK;
406
407     switch (offset) {
408     case 0x00:  /* TVR */
409         return s->timer.reset_val;
410
411     case 0x04:  /* TCR */
412         return omap_timer_read(&s->timer);
413
414     case 0x08:  /* CR */
415         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
416
417     default:
418         break;
419     }
420     OMAP_BAD_REG(addr);
421     return 0;
422 }
423
424 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
425                 uint32_t value)
426 {
427     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
428     int offset = addr & OMAP_MPUI_REG_MASK;
429
430     switch (offset) {
431     case 0x00:  /* TVR */
432         s->timer.reset_val = value & 0x00ffffff;
433         break;
434
435     case 0x04:  /* TCR */
436         OMAP_RO_REG(addr);
437         break;
438
439     case 0x08:  /* CR */
440         s->timer.ar = (value >> 3) & 1;
441         s->timer.it_ena = (value >> 2) & 1;
442         if (s->timer.st != (value & 1) || (value & 2)) {
443             omap_timer_sync(&s->timer);
444             s->timer.enable = value & 1;
445             s->timer.st = value & 1;
446             omap_timer_update(&s->timer);
447         }
448         break;
449
450     default:
451         OMAP_BAD_REG(addr);
452     }
453 }
454
455 static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
456     omap_badwidth_read32,
457     omap_badwidth_read32,
458     omap_os_timer_read,
459 };
460
461 static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
462     omap_badwidth_write32,
463     omap_badwidth_write32,
464     omap_os_timer_write,
465 };
466
467 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
468 {
469     qemu_del_timer(s->timer.timer);
470     s->timer.enable = 0;
471     s->timer.it_ena = 0;
472     s->timer.reset_val = 0x00ffffff;
473     s->timer.val = 0;
474     s->timer.st = 0;
475     s->timer.ptv = 0;
476     s->timer.ar = 1;
477 }
478
479 static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
480                 qemu_irq irq, omap_clk clk)
481 {
482     int iomemtype;
483     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
484             g_malloc0(sizeof(struct omap_32khz_timer_s));
485
486     s->timer.irq = irq;
487     s->timer.clk = clk;
488     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
489     omap_os_timer_reset(s);
490     omap_timer_clk_setup(&s->timer);
491
492     iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
493                     omap_os_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
494     cpu_register_physical_memory(base, 0x800, iomemtype);
495
496     return s;
497 }
498
499 /* Ultra Low-Power Device Module */
500 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
501 {
502     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
503     uint16_t ret;
504
505     switch (addr) {
506     case 0x14:  /* IT_STATUS */
507         ret = s->ulpd_pm_regs[addr >> 2];
508         s->ulpd_pm_regs[addr >> 2] = 0;
509         qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
510         return ret;
511
512     case 0x18:  /* Reserved */
513     case 0x1c:  /* Reserved */
514     case 0x20:  /* Reserved */
515     case 0x28:  /* Reserved */
516     case 0x2c:  /* Reserved */
517         OMAP_BAD_REG(addr);
518     case 0x00:  /* COUNTER_32_LSB */
519     case 0x04:  /* COUNTER_32_MSB */
520     case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
521     case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
522     case 0x10:  /* GAUGING_CTRL */
523     case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
524     case 0x30:  /* CLOCK_CTRL */
525     case 0x34:  /* SOFT_REQ */
526     case 0x38:  /* COUNTER_32_FIQ */
527     case 0x3c:  /* DPLL_CTRL */
528     case 0x40:  /* STATUS_REQ */
529         /* XXX: check clk::usecount state for every clock */
530     case 0x48:  /* LOCL_TIME */
531     case 0x4c:  /* APLL_CTRL */
532     case 0x50:  /* POWER_CTRL */
533         return s->ulpd_pm_regs[addr >> 2];
534     }
535
536     OMAP_BAD_REG(addr);
537     return 0;
538 }
539
540 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
541                 uint16_t diff, uint16_t value)
542 {
543     if (diff & (1 << 4))                                /* USB_MCLK_EN */
544         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
545     if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
546         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
547 }
548
549 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
550                 uint16_t diff, uint16_t value)
551 {
552     if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
553         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
554     if (diff & (1 << 1))                                /* SOFT_COM_REQ */
555         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
556     if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
557         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
558     if (diff & (1 << 3))                                /* SOFT_USB_REQ */
559         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
560 }
561
562 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
563                 uint32_t value)
564 {
565     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
566     int64_t now, ticks;
567     int div, mult;
568     static const int bypass_div[4] = { 1, 2, 4, 4 };
569     uint16_t diff;
570
571     switch (addr) {
572     case 0x00:  /* COUNTER_32_LSB */
573     case 0x04:  /* COUNTER_32_MSB */
574     case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
575     case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
576     case 0x14:  /* IT_STATUS */
577     case 0x40:  /* STATUS_REQ */
578         OMAP_RO_REG(addr);
579         break;
580
581     case 0x10:  /* GAUGING_CTRL */
582         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
583         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
584             now = qemu_get_clock_ns(vm_clock);
585
586             if (value & 1)
587                 s->ulpd_gauge_start = now;
588             else {
589                 now -= s->ulpd_gauge_start;
590
591                 /* 32-kHz ticks */
592                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
593                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
594                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
595                 if (ticks >> 32)        /* OVERFLOW_32K */
596                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
597
598                 /* High frequency ticks */
599                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
600                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
601                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
602                 if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
603                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
604
605                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
606                 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
607             }
608         }
609         s->ulpd_pm_regs[addr >> 2] = value;
610         break;
611
612     case 0x18:  /* Reserved */
613     case 0x1c:  /* Reserved */
614     case 0x20:  /* Reserved */
615     case 0x28:  /* Reserved */
616     case 0x2c:  /* Reserved */
617         OMAP_BAD_REG(addr);
618     case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
619     case 0x38:  /* COUNTER_32_FIQ */
620     case 0x48:  /* LOCL_TIME */
621     case 0x50:  /* POWER_CTRL */
622         s->ulpd_pm_regs[addr >> 2] = value;
623         break;
624
625     case 0x30:  /* CLOCK_CTRL */
626         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
627         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
628         omap_ulpd_clk_update(s, diff, value);
629         break;
630
631     case 0x34:  /* SOFT_REQ */
632         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
633         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
634         omap_ulpd_req_update(s, diff, value);
635         break;
636
637     case 0x3c:  /* DPLL_CTRL */
638         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
639          * omitted altogether, probably a typo.  */
640         /* This register has identical semantics with DPLL(1:3) control
641          * registers, see omap_dpll_write() */
642         diff = s->ulpd_pm_regs[addr >> 2] & value;
643         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
644         if (diff & (0x3ff << 2)) {
645             if (value & (1 << 4)) {                     /* PLL_ENABLE */
646                 div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
647                 mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
648             } else {
649                 div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
650                 mult = 1;
651             }
652             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
653         }
654
655         /* Enter the desired mode.  */
656         s->ulpd_pm_regs[addr >> 2] =
657                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
658                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
659
660         /* Act as if the lock is restored.  */
661         s->ulpd_pm_regs[addr >> 2] |= 2;
662         break;
663
664     case 0x4c:  /* APLL_CTRL */
665         diff = s->ulpd_pm_regs[addr >> 2] & value;
666         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
667         if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
668             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
669                                     (value & (1 << 0)) ? "apll" : "dpll4"));
670         break;
671
672     default:
673         OMAP_BAD_REG(addr);
674     }
675 }
676
677 static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
678     omap_badwidth_read16,
679     omap_ulpd_pm_read,
680     omap_badwidth_read16,
681 };
682
683 static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
684     omap_badwidth_write16,
685     omap_ulpd_pm_write,
686     omap_badwidth_write16,
687 };
688
689 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
690 {
691     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
692     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
693     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
694     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
695     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
696     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
697     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
698     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
699     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
700     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
701     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
702     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
703     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
704     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
705     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
706     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
707     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
708     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
709     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
710     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
711     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
712     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
713     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
714 }
715
716 static void omap_ulpd_pm_init(target_phys_addr_t base,
717                 struct omap_mpu_state_s *mpu)
718 {
719     int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
720                     omap_ulpd_pm_writefn, mpu, DEVICE_NATIVE_ENDIAN);
721
722     cpu_register_physical_memory(base, 0x800, iomemtype);
723     omap_ulpd_pm_reset(mpu);
724 }
725
726 /* OMAP Pin Configuration */
727 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
728 {
729     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
730
731     switch (addr) {
732     case 0x00:  /* FUNC_MUX_CTRL_0 */
733     case 0x04:  /* FUNC_MUX_CTRL_1 */
734     case 0x08:  /* FUNC_MUX_CTRL_2 */
735         return s->func_mux_ctrl[addr >> 2];
736
737     case 0x0c:  /* COMP_MODE_CTRL_0 */
738         return s->comp_mode_ctrl[0];
739
740     case 0x10:  /* FUNC_MUX_CTRL_3 */
741     case 0x14:  /* FUNC_MUX_CTRL_4 */
742     case 0x18:  /* FUNC_MUX_CTRL_5 */
743     case 0x1c:  /* FUNC_MUX_CTRL_6 */
744     case 0x20:  /* FUNC_MUX_CTRL_7 */
745     case 0x24:  /* FUNC_MUX_CTRL_8 */
746     case 0x28:  /* FUNC_MUX_CTRL_9 */
747     case 0x2c:  /* FUNC_MUX_CTRL_A */
748     case 0x30:  /* FUNC_MUX_CTRL_B */
749     case 0x34:  /* FUNC_MUX_CTRL_C */
750     case 0x38:  /* FUNC_MUX_CTRL_D */
751         return s->func_mux_ctrl[(addr >> 2) - 1];
752
753     case 0x40:  /* PULL_DWN_CTRL_0 */
754     case 0x44:  /* PULL_DWN_CTRL_1 */
755     case 0x48:  /* PULL_DWN_CTRL_2 */
756     case 0x4c:  /* PULL_DWN_CTRL_3 */
757         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
758
759     case 0x50:  /* GATE_INH_CTRL_0 */
760         return s->gate_inh_ctrl[0];
761
762     case 0x60:  /* VOLTAGE_CTRL_0 */
763         return s->voltage_ctrl[0];
764
765     case 0x70:  /* TEST_DBG_CTRL_0 */
766         return s->test_dbg_ctrl[0];
767
768     case 0x80:  /* MOD_CONF_CTRL_0 */
769         return s->mod_conf_ctrl[0];
770     }
771
772     OMAP_BAD_REG(addr);
773     return 0;
774 }
775
776 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
777                 uint32_t diff, uint32_t value)
778 {
779     if (s->compat1509) {
780         if (diff & (1 << 9))                    /* BLUETOOTH */
781             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
782                             (~value >> 9) & 1);
783         if (diff & (1 << 7))                    /* USB.CLKO */
784             omap_clk_onoff(omap_findclk(s, "usb.clko"),
785                             (value >> 7) & 1);
786     }
787 }
788
789 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
790                 uint32_t diff, uint32_t value)
791 {
792     if (s->compat1509) {
793         if (diff & (1 << 31))                   /* MCBSP3_CLK_HIZ_DI */
794             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
795                             (value >> 31) & 1);
796         if (diff & (1 << 1))                    /* CLK32K */
797             omap_clk_onoff(omap_findclk(s, "clk32k_out"),
798                             (~value >> 1) & 1);
799     }
800 }
801
802 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
803                 uint32_t diff, uint32_t value)
804 {
805     if (diff & (1 << 31))                       /* CONF_MOD_UART3_CLK_MODE_R */
806          omap_clk_reparent(omap_findclk(s, "uart3_ck"),
807                          omap_findclk(s, ((value >> 31) & 1) ?
808                                  "ck_48m" : "armper_ck"));
809     if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
810          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
811                          omap_findclk(s, ((value >> 30) & 1) ?
812                                  "ck_48m" : "armper_ck"));
813     if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
814          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
815                          omap_findclk(s, ((value >> 29) & 1) ?
816                                  "ck_48m" : "armper_ck"));
817     if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
818          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
819                          omap_findclk(s, ((value >> 23) & 1) ?
820                                  "ck_48m" : "armper_ck"));
821     if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
822          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
823                          omap_findclk(s, ((value >> 12) & 1) ?
824                                  "ck_48m" : "armper_ck"));
825     if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
826          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
827 }
828
829 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
830                 uint32_t value)
831 {
832     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
833     uint32_t diff;
834
835     switch (addr) {
836     case 0x00:  /* FUNC_MUX_CTRL_0 */
837         diff = s->func_mux_ctrl[addr >> 2] ^ value;
838         s->func_mux_ctrl[addr >> 2] = value;
839         omap_pin_funcmux0_update(s, diff, value);
840         return;
841
842     case 0x04:  /* FUNC_MUX_CTRL_1 */
843         diff = s->func_mux_ctrl[addr >> 2] ^ value;
844         s->func_mux_ctrl[addr >> 2] = value;
845         omap_pin_funcmux1_update(s, diff, value);
846         return;
847
848     case 0x08:  /* FUNC_MUX_CTRL_2 */
849         s->func_mux_ctrl[addr >> 2] = value;
850         return;
851
852     case 0x0c:  /* COMP_MODE_CTRL_0 */
853         s->comp_mode_ctrl[0] = value;
854         s->compat1509 = (value != 0x0000eaef);
855         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
856         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
857         return;
858
859     case 0x10:  /* FUNC_MUX_CTRL_3 */
860     case 0x14:  /* FUNC_MUX_CTRL_4 */
861     case 0x18:  /* FUNC_MUX_CTRL_5 */
862     case 0x1c:  /* FUNC_MUX_CTRL_6 */
863     case 0x20:  /* FUNC_MUX_CTRL_7 */
864     case 0x24:  /* FUNC_MUX_CTRL_8 */
865     case 0x28:  /* FUNC_MUX_CTRL_9 */
866     case 0x2c:  /* FUNC_MUX_CTRL_A */
867     case 0x30:  /* FUNC_MUX_CTRL_B */
868     case 0x34:  /* FUNC_MUX_CTRL_C */
869     case 0x38:  /* FUNC_MUX_CTRL_D */
870         s->func_mux_ctrl[(addr >> 2) - 1] = value;
871         return;
872
873     case 0x40:  /* PULL_DWN_CTRL_0 */
874     case 0x44:  /* PULL_DWN_CTRL_1 */
875     case 0x48:  /* PULL_DWN_CTRL_2 */
876     case 0x4c:  /* PULL_DWN_CTRL_3 */
877         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
878         return;
879
880     case 0x50:  /* GATE_INH_CTRL_0 */
881         s->gate_inh_ctrl[0] = value;
882         return;
883
884     case 0x60:  /* VOLTAGE_CTRL_0 */
885         s->voltage_ctrl[0] = value;
886         return;
887
888     case 0x70:  /* TEST_DBG_CTRL_0 */
889         s->test_dbg_ctrl[0] = value;
890         return;
891
892     case 0x80:  /* MOD_CONF_CTRL_0 */
893         diff = s->mod_conf_ctrl[0] ^ value;
894         s->mod_conf_ctrl[0] = value;
895         omap_pin_modconf1_update(s, diff, value);
896         return;
897
898     default:
899         OMAP_BAD_REG(addr);
900     }
901 }
902
903 static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
904     omap_badwidth_read32,
905     omap_badwidth_read32,
906     omap_pin_cfg_read,
907 };
908
909 static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
910     omap_badwidth_write32,
911     omap_badwidth_write32,
912     omap_pin_cfg_write,
913 };
914
915 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
916 {
917     /* Start in Compatibility Mode.  */
918     mpu->compat1509 = 1;
919     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
920     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
921     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
922     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
923     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
924     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
925     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
926     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
927     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
928     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
929 }
930
931 static void omap_pin_cfg_init(target_phys_addr_t base,
932                 struct omap_mpu_state_s *mpu)
933 {
934     int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
935                     omap_pin_cfg_writefn, mpu, DEVICE_NATIVE_ENDIAN);
936
937     cpu_register_physical_memory(base, 0x800, iomemtype);
938     omap_pin_cfg_reset(mpu);
939 }
940
941 /* Device Identification, Die Identification */
942 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
943 {
944     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
945
946     switch (addr) {
947     case 0xfffe1800:    /* DIE_ID_LSB */
948         return 0xc9581f0e;
949     case 0xfffe1804:    /* DIE_ID_MSB */
950         return 0xa8858bfa;
951
952     case 0xfffe2000:    /* PRODUCT_ID_LSB */
953         return 0x00aaaafc;
954     case 0xfffe2004:    /* PRODUCT_ID_MSB */
955         return 0xcafeb574;
956
957     case 0xfffed400:    /* JTAG_ID_LSB */
958         switch (s->mpu_model) {
959         case omap310:
960             return 0x03310315;
961         case omap1510:
962             return 0x03310115;
963         default:
964             hw_error("%s: bad mpu model\n", __FUNCTION__);
965         }
966         break;
967
968     case 0xfffed404:    /* JTAG_ID_MSB */
969         switch (s->mpu_model) {
970         case omap310:
971             return 0xfb57402f;
972         case omap1510:
973             return 0xfb47002f;
974         default:
975             hw_error("%s: bad mpu model\n", __FUNCTION__);
976         }
977         break;
978     }
979
980     OMAP_BAD_REG(addr);
981     return 0;
982 }
983
984 static void omap_id_write(void *opaque, target_phys_addr_t addr,
985                 uint32_t value)
986 {
987     OMAP_BAD_REG(addr);
988 }
989
990 static CPUReadMemoryFunc * const omap_id_readfn[] = {
991     omap_badwidth_read32,
992     omap_badwidth_read32,
993     omap_id_read,
994 };
995
996 static CPUWriteMemoryFunc * const omap_id_writefn[] = {
997     omap_badwidth_write32,
998     omap_badwidth_write32,
999     omap_id_write,
1000 };
1001
1002 static void omap_id_init(struct omap_mpu_state_s *mpu)
1003 {
1004     int iomemtype = cpu_register_io_memory(omap_id_readfn,
1005                     omap_id_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1006     cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1007     cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1008     if (!cpu_is_omap15xx(mpu))
1009         cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1010 }
1011
1012 /* MPUI Control (Dummy) */
1013 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1014 {
1015     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1016
1017     switch (addr) {
1018     case 0x00:  /* CTRL */
1019         return s->mpui_ctrl;
1020     case 0x04:  /* DEBUG_ADDR */
1021         return 0x01ffffff;
1022     case 0x08:  /* DEBUG_DATA */
1023         return 0xffffffff;
1024     case 0x0c:  /* DEBUG_FLAG */
1025         return 0x00000800;
1026     case 0x10:  /* STATUS */
1027         return 0x00000000;
1028
1029     /* Not in OMAP310 */
1030     case 0x14:  /* DSP_STATUS */
1031     case 0x18:  /* DSP_BOOT_CONFIG */
1032         return 0x00000000;
1033     case 0x1c:  /* DSP_MPUI_CONFIG */
1034         return 0x0000ffff;
1035     }
1036
1037     OMAP_BAD_REG(addr);
1038     return 0;
1039 }
1040
1041 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1042                 uint32_t value)
1043 {
1044     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1045
1046     switch (addr) {
1047     case 0x00:  /* CTRL */
1048         s->mpui_ctrl = value & 0x007fffff;
1049         break;
1050
1051     case 0x04:  /* DEBUG_ADDR */
1052     case 0x08:  /* DEBUG_DATA */
1053     case 0x0c:  /* DEBUG_FLAG */
1054     case 0x10:  /* STATUS */
1055     /* Not in OMAP310 */
1056     case 0x14:  /* DSP_STATUS */
1057         OMAP_RO_REG(addr);
1058     case 0x18:  /* DSP_BOOT_CONFIG */
1059     case 0x1c:  /* DSP_MPUI_CONFIG */
1060         break;
1061
1062     default:
1063         OMAP_BAD_REG(addr);
1064     }
1065 }
1066
1067 static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1068     omap_badwidth_read32,
1069     omap_badwidth_read32,
1070     omap_mpui_read,
1071 };
1072
1073 static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1074     omap_badwidth_write32,
1075     omap_badwidth_write32,
1076     omap_mpui_write,
1077 };
1078
1079 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1080 {
1081     s->mpui_ctrl = 0x0003ff1b;
1082 }
1083
1084 static void omap_mpui_init(target_phys_addr_t base,
1085                 struct omap_mpu_state_s *mpu)
1086 {
1087     int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1088                     omap_mpui_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1089
1090     cpu_register_physical_memory(base, 0x100, iomemtype);
1091
1092     omap_mpui_reset(mpu);
1093 }
1094
1095 /* TIPB Bridges */
1096 struct omap_tipb_bridge_s {
1097     qemu_irq abort;
1098
1099     int width_intr;
1100     uint16_t control;
1101     uint16_t alloc;
1102     uint16_t buffer;
1103     uint16_t enh_control;
1104 };
1105
1106 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1107 {
1108     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1109
1110     switch (addr) {
1111     case 0x00:  /* TIPB_CNTL */
1112         return s->control;
1113     case 0x04:  /* TIPB_BUS_ALLOC */
1114         return s->alloc;
1115     case 0x08:  /* MPU_TIPB_CNTL */
1116         return s->buffer;
1117     case 0x0c:  /* ENHANCED_TIPB_CNTL */
1118         return s->enh_control;
1119     case 0x10:  /* ADDRESS_DBG */
1120     case 0x14:  /* DATA_DEBUG_LOW */
1121     case 0x18:  /* DATA_DEBUG_HIGH */
1122         return 0xffff;
1123     case 0x1c:  /* DEBUG_CNTR_SIG */
1124         return 0x00f8;
1125     }
1126
1127     OMAP_BAD_REG(addr);
1128     return 0;
1129 }
1130
1131 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1132                 uint32_t value)
1133 {
1134     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1135
1136     switch (addr) {
1137     case 0x00:  /* TIPB_CNTL */
1138         s->control = value & 0xffff;
1139         break;
1140
1141     case 0x04:  /* TIPB_BUS_ALLOC */
1142         s->alloc = value & 0x003f;
1143         break;
1144
1145     case 0x08:  /* MPU_TIPB_CNTL */
1146         s->buffer = value & 0x0003;
1147         break;
1148
1149     case 0x0c:  /* ENHANCED_TIPB_CNTL */
1150         s->width_intr = !(value & 2);
1151         s->enh_control = value & 0x000f;
1152         break;
1153
1154     case 0x10:  /* ADDRESS_DBG */
1155     case 0x14:  /* DATA_DEBUG_LOW */
1156     case 0x18:  /* DATA_DEBUG_HIGH */
1157     case 0x1c:  /* DEBUG_CNTR_SIG */
1158         OMAP_RO_REG(addr);
1159         break;
1160
1161     default:
1162         OMAP_BAD_REG(addr);
1163     }
1164 }
1165
1166 static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1167     omap_badwidth_read16,
1168     omap_tipb_bridge_read,
1169     omap_tipb_bridge_read,
1170 };
1171
1172 static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1173     omap_badwidth_write16,
1174     omap_tipb_bridge_write,
1175     omap_tipb_bridge_write,
1176 };
1177
1178 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1179 {
1180     s->control = 0xffff;
1181     s->alloc = 0x0009;
1182     s->buffer = 0x0000;
1183     s->enh_control = 0x000f;
1184 }
1185
1186 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1187                 qemu_irq abort_irq, omap_clk clk)
1188 {
1189     int iomemtype;
1190     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1191             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1192
1193     s->abort = abort_irq;
1194     omap_tipb_bridge_reset(s);
1195
1196     iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1197                     omap_tipb_bridge_writefn, s, DEVICE_NATIVE_ENDIAN);
1198     cpu_register_physical_memory(base, 0x100, iomemtype);
1199
1200     return s;
1201 }
1202
1203 /* Dummy Traffic Controller's Memory Interface */
1204 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1205 {
1206     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1207     uint32_t ret;
1208
1209     switch (addr) {
1210     case 0x00:  /* IMIF_PRIO */
1211     case 0x04:  /* EMIFS_PRIO */
1212     case 0x08:  /* EMIFF_PRIO */
1213     case 0x0c:  /* EMIFS_CONFIG */
1214     case 0x10:  /* EMIFS_CS0_CONFIG */
1215     case 0x14:  /* EMIFS_CS1_CONFIG */
1216     case 0x18:  /* EMIFS_CS2_CONFIG */
1217     case 0x1c:  /* EMIFS_CS3_CONFIG */
1218     case 0x24:  /* EMIFF_MRS */
1219     case 0x28:  /* TIMEOUT1 */
1220     case 0x2c:  /* TIMEOUT2 */
1221     case 0x30:  /* TIMEOUT3 */
1222     case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1223     case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1224         return s->tcmi_regs[addr >> 2];
1225
1226     case 0x20:  /* EMIFF_SDRAM_CONFIG */
1227         ret = s->tcmi_regs[addr >> 2];
1228         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1229         /* XXX: We can try using the VGA_DIRTY flag for this */
1230         return ret;
1231     }
1232
1233     OMAP_BAD_REG(addr);
1234     return 0;
1235 }
1236
1237 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1238                 uint32_t value)
1239 {
1240     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1241
1242     switch (addr) {
1243     case 0x00:  /* IMIF_PRIO */
1244     case 0x04:  /* EMIFS_PRIO */
1245     case 0x08:  /* EMIFF_PRIO */
1246     case 0x10:  /* EMIFS_CS0_CONFIG */
1247     case 0x14:  /* EMIFS_CS1_CONFIG */
1248     case 0x18:  /* EMIFS_CS2_CONFIG */
1249     case 0x1c:  /* EMIFS_CS3_CONFIG */
1250     case 0x20:  /* EMIFF_SDRAM_CONFIG */
1251     case 0x24:  /* EMIFF_MRS */
1252     case 0x28:  /* TIMEOUT1 */
1253     case 0x2c:  /* TIMEOUT2 */
1254     case 0x30:  /* TIMEOUT3 */
1255     case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1256     case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1257         s->tcmi_regs[addr >> 2] = value;
1258         break;
1259     case 0x0c:  /* EMIFS_CONFIG */
1260         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1261         break;
1262
1263     default:
1264         OMAP_BAD_REG(addr);
1265     }
1266 }
1267
1268 static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1269     omap_badwidth_read32,
1270     omap_badwidth_read32,
1271     omap_tcmi_read,
1272 };
1273
1274 static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1275     omap_badwidth_write32,
1276     omap_badwidth_write32,
1277     omap_tcmi_write,
1278 };
1279
1280 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1281 {
1282     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1283     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1284     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1285     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1286     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1287     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1288     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1289     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1290     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1291     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1292     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1293     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1294     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1295     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1296     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1297 }
1298
1299 static void omap_tcmi_init(target_phys_addr_t base,
1300                 struct omap_mpu_state_s *mpu)
1301 {
1302     int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1303                     omap_tcmi_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1304
1305     cpu_register_physical_memory(base, 0x100, iomemtype);
1306     omap_tcmi_reset(mpu);
1307 }
1308
1309 /* Digital phase-locked loops control */
1310 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1311 {
1312     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1313
1314     if (addr == 0x00)   /* CTL_REG */
1315         return s->mode;
1316
1317     OMAP_BAD_REG(addr);
1318     return 0;
1319 }
1320
1321 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1322                 uint32_t value)
1323 {
1324     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1325     uint16_t diff;
1326     static const int bypass_div[4] = { 1, 2, 4, 4 };
1327     int div, mult;
1328
1329     if (addr == 0x00) { /* CTL_REG */
1330         /* See omap_ulpd_pm_write() too */
1331         diff = s->mode & value;
1332         s->mode = value & 0x2fff;
1333         if (diff & (0x3ff << 2)) {
1334             if (value & (1 << 4)) {                     /* PLL_ENABLE */
1335                 div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1336                 mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1337             } else {
1338                 div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1339                 mult = 1;
1340             }
1341             omap_clk_setrate(s->dpll, div, mult);
1342         }
1343
1344         /* Enter the desired mode.  */
1345         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1346
1347         /* Act as if the lock is restored.  */
1348         s->mode |= 2;
1349     } else {
1350         OMAP_BAD_REG(addr);
1351     }
1352 }
1353
1354 static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1355     omap_badwidth_read16,
1356     omap_dpll_read,
1357     omap_badwidth_read16,
1358 };
1359
1360 static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1361     omap_badwidth_write16,
1362     omap_dpll_write,
1363     omap_badwidth_write16,
1364 };
1365
1366 static void omap_dpll_reset(struct dpll_ctl_s *s)
1367 {
1368     s->mode = 0x2002;
1369     omap_clk_setrate(s->dpll, 1, 1);
1370 }
1371
1372 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1373                 omap_clk clk)
1374 {
1375     int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1376                     omap_dpll_writefn, s, DEVICE_NATIVE_ENDIAN);
1377
1378     s->dpll = clk;
1379     omap_dpll_reset(s);
1380
1381     cpu_register_physical_memory(base, 0x100, iomemtype);
1382 }
1383
1384 /* MPU Clock/Reset/Power Mode Control */
1385 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1386 {
1387     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1388
1389     switch (addr) {
1390     case 0x00:  /* ARM_CKCTL */
1391         return s->clkm.arm_ckctl;
1392
1393     case 0x04:  /* ARM_IDLECT1 */
1394         return s->clkm.arm_idlect1;
1395
1396     case 0x08:  /* ARM_IDLECT2 */
1397         return s->clkm.arm_idlect2;
1398
1399     case 0x0c:  /* ARM_EWUPCT */
1400         return s->clkm.arm_ewupct;
1401
1402     case 0x10:  /* ARM_RSTCT1 */
1403         return s->clkm.arm_rstct1;
1404
1405     case 0x14:  /* ARM_RSTCT2 */
1406         return s->clkm.arm_rstct2;
1407
1408     case 0x18:  /* ARM_SYSST */
1409         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1410
1411     case 0x1c:  /* ARM_CKOUT1 */
1412         return s->clkm.arm_ckout1;
1413
1414     case 0x20:  /* ARM_CKOUT2 */
1415         break;
1416     }
1417
1418     OMAP_BAD_REG(addr);
1419     return 0;
1420 }
1421
1422 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1423                 uint16_t diff, uint16_t value)
1424 {
1425     omap_clk clk;
1426
1427     if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1428         if (value & (1 << 14))
1429             /* Reserved */;
1430         else {
1431             clk = omap_findclk(s, "arminth_ck");
1432             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1433         }
1434     }
1435     if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1436         clk = omap_findclk(s, "armtim_ck");
1437         if (value & (1 << 12))
1438             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1439         else
1440             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1441     }
1442     /* XXX: en_dspck */
1443     if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1444         clk = omap_findclk(s, "dspmmu_ck");
1445         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1446     }
1447     if (diff & (3 << 8)) {                              /* TCDIV */
1448         clk = omap_findclk(s, "tc_ck");
1449         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1450     }
1451     if (diff & (3 << 6)) {                              /* DSPDIV */
1452         clk = omap_findclk(s, "dsp_ck");
1453         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1454     }
1455     if (diff & (3 << 4)) {                              /* ARMDIV */
1456         clk = omap_findclk(s, "arm_ck");
1457         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1458     }
1459     if (diff & (3 << 2)) {                              /* LCDDIV */
1460         clk = omap_findclk(s, "lcd_ck");
1461         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1462     }
1463     if (diff & (3 << 0)) {                              /* PERDIV */
1464         clk = omap_findclk(s, "armper_ck");
1465         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1466     }
1467 }
1468
1469 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1470                 uint16_t diff, uint16_t value)
1471 {
1472     omap_clk clk;
1473
1474     if (value & (1 << 11))                              /* SETARM_IDLE */
1475         cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1476     if (!(value & (1 << 10)))                           /* WKUP_MODE */
1477         qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1478
1479 #define SET_CANIDLE(clock, bit)                         \
1480     if (diff & (1 << bit)) {                            \
1481         clk = omap_findclk(s, clock);                   \
1482         omap_clk_canidle(clk, (value >> bit) & 1);      \
1483     }
1484     SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1485     SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1486     SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1487     SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1488     SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1489     SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1490     SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1491     SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1492     SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1493     SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1494     SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1495     SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1496     SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1497     SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1498 }
1499
1500 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1501                 uint16_t diff, uint16_t value)
1502 {
1503     omap_clk clk;
1504
1505 #define SET_ONOFF(clock, bit)                           \
1506     if (diff & (1 << bit)) {                            \
1507         clk = omap_findclk(s, clock);                   \
1508         omap_clk_onoff(clk, (value >> bit) & 1);        \
1509     }
1510     SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1511     SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1512     SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1513     SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1514     SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1515     SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1516     SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1517     SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1518     SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1519     SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1520     SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1521 }
1522
1523 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1524                 uint16_t diff, uint16_t value)
1525 {
1526     omap_clk clk;
1527
1528     if (diff & (3 << 4)) {                              /* TCLKOUT */
1529         clk = omap_findclk(s, "tclk_out");
1530         switch ((value >> 4) & 3) {
1531         case 1:
1532             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1533             omap_clk_onoff(clk, 1);
1534             break;
1535         case 2:
1536             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1537             omap_clk_onoff(clk, 1);
1538             break;
1539         default:
1540             omap_clk_onoff(clk, 0);
1541         }
1542     }
1543     if (diff & (3 << 2)) {                              /* DCLKOUT */
1544         clk = omap_findclk(s, "dclk_out");
1545         switch ((value >> 2) & 3) {
1546         case 0:
1547             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1548             break;
1549         case 1:
1550             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1551             break;
1552         case 2:
1553             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1554             break;
1555         case 3:
1556             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1557             break;
1558         }
1559     }
1560     if (diff & (3 << 0)) {                              /* ACLKOUT */
1561         clk = omap_findclk(s, "aclk_out");
1562         switch ((value >> 0) & 3) {
1563         case 1:
1564             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1565             omap_clk_onoff(clk, 1);
1566             break;
1567         case 2:
1568             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1569             omap_clk_onoff(clk, 1);
1570             break;
1571         case 3:
1572             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1573             omap_clk_onoff(clk, 1);
1574             break;
1575         default:
1576             omap_clk_onoff(clk, 0);
1577         }
1578     }
1579 }
1580
1581 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1582                 uint32_t value)
1583 {
1584     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1585     uint16_t diff;
1586     omap_clk clk;
1587     static const char *clkschemename[8] = {
1588         "fully synchronous", "fully asynchronous", "synchronous scalable",
1589         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1590     };
1591
1592     switch (addr) {
1593     case 0x00:  /* ARM_CKCTL */
1594         diff = s->clkm.arm_ckctl ^ value;
1595         s->clkm.arm_ckctl = value & 0x7fff;
1596         omap_clkm_ckctl_update(s, diff, value);
1597         return;
1598
1599     case 0x04:  /* ARM_IDLECT1 */
1600         diff = s->clkm.arm_idlect1 ^ value;
1601         s->clkm.arm_idlect1 = value & 0x0fff;
1602         omap_clkm_idlect1_update(s, diff, value);
1603         return;
1604
1605     case 0x08:  /* ARM_IDLECT2 */
1606         diff = s->clkm.arm_idlect2 ^ value;
1607         s->clkm.arm_idlect2 = value & 0x07ff;
1608         omap_clkm_idlect2_update(s, diff, value);
1609         return;
1610
1611     case 0x0c:  /* ARM_EWUPCT */
1612         s->clkm.arm_ewupct = value & 0x003f;
1613         return;
1614
1615     case 0x10:  /* ARM_RSTCT1 */
1616         diff = s->clkm.arm_rstct1 ^ value;
1617         s->clkm.arm_rstct1 = value & 0x0007;
1618         if (value & 9) {
1619             qemu_system_reset_request();
1620             s->clkm.cold_start = 0xa;
1621         }
1622         if (diff & ~value & 4) {                                /* DSP_RST */
1623             omap_mpui_reset(s);
1624             omap_tipb_bridge_reset(s->private_tipb);
1625             omap_tipb_bridge_reset(s->public_tipb);
1626         }
1627         if (diff & 2) {                                         /* DSP_EN */
1628             clk = omap_findclk(s, "dsp_ck");
1629             omap_clk_canidle(clk, (~value >> 1) & 1);
1630         }
1631         return;
1632
1633     case 0x14:  /* ARM_RSTCT2 */
1634         s->clkm.arm_rstct2 = value & 0x0001;
1635         return;
1636
1637     case 0x18:  /* ARM_SYSST */
1638         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1639             s->clkm.clocking_scheme = (value >> 11) & 7;
1640             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1641                             clkschemename[s->clkm.clocking_scheme]);
1642         }
1643         s->clkm.cold_start &= value & 0x3f;
1644         return;
1645
1646     case 0x1c:  /* ARM_CKOUT1 */
1647         diff = s->clkm.arm_ckout1 ^ value;
1648         s->clkm.arm_ckout1 = value & 0x003f;
1649         omap_clkm_ckout1_update(s, diff, value);
1650         return;
1651
1652     case 0x20:  /* ARM_CKOUT2 */
1653     default:
1654         OMAP_BAD_REG(addr);
1655     }
1656 }
1657
1658 static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
1659     omap_badwidth_read16,
1660     omap_clkm_read,
1661     omap_badwidth_read16,
1662 };
1663
1664 static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
1665     omap_badwidth_write16,
1666     omap_clkm_write,
1667     omap_badwidth_write16,
1668 };
1669
1670 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
1671 {
1672     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1673
1674     switch (addr) {
1675     case 0x04:  /* DSP_IDLECT1 */
1676         return s->clkm.dsp_idlect1;
1677
1678     case 0x08:  /* DSP_IDLECT2 */
1679         return s->clkm.dsp_idlect2;
1680
1681     case 0x14:  /* DSP_RSTCT2 */
1682         return s->clkm.dsp_rstct2;
1683
1684     case 0x18:  /* DSP_SYSST */
1685         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1686                 (s->env->halted << 6);  /* Quite useless... */
1687     }
1688
1689     OMAP_BAD_REG(addr);
1690     return 0;
1691 }
1692
1693 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1694                 uint16_t diff, uint16_t value)
1695 {
1696     omap_clk clk;
1697
1698     SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1699 }
1700
1701 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1702                 uint16_t diff, uint16_t value)
1703 {
1704     omap_clk clk;
1705
1706     SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1707 }
1708
1709 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
1710                 uint32_t value)
1711 {
1712     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1713     uint16_t diff;
1714
1715     switch (addr) {
1716     case 0x04:  /* DSP_IDLECT1 */
1717         diff = s->clkm.dsp_idlect1 ^ value;
1718         s->clkm.dsp_idlect1 = value & 0x01f7;
1719         omap_clkdsp_idlect1_update(s, diff, value);
1720         break;
1721
1722     case 0x08:  /* DSP_IDLECT2 */
1723         s->clkm.dsp_idlect2 = value & 0x0037;
1724         diff = s->clkm.dsp_idlect1 ^ value;
1725         omap_clkdsp_idlect2_update(s, diff, value);
1726         break;
1727
1728     case 0x14:  /* DSP_RSTCT2 */
1729         s->clkm.dsp_rstct2 = value & 0x0001;
1730         break;
1731
1732     case 0x18:  /* DSP_SYSST */
1733         s->clkm.cold_start &= value & 0x3f;
1734         break;
1735
1736     default:
1737         OMAP_BAD_REG(addr);
1738     }
1739 }
1740
1741 static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
1742     omap_badwidth_read16,
1743     omap_clkdsp_read,
1744     omap_badwidth_read16,
1745 };
1746
1747 static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
1748     omap_badwidth_write16,
1749     omap_clkdsp_write,
1750     omap_badwidth_write16,
1751 };
1752
1753 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1754 {
1755     if (s->wdt && s->wdt->reset)
1756         s->clkm.cold_start = 0x6;
1757     s->clkm.clocking_scheme = 0;
1758     omap_clkm_ckctl_update(s, ~0, 0x3000);
1759     s->clkm.arm_ckctl = 0x3000;
1760     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1761     s->clkm.arm_idlect1 = 0x0400;
1762     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1763     s->clkm.arm_idlect2 = 0x0100;
1764     s->clkm.arm_ewupct = 0x003f;
1765     s->clkm.arm_rstct1 = 0x0000;
1766     s->clkm.arm_rstct2 = 0x0000;
1767     s->clkm.arm_ckout1 = 0x0015;
1768     s->clkm.dpll1_mode = 0x2002;
1769     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1770     s->clkm.dsp_idlect1 = 0x0040;
1771     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1772     s->clkm.dsp_idlect2 = 0x0000;
1773     s->clkm.dsp_rstct2 = 0x0000;
1774 }
1775
1776 static void omap_clkm_init(target_phys_addr_t mpu_base,
1777                 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
1778 {
1779     int iomemtype[2] = {
1780         cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s,
1781                                DEVICE_NATIVE_ENDIAN),
1782         cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s,
1783                                DEVICE_NATIVE_ENDIAN),
1784     };
1785
1786     s->clkm.arm_idlect1 = 0x03ff;
1787     s->clkm.arm_idlect2 = 0x0100;
1788     s->clkm.dsp_idlect1 = 0x0002;
1789     omap_clkm_reset(s);
1790     s->clkm.cold_start = 0x3a;
1791
1792     cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
1793     cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
1794 }
1795
1796 /* MPU I/O */
1797 struct omap_mpuio_s {
1798     qemu_irq irq;
1799     qemu_irq kbd_irq;
1800     qemu_irq *in;
1801     qemu_irq handler[16];
1802     qemu_irq wakeup;
1803
1804     uint16_t inputs;
1805     uint16_t outputs;
1806     uint16_t dir;
1807     uint16_t edge;
1808     uint16_t mask;
1809     uint16_t ints;
1810
1811     uint16_t debounce;
1812     uint16_t latch;
1813     uint8_t event;
1814
1815     uint8_t buttons[5];
1816     uint8_t row_latch;
1817     uint8_t cols;
1818     int kbd_mask;
1819     int clk;
1820 };
1821
1822 static void omap_mpuio_set(void *opaque, int line, int level)
1823 {
1824     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1825     uint16_t prev = s->inputs;
1826
1827     if (level)
1828         s->inputs |= 1 << line;
1829     else
1830         s->inputs &= ~(1 << line);
1831
1832     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1833         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1834             s->ints |= 1 << line;
1835             qemu_irq_raise(s->irq);
1836             /* TODO: wakeup */
1837         }
1838         if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1839                 (s->event >> 1) == line)        /* PIN_SELECT */
1840             s->latch = s->inputs;
1841     }
1842 }
1843
1844 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1845 {
1846     int i;
1847     uint8_t *row, rows = 0, cols = ~s->cols;
1848
1849     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1850         if (*row & cols)
1851             rows |= i;
1852
1853     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1854     s->row_latch = ~rows;
1855 }
1856
1857 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
1858 {
1859     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1860     int offset = addr & OMAP_MPUI_REG_MASK;
1861     uint16_t ret;
1862
1863     switch (offset) {
1864     case 0x00:  /* INPUT_LATCH */
1865         return s->inputs;
1866
1867     case 0x04:  /* OUTPUT_REG */
1868         return s->outputs;
1869
1870     case 0x08:  /* IO_CNTL */
1871         return s->dir;
1872
1873     case 0x10:  /* KBR_LATCH */
1874         return s->row_latch;
1875
1876     case 0x14:  /* KBC_REG */
1877         return s->cols;
1878
1879     case 0x18:  /* GPIO_EVENT_MODE_REG */
1880         return s->event;
1881
1882     case 0x1c:  /* GPIO_INT_EDGE_REG */
1883         return s->edge;
1884
1885     case 0x20:  /* KBD_INT */
1886         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1887
1888     case 0x24:  /* GPIO_INT */
1889         ret = s->ints;
1890         s->ints &= s->mask;
1891         if (ret)
1892             qemu_irq_lower(s->irq);
1893         return ret;
1894
1895     case 0x28:  /* KBD_MASKIT */
1896         return s->kbd_mask;
1897
1898     case 0x2c:  /* GPIO_MASKIT */
1899         return s->mask;
1900
1901     case 0x30:  /* GPIO_DEBOUNCING_REG */
1902         return s->debounce;
1903
1904     case 0x34:  /* GPIO_LATCH_REG */
1905         return s->latch;
1906     }
1907
1908     OMAP_BAD_REG(addr);
1909     return 0;
1910 }
1911
1912 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
1913                 uint32_t value)
1914 {
1915     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1916     int offset = addr & OMAP_MPUI_REG_MASK;
1917     uint16_t diff;
1918     int ln;
1919
1920     switch (offset) {
1921     case 0x04:  /* OUTPUT_REG */
1922         diff = (s->outputs ^ value) & ~s->dir;
1923         s->outputs = value;
1924         while ((ln = ffs(diff))) {
1925             ln --;
1926             if (s->handler[ln])
1927                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1928             diff &= ~(1 << ln);
1929         }
1930         break;
1931
1932     case 0x08:  /* IO_CNTL */
1933         diff = s->outputs & (s->dir ^ value);
1934         s->dir = value;
1935
1936         value = s->outputs & ~s->dir;
1937         while ((ln = ffs(diff))) {
1938             ln --;
1939             if (s->handler[ln])
1940                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1941             diff &= ~(1 << ln);
1942         }
1943         break;
1944
1945     case 0x14:  /* KBC_REG */
1946         s->cols = value;
1947         omap_mpuio_kbd_update(s);
1948         break;
1949
1950     case 0x18:  /* GPIO_EVENT_MODE_REG */
1951         s->event = value & 0x1f;
1952         break;
1953
1954     case 0x1c:  /* GPIO_INT_EDGE_REG */
1955         s->edge = value;
1956         break;
1957
1958     case 0x28:  /* KBD_MASKIT */
1959         s->kbd_mask = value & 1;
1960         omap_mpuio_kbd_update(s);
1961         break;
1962
1963     case 0x2c:  /* GPIO_MASKIT */
1964         s->mask = value;
1965         break;
1966
1967     case 0x30:  /* GPIO_DEBOUNCING_REG */
1968         s->debounce = value & 0x1ff;
1969         break;
1970
1971     case 0x00:  /* INPUT_LATCH */
1972     case 0x10:  /* KBR_LATCH */
1973     case 0x20:  /* KBD_INT */
1974     case 0x24:  /* GPIO_INT */
1975     case 0x34:  /* GPIO_LATCH_REG */
1976         OMAP_RO_REG(addr);
1977         return;
1978
1979     default:
1980         OMAP_BAD_REG(addr);
1981         return;
1982     }
1983 }
1984
1985 static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
1986     omap_badwidth_read16,
1987     omap_mpuio_read,
1988     omap_badwidth_read16,
1989 };
1990
1991 static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
1992     omap_badwidth_write16,
1993     omap_mpuio_write,
1994     omap_badwidth_write16,
1995 };
1996
1997 static void omap_mpuio_reset(struct omap_mpuio_s *s)
1998 {
1999     s->inputs = 0;
2000     s->outputs = 0;
2001     s->dir = ~0;
2002     s->event = 0;
2003     s->edge = 0;
2004     s->kbd_mask = 0;
2005     s->mask = 0;
2006     s->debounce = 0;
2007     s->latch = 0;
2008     s->ints = 0;
2009     s->row_latch = 0x1f;
2010     s->clk = 1;
2011 }
2012
2013 static void omap_mpuio_onoff(void *opaque, int line, int on)
2014 {
2015     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2016
2017     s->clk = on;
2018     if (on)
2019         omap_mpuio_kbd_update(s);
2020 }
2021
2022 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2023                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2024                 omap_clk clk)
2025 {
2026     int iomemtype;
2027     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2028             g_malloc0(sizeof(struct omap_mpuio_s));
2029
2030     s->irq = gpio_int;
2031     s->kbd_irq = kbd_int;
2032     s->wakeup = wakeup;
2033     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2034     omap_mpuio_reset(s);
2035
2036     iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2037                     omap_mpuio_writefn, s, DEVICE_NATIVE_ENDIAN);
2038     cpu_register_physical_memory(base, 0x800, iomemtype);
2039
2040     omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2041
2042     return s;
2043 }
2044
2045 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2046 {
2047     return s->in;
2048 }
2049
2050 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2051 {
2052     if (line >= 16 || line < 0)
2053         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2054     s->handler[line] = handler;
2055 }
2056
2057 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2058 {
2059     if (row >= 5 || row < 0)
2060         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2061
2062     if (down)
2063         s->buttons[row] |= 1 << col;
2064     else
2065         s->buttons[row] &= ~(1 << col);
2066
2067     omap_mpuio_kbd_update(s);
2068 }
2069
2070 /* MicroWire Interface */
2071 struct omap_uwire_s {
2072     qemu_irq txirq;
2073     qemu_irq rxirq;
2074     qemu_irq txdrq;
2075
2076     uint16_t txbuf;
2077     uint16_t rxbuf;
2078     uint16_t control;
2079     uint16_t setup[5];
2080
2081     uWireSlave *chip[4];
2082 };
2083
2084 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2085 {
2086     int chipselect = (s->control >> 10) & 3;            /* INDEX */
2087     uWireSlave *slave = s->chip[chipselect];
2088
2089     if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2090         if (s->control & (1 << 12))                     /* CS_CMD */
2091             if (slave && slave->send)
2092                 slave->send(slave->opaque,
2093                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2094         s->control &= ~(1 << 14);                       /* CSRB */
2095         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2096          * a DRQ.  When is the level IRQ supposed to be reset?  */
2097     }
2098
2099     if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2100         if (s->control & (1 << 12))                     /* CS_CMD */
2101             if (slave && slave->receive)
2102                 s->rxbuf = slave->receive(slave->opaque);
2103         s->control |= 1 << 15;                          /* RDRB */
2104         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2105          * a DRQ.  When is the level IRQ supposed to be reset?  */
2106     }
2107 }
2108
2109 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2110 {
2111     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2112     int offset = addr & OMAP_MPUI_REG_MASK;
2113
2114     switch (offset) {
2115     case 0x00:  /* RDR */
2116         s->control &= ~(1 << 15);                       /* RDRB */
2117         return s->rxbuf;
2118
2119     case 0x04:  /* CSR */
2120         return s->control;
2121
2122     case 0x08:  /* SR1 */
2123         return s->setup[0];
2124     case 0x0c:  /* SR2 */
2125         return s->setup[1];
2126     case 0x10:  /* SR3 */
2127         return s->setup[2];
2128     case 0x14:  /* SR4 */
2129         return s->setup[3];
2130     case 0x18:  /* SR5 */
2131         return s->setup[4];
2132     }
2133
2134     OMAP_BAD_REG(addr);
2135     return 0;
2136 }
2137
2138 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2139                 uint32_t value)
2140 {
2141     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2142     int offset = addr & OMAP_MPUI_REG_MASK;
2143
2144     switch (offset) {
2145     case 0x00:  /* TDR */
2146         s->txbuf = value;                               /* TD */
2147         if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2148                         ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2149                          (s->control & (1 << 12)))) {   /* CS_CMD */
2150             s->control |= 1 << 14;                      /* CSRB */
2151             omap_uwire_transfer_start(s);
2152         }
2153         break;
2154
2155     case 0x04:  /* CSR */
2156         s->control = value & 0x1fff;
2157         if (value & (1 << 13))                          /* START */
2158             omap_uwire_transfer_start(s);
2159         break;
2160
2161     case 0x08:  /* SR1 */
2162         s->setup[0] = value & 0x003f;
2163         break;
2164
2165     case 0x0c:  /* SR2 */
2166         s->setup[1] = value & 0x0fc0;
2167         break;
2168
2169     case 0x10:  /* SR3 */
2170         s->setup[2] = value & 0x0003;
2171         break;
2172
2173     case 0x14:  /* SR4 */
2174         s->setup[3] = value & 0x0001;
2175         break;
2176
2177     case 0x18:  /* SR5 */
2178         s->setup[4] = value & 0x000f;
2179         break;
2180
2181     default:
2182         OMAP_BAD_REG(addr);
2183         return;
2184     }
2185 }
2186
2187 static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
2188     omap_badwidth_read16,
2189     omap_uwire_read,
2190     omap_badwidth_read16,
2191 };
2192
2193 static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
2194     omap_badwidth_write16,
2195     omap_uwire_write,
2196     omap_badwidth_write16,
2197 };
2198
2199 static void omap_uwire_reset(struct omap_uwire_s *s)
2200 {
2201     s->control = 0;
2202     s->setup[0] = 0;
2203     s->setup[1] = 0;
2204     s->setup[2] = 0;
2205     s->setup[3] = 0;
2206     s->setup[4] = 0;
2207 }
2208
2209 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2210                 qemu_irq *irq, qemu_irq dma, omap_clk clk)
2211 {
2212     int iomemtype;
2213     struct omap_uwire_s *s = (struct omap_uwire_s *)
2214             g_malloc0(sizeof(struct omap_uwire_s));
2215
2216     s->txirq = irq[0];
2217     s->rxirq = irq[1];
2218     s->txdrq = dma;
2219     omap_uwire_reset(s);
2220
2221     iomemtype = cpu_register_io_memory(omap_uwire_readfn,
2222                     omap_uwire_writefn, s, DEVICE_NATIVE_ENDIAN);
2223     cpu_register_physical_memory(base, 0x800, iomemtype);
2224
2225     return s;
2226 }
2227
2228 void omap_uwire_attach(struct omap_uwire_s *s,
2229                 uWireSlave *slave, int chipselect)
2230 {
2231     if (chipselect < 0 || chipselect > 3) {
2232         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2233         exit(-1);
2234     }
2235
2236     s->chip[chipselect] = slave;
2237 }
2238
2239 /* Pseudonoise Pulse-Width Light Modulator */
2240 static void omap_pwl_update(struct omap_mpu_state_s *s)
2241 {
2242     int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2243
2244     if (output != s->pwl.output) {
2245         s->pwl.output = output;
2246         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2247     }
2248 }
2249
2250 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2251 {
2252     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2253     int offset = addr & OMAP_MPUI_REG_MASK;
2254
2255     switch (offset) {
2256     case 0x00:  /* PWL_LEVEL */
2257         return s->pwl.level;
2258     case 0x04:  /* PWL_CTRL */
2259         return s->pwl.enable;
2260     }
2261     OMAP_BAD_REG(addr);
2262     return 0;
2263 }
2264
2265 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2266                 uint32_t value)
2267 {
2268     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2269     int offset = addr & OMAP_MPUI_REG_MASK;
2270
2271     switch (offset) {
2272     case 0x00:  /* PWL_LEVEL */
2273         s->pwl.level = value;
2274         omap_pwl_update(s);
2275         break;
2276     case 0x04:  /* PWL_CTRL */
2277         s->pwl.enable = value & 1;
2278         omap_pwl_update(s);
2279         break;
2280     default:
2281         OMAP_BAD_REG(addr);
2282         return;
2283     }
2284 }
2285
2286 static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
2287     omap_pwl_read,
2288     omap_badwidth_read8,
2289     omap_badwidth_read8,
2290 };
2291
2292 static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
2293     omap_pwl_write,
2294     omap_badwidth_write8,
2295     omap_badwidth_write8,
2296 };
2297
2298 static void omap_pwl_reset(struct omap_mpu_state_s *s)
2299 {
2300     s->pwl.output = 0;
2301     s->pwl.level = 0;
2302     s->pwl.enable = 0;
2303     s->pwl.clk = 1;
2304     omap_pwl_update(s);
2305 }
2306
2307 static void omap_pwl_clk_update(void *opaque, int line, int on)
2308 {
2309     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2310
2311     s->pwl.clk = on;
2312     omap_pwl_update(s);
2313 }
2314
2315 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2316                 omap_clk clk)
2317 {
2318     int iomemtype;
2319
2320     omap_pwl_reset(s);
2321
2322     iomemtype = cpu_register_io_memory(omap_pwl_readfn,
2323                     omap_pwl_writefn, s, DEVICE_NATIVE_ENDIAN);
2324     cpu_register_physical_memory(base, 0x800, iomemtype);
2325
2326     omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2327 }
2328
2329 /* Pulse-Width Tone module */
2330 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2331 {
2332     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2333     int offset = addr & OMAP_MPUI_REG_MASK;
2334
2335     switch (offset) {
2336     case 0x00:  /* FRC */
2337         return s->pwt.frc;
2338     case 0x04:  /* VCR */
2339         return s->pwt.vrc;
2340     case 0x08:  /* GCR */
2341         return s->pwt.gcr;
2342     }
2343     OMAP_BAD_REG(addr);
2344     return 0;
2345 }
2346
2347 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2348                 uint32_t value)
2349 {
2350     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2351     int offset = addr & OMAP_MPUI_REG_MASK;
2352
2353     switch (offset) {
2354     case 0x00:  /* FRC */
2355         s->pwt.frc = value & 0x3f;
2356         break;
2357     case 0x04:  /* VRC */
2358         if ((value ^ s->pwt.vrc) & 1) {
2359             if (value & 1)
2360                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2361                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2362                                 ((omap_clk_getrate(s->pwt.clk) >> 3) /
2363                                  /* Pre-multiplexer divider */
2364                                  ((s->pwt.gcr & 2) ? 1 : 154) /
2365                                  /* Octave multiplexer */
2366                                  (2 << (value & 3)) *
2367                                  /* 101/107 divider */
2368                                  ((value & (1 << 2)) ? 101 : 107) *
2369                                  /*  49/55 divider */
2370                                  ((value & (1 << 3)) ?  49 : 55) *
2371                                  /*  50/63 divider */
2372                                  ((value & (1 << 4)) ?  50 : 63) *
2373                                  /*  80/127 divider */
2374                                  ((value & (1 << 5)) ?  80 : 127) /
2375                                  (107 * 55 * 63 * 127)));
2376             else
2377                 printf("%s: silence!\n", __FUNCTION__);
2378         }
2379         s->pwt.vrc = value & 0x7f;
2380         break;
2381     case 0x08:  /* GCR */
2382         s->pwt.gcr = value & 3;
2383         break;
2384     default:
2385         OMAP_BAD_REG(addr);
2386         return;
2387     }
2388 }
2389
2390 static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
2391     omap_pwt_read,
2392     omap_badwidth_read8,
2393     omap_badwidth_read8,
2394 };
2395
2396 static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
2397     omap_pwt_write,
2398     omap_badwidth_write8,
2399     omap_badwidth_write8,
2400 };
2401
2402 static void omap_pwt_reset(struct omap_mpu_state_s *s)
2403 {
2404     s->pwt.frc = 0;
2405     s->pwt.vrc = 0;
2406     s->pwt.gcr = 0;
2407 }
2408
2409 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2410                 omap_clk clk)
2411 {
2412     int iomemtype;
2413
2414     s->pwt.clk = clk;
2415     omap_pwt_reset(s);
2416
2417     iomemtype = cpu_register_io_memory(omap_pwt_readfn,
2418                     omap_pwt_writefn, s, DEVICE_NATIVE_ENDIAN);
2419     cpu_register_physical_memory(base, 0x800, iomemtype);
2420 }
2421
2422 /* Real-time Clock module */
2423 struct omap_rtc_s {
2424     qemu_irq irq;
2425     qemu_irq alarm;
2426     QEMUTimer *clk;
2427
2428     uint8_t interrupts;
2429     uint8_t status;
2430     int16_t comp_reg;
2431     int running;
2432     int pm_am;
2433     int auto_comp;
2434     int round;
2435     struct tm alarm_tm;
2436     time_t alarm_ti;
2437
2438     struct tm current_tm;
2439     time_t ti;
2440     uint64_t tick;
2441 };
2442
2443 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2444 {
2445     /* s->alarm is level-triggered */
2446     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2447 }
2448
2449 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2450 {
2451     s->alarm_ti = mktimegm(&s->alarm_tm);
2452     if (s->alarm_ti == -1)
2453         printf("%s: conversion failed\n", __FUNCTION__);
2454 }
2455
2456 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
2457 {
2458     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2459     int offset = addr & OMAP_MPUI_REG_MASK;
2460     uint8_t i;
2461
2462     switch (offset) {
2463     case 0x00:  /* SECONDS_REG */
2464         return to_bcd(s->current_tm.tm_sec);
2465
2466     case 0x04:  /* MINUTES_REG */
2467         return to_bcd(s->current_tm.tm_min);
2468
2469     case 0x08:  /* HOURS_REG */
2470         if (s->pm_am)
2471             return ((s->current_tm.tm_hour > 11) << 7) |
2472                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2473         else
2474             return to_bcd(s->current_tm.tm_hour);
2475
2476     case 0x0c:  /* DAYS_REG */
2477         return to_bcd(s->current_tm.tm_mday);
2478
2479     case 0x10:  /* MONTHS_REG */
2480         return to_bcd(s->current_tm.tm_mon + 1);
2481
2482     case 0x14:  /* YEARS_REG */
2483         return to_bcd(s->current_tm.tm_year % 100);
2484
2485     case 0x18:  /* WEEK_REG */
2486         return s->current_tm.tm_wday;
2487
2488     case 0x20:  /* ALARM_SECONDS_REG */
2489         return to_bcd(s->alarm_tm.tm_sec);
2490
2491     case 0x24:  /* ALARM_MINUTES_REG */
2492         return to_bcd(s->alarm_tm.tm_min);
2493
2494     case 0x28:  /* ALARM_HOURS_REG */
2495         if (s->pm_am)
2496             return ((s->alarm_tm.tm_hour > 11) << 7) |
2497                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2498         else
2499             return to_bcd(s->alarm_tm.tm_hour);
2500
2501     case 0x2c:  /* ALARM_DAYS_REG */
2502         return to_bcd(s->alarm_tm.tm_mday);
2503
2504     case 0x30:  /* ALARM_MONTHS_REG */
2505         return to_bcd(s->alarm_tm.tm_mon + 1);
2506
2507     case 0x34:  /* ALARM_YEARS_REG */
2508         return to_bcd(s->alarm_tm.tm_year % 100);
2509
2510     case 0x40:  /* RTC_CTRL_REG */
2511         return (s->pm_am << 3) | (s->auto_comp << 2) |
2512                 (s->round << 1) | s->running;
2513
2514     case 0x44:  /* RTC_STATUS_REG */
2515         i = s->status;
2516         s->status &= ~0x3d;
2517         return i;
2518
2519     case 0x48:  /* RTC_INTERRUPTS_REG */
2520         return s->interrupts;
2521
2522     case 0x4c:  /* RTC_COMP_LSB_REG */
2523         return ((uint16_t) s->comp_reg) & 0xff;
2524
2525     case 0x50:  /* RTC_COMP_MSB_REG */
2526         return ((uint16_t) s->comp_reg) >> 8;
2527     }
2528
2529     OMAP_BAD_REG(addr);
2530     return 0;
2531 }
2532
2533 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
2534                 uint32_t value)
2535 {
2536     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2537     int offset = addr & OMAP_MPUI_REG_MASK;
2538     struct tm new_tm;
2539     time_t ti[2];
2540
2541     switch (offset) {
2542     case 0x00:  /* SECONDS_REG */
2543 #ifdef ALMDEBUG
2544         printf("RTC SEC_REG <-- %02x\n", value);
2545 #endif
2546         s->ti -= s->current_tm.tm_sec;
2547         s->ti += from_bcd(value);
2548         return;
2549
2550     case 0x04:  /* MINUTES_REG */
2551 #ifdef ALMDEBUG
2552         printf("RTC MIN_REG <-- %02x\n", value);
2553 #endif
2554         s->ti -= s->current_tm.tm_min * 60;
2555         s->ti += from_bcd(value) * 60;
2556         return;
2557
2558     case 0x08:  /* HOURS_REG */
2559 #ifdef ALMDEBUG
2560         printf("RTC HRS_REG <-- %02x\n", value);
2561 #endif
2562         s->ti -= s->current_tm.tm_hour * 3600;
2563         if (s->pm_am) {
2564             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2565             s->ti += ((value >> 7) & 1) * 43200;
2566         } else
2567             s->ti += from_bcd(value & 0x3f) * 3600;
2568         return;
2569
2570     case 0x0c:  /* DAYS_REG */
2571 #ifdef ALMDEBUG
2572         printf("RTC DAY_REG <-- %02x\n", value);
2573 #endif
2574         s->ti -= s->current_tm.tm_mday * 86400;
2575         s->ti += from_bcd(value) * 86400;
2576         return;
2577
2578     case 0x10:  /* MONTHS_REG */
2579 #ifdef ALMDEBUG
2580         printf("RTC MTH_REG <-- %02x\n", value);
2581 #endif
2582         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2583         new_tm.tm_mon = from_bcd(value);
2584         ti[0] = mktimegm(&s->current_tm);
2585         ti[1] = mktimegm(&new_tm);
2586
2587         if (ti[0] != -1 && ti[1] != -1) {
2588             s->ti -= ti[0];
2589             s->ti += ti[1];
2590         } else {
2591             /* A less accurate version */
2592             s->ti -= s->current_tm.tm_mon * 2592000;
2593             s->ti += from_bcd(value) * 2592000;
2594         }
2595         return;
2596
2597     case 0x14:  /* YEARS_REG */
2598 #ifdef ALMDEBUG
2599         printf("RTC YRS_REG <-- %02x\n", value);
2600 #endif
2601         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2602         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2603         ti[0] = mktimegm(&s->current_tm);
2604         ti[1] = mktimegm(&new_tm);
2605
2606         if (ti[0] != -1 && ti[1] != -1) {
2607             s->ti -= ti[0];
2608             s->ti += ti[1];
2609         } else {
2610             /* A less accurate version */
2611             s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2612             s->ti += from_bcd(value) * 31536000;
2613         }
2614         return;
2615
2616     case 0x18:  /* WEEK_REG */
2617         return; /* Ignored */
2618
2619     case 0x20:  /* ALARM_SECONDS_REG */
2620 #ifdef ALMDEBUG
2621         printf("ALM SEC_REG <-- %02x\n", value);
2622 #endif
2623         s->alarm_tm.tm_sec = from_bcd(value);
2624         omap_rtc_alarm_update(s);
2625         return;
2626
2627     case 0x24:  /* ALARM_MINUTES_REG */
2628 #ifdef ALMDEBUG
2629         printf("ALM MIN_REG <-- %02x\n", value);
2630 #endif
2631         s->alarm_tm.tm_min = from_bcd(value);
2632         omap_rtc_alarm_update(s);
2633         return;
2634
2635     case 0x28:  /* ALARM_HOURS_REG */
2636 #ifdef ALMDEBUG
2637         printf("ALM HRS_REG <-- %02x\n", value);
2638 #endif
2639         if (s->pm_am)
2640             s->alarm_tm.tm_hour =
2641                     ((from_bcd(value & 0x3f)) % 12) +
2642                     ((value >> 7) & 1) * 12;
2643         else
2644             s->alarm_tm.tm_hour = from_bcd(value);
2645         omap_rtc_alarm_update(s);
2646         return;
2647
2648     case 0x2c:  /* ALARM_DAYS_REG */
2649 #ifdef ALMDEBUG
2650         printf("ALM DAY_REG <-- %02x\n", value);
2651 #endif
2652         s->alarm_tm.tm_mday = from_bcd(value);
2653         omap_rtc_alarm_update(s);
2654         return;
2655
2656     case 0x30:  /* ALARM_MONTHS_REG */
2657 #ifdef ALMDEBUG
2658         printf("ALM MON_REG <-- %02x\n", value);
2659 #endif
2660         s->alarm_tm.tm_mon = from_bcd(value);
2661         omap_rtc_alarm_update(s);
2662         return;
2663
2664     case 0x34:  /* ALARM_YEARS_REG */
2665 #ifdef ALMDEBUG
2666         printf("ALM YRS_REG <-- %02x\n", value);
2667 #endif
2668         s->alarm_tm.tm_year = from_bcd(value);
2669         omap_rtc_alarm_update(s);
2670         return;
2671
2672     case 0x40:  /* RTC_CTRL_REG */
2673 #ifdef ALMDEBUG
2674         printf("RTC CONTROL <-- %02x\n", value);
2675 #endif
2676         s->pm_am = (value >> 3) & 1;
2677         s->auto_comp = (value >> 2) & 1;
2678         s->round = (value >> 1) & 1;
2679         s->running = value & 1;
2680         s->status &= 0xfd;
2681         s->status |= s->running << 1;
2682         return;
2683
2684     case 0x44:  /* RTC_STATUS_REG */
2685 #ifdef ALMDEBUG
2686         printf("RTC STATUSL <-- %02x\n", value);
2687 #endif
2688         s->status &= ~((value & 0xc0) ^ 0x80);
2689         omap_rtc_interrupts_update(s);
2690         return;
2691
2692     case 0x48:  /* RTC_INTERRUPTS_REG */
2693 #ifdef ALMDEBUG
2694         printf("RTC INTRS <-- %02x\n", value);
2695 #endif
2696         s->interrupts = value;
2697         return;
2698
2699     case 0x4c:  /* RTC_COMP_LSB_REG */
2700 #ifdef ALMDEBUG
2701         printf("RTC COMPLSB <-- %02x\n", value);
2702 #endif
2703         s->comp_reg &= 0xff00;
2704         s->comp_reg |= 0x00ff & value;
2705         return;
2706
2707     case 0x50:  /* RTC_COMP_MSB_REG */
2708 #ifdef ALMDEBUG
2709         printf("RTC COMPMSB <-- %02x\n", value);
2710 #endif
2711         s->comp_reg &= 0x00ff;
2712         s->comp_reg |= 0xff00 & (value << 8);
2713         return;
2714
2715     default:
2716         OMAP_BAD_REG(addr);
2717         return;
2718     }
2719 }
2720
2721 static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
2722     omap_rtc_read,
2723     omap_badwidth_read8,
2724     omap_badwidth_read8,
2725 };
2726
2727 static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
2728     omap_rtc_write,
2729     omap_badwidth_write8,
2730     omap_badwidth_write8,
2731 };
2732
2733 static void omap_rtc_tick(void *opaque)
2734 {
2735     struct omap_rtc_s *s = opaque;
2736
2737     if (s->round) {
2738         /* Round to nearest full minute.  */
2739         if (s->current_tm.tm_sec < 30)
2740             s->ti -= s->current_tm.tm_sec;
2741         else
2742             s->ti += 60 - s->current_tm.tm_sec;
2743
2744         s->round = 0;
2745     }
2746
2747     memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2748
2749     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2750         s->status |= 0x40;
2751         omap_rtc_interrupts_update(s);
2752     }
2753
2754     if (s->interrupts & 0x04)
2755         switch (s->interrupts & 3) {
2756         case 0:
2757             s->status |= 0x04;
2758             qemu_irq_pulse(s->irq);
2759             break;
2760         case 1:
2761             if (s->current_tm.tm_sec)
2762                 break;
2763             s->status |= 0x08;
2764             qemu_irq_pulse(s->irq);
2765             break;
2766         case 2:
2767             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2768                 break;
2769             s->status |= 0x10;
2770             qemu_irq_pulse(s->irq);
2771             break;
2772         case 3:
2773             if (s->current_tm.tm_sec ||
2774                             s->current_tm.tm_min || s->current_tm.tm_hour)
2775                 break;
2776             s->status |= 0x20;
2777             qemu_irq_pulse(s->irq);
2778             break;
2779         }
2780
2781     /* Move on */
2782     if (s->running)
2783         s->ti ++;
2784     s->tick += 1000;
2785
2786     /*
2787      * Every full hour add a rough approximation of the compensation
2788      * register to the 32kHz Timer (which drives the RTC) value. 
2789      */
2790     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2791         s->tick += s->comp_reg * 1000 / 32768;
2792
2793     qemu_mod_timer(s->clk, s->tick);
2794 }
2795
2796 static void omap_rtc_reset(struct omap_rtc_s *s)
2797 {
2798     struct tm tm;
2799
2800     s->interrupts = 0;
2801     s->comp_reg = 0;
2802     s->running = 0;
2803     s->pm_am = 0;
2804     s->auto_comp = 0;
2805     s->round = 0;
2806     s->tick = qemu_get_clock_ms(rt_clock);
2807     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2808     s->alarm_tm.tm_mday = 0x01;
2809     s->status = 1 << 7;
2810     qemu_get_timedate(&tm, 0);
2811     s->ti = mktimegm(&tm);
2812
2813     omap_rtc_alarm_update(s);
2814     omap_rtc_tick(s);
2815 }
2816
2817 static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
2818                 qemu_irq *irq, omap_clk clk)
2819 {
2820     int iomemtype;
2821     struct omap_rtc_s *s = (struct omap_rtc_s *)
2822             g_malloc0(sizeof(struct omap_rtc_s));
2823
2824     s->irq = irq[0];
2825     s->alarm = irq[1];
2826     s->clk = qemu_new_timer_ms(rt_clock, omap_rtc_tick, s);
2827
2828     omap_rtc_reset(s);
2829
2830     iomemtype = cpu_register_io_memory(omap_rtc_readfn,
2831                     omap_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
2832     cpu_register_physical_memory(base, 0x800, iomemtype);
2833
2834     return s;
2835 }
2836
2837 /* Multi-channel Buffered Serial Port interfaces */
2838 struct omap_mcbsp_s {
2839     qemu_irq txirq;
2840     qemu_irq rxirq;
2841     qemu_irq txdrq;
2842     qemu_irq rxdrq;
2843
2844     uint16_t spcr[2];
2845     uint16_t rcr[2];
2846     uint16_t xcr[2];
2847     uint16_t srgr[2];
2848     uint16_t mcr[2];
2849     uint16_t pcr;
2850     uint16_t rcer[8];
2851     uint16_t xcer[8];
2852     int tx_rate;
2853     int rx_rate;
2854     int tx_req;
2855     int rx_req;
2856
2857     I2SCodec *codec;
2858     QEMUTimer *source_timer;
2859     QEMUTimer *sink_timer;
2860 };
2861
2862 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2863 {
2864     int irq;
2865
2866     switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2867     case 0:
2868         irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2869         break;
2870     case 3:
2871         irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2872         break;
2873     default:
2874         irq = 0;
2875         break;
2876     }
2877
2878     if (irq)
2879         qemu_irq_pulse(s->rxirq);
2880
2881     switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
2882     case 0:
2883         irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
2884         break;
2885     case 3:
2886         irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
2887         break;
2888     default:
2889         irq = 0;
2890         break;
2891     }
2892
2893     if (irq)
2894         qemu_irq_pulse(s->txirq);
2895 }
2896
2897 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2898 {
2899     if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
2900         s->spcr[0] |= 1 << 2;                           /* RFULL */
2901     s->spcr[0] |= 1 << 1;                               /* RRDY */
2902     qemu_irq_raise(s->rxdrq);
2903     omap_mcbsp_intr_update(s);
2904 }
2905
2906 static void omap_mcbsp_source_tick(void *opaque)
2907 {
2908     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2909     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2910
2911     if (!s->rx_rate)
2912         return;
2913     if (s->rx_req)
2914         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
2915
2916     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2917
2918     omap_mcbsp_rx_newdata(s);
2919     qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
2920                    get_ticks_per_sec());
2921 }
2922
2923 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2924 {
2925     if (!s->codec || !s->codec->rts)
2926         omap_mcbsp_source_tick(s);
2927     else if (s->codec->in.len) {
2928         s->rx_req = s->codec->in.len;
2929         omap_mcbsp_rx_newdata(s);
2930     }
2931 }
2932
2933 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
2934 {
2935     qemu_del_timer(s->source_timer);
2936 }
2937
2938 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
2939 {
2940     s->spcr[0] &= ~(1 << 1);                            /* RRDY */
2941     qemu_irq_lower(s->rxdrq);
2942     omap_mcbsp_intr_update(s);
2943 }
2944
2945 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
2946 {
2947     s->spcr[1] |= 1 << 1;                               /* XRDY */
2948     qemu_irq_raise(s->txdrq);
2949     omap_mcbsp_intr_update(s);
2950 }
2951
2952 static void omap_mcbsp_sink_tick(void *opaque)
2953 {
2954     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2955     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2956
2957     if (!s->tx_rate)
2958         return;
2959     if (s->tx_req)
2960         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
2961
2962     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
2963
2964     omap_mcbsp_tx_newdata(s);
2965     qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
2966                    get_ticks_per_sec());
2967 }
2968
2969 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
2970 {
2971     if (!s->codec || !s->codec->cts)
2972         omap_mcbsp_sink_tick(s);
2973     else if (s->codec->out.size) {
2974         s->tx_req = s->codec->out.size;
2975         omap_mcbsp_tx_newdata(s);
2976     }
2977 }
2978
2979 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
2980 {
2981     s->spcr[1] &= ~(1 << 1);                            /* XRDY */
2982     qemu_irq_lower(s->txdrq);
2983     omap_mcbsp_intr_update(s);
2984     if (s->codec && s->codec->cts)
2985         s->codec->tx_swallow(s->codec->opaque);
2986 }
2987
2988 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
2989 {
2990     s->tx_req = 0;
2991     omap_mcbsp_tx_done(s);
2992     qemu_del_timer(s->sink_timer);
2993 }
2994
2995 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
2996 {
2997     int prev_rx_rate, prev_tx_rate;
2998     int rx_rate = 0, tx_rate = 0;
2999     int cpu_rate = 1500000;     /* XXX */
3000
3001     /* TODO: check CLKSTP bit */
3002     if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3003         if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3004             if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3005                             (s->pcr & (1 << 8))) {      /* CLKRM */
3006                 if (~s->pcr & (1 << 7))                 /* SCLKME */
3007                     rx_rate = cpu_rate /
3008                             ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3009             } else
3010                 if (s->codec)
3011                     rx_rate = s->codec->rx_rate;
3012         }
3013
3014         if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3015             if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3016                             (s->pcr & (1 << 9))) {      /* CLKXM */
3017                 if (~s->pcr & (1 << 7))                 /* SCLKME */
3018                     tx_rate = cpu_rate /
3019                             ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3020             } else
3021                 if (s->codec)
3022                     tx_rate = s->codec->tx_rate;
3023         }
3024     }
3025     prev_tx_rate = s->tx_rate;
3026     prev_rx_rate = s->rx_rate;
3027     s->tx_rate = tx_rate;
3028     s->rx_rate = rx_rate;
3029
3030     if (s->codec)
3031         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3032
3033     if (!prev_tx_rate && tx_rate)
3034         omap_mcbsp_tx_start(s);
3035     else if (s->tx_rate && !tx_rate)
3036         omap_mcbsp_tx_stop(s);
3037
3038     if (!prev_rx_rate && rx_rate)
3039         omap_mcbsp_rx_start(s);
3040     else if (prev_tx_rate && !tx_rate)
3041         omap_mcbsp_rx_stop(s);
3042 }
3043
3044 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3045 {
3046     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3047     int offset = addr & OMAP_MPUI_REG_MASK;
3048     uint16_t ret;
3049
3050     switch (offset) {
3051     case 0x00:  /* DRR2 */
3052         if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3053             return 0x0000;
3054         /* Fall through.  */
3055     case 0x02:  /* DRR1 */
3056         if (s->rx_req < 2) {
3057             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3058             omap_mcbsp_rx_done(s);
3059         } else {
3060             s->tx_req -= 2;
3061             if (s->codec && s->codec->in.len >= 2) {
3062                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3063                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3064                 s->codec->in.len -= 2;
3065             } else
3066                 ret = 0x0000;
3067             if (!s->tx_req)
3068                 omap_mcbsp_rx_done(s);
3069             return ret;
3070         }
3071         return 0x0000;
3072
3073     case 0x04:  /* DXR2 */
3074     case 0x06:  /* DXR1 */
3075         return 0x0000;
3076
3077     case 0x08:  /* SPCR2 */
3078         return s->spcr[1];
3079     case 0x0a:  /* SPCR1 */
3080         return s->spcr[0];
3081     case 0x0c:  /* RCR2 */
3082         return s->rcr[1];
3083     case 0x0e:  /* RCR1 */
3084         return s->rcr[0];
3085     case 0x10:  /* XCR2 */
3086         return s->xcr[1];
3087     case 0x12:  /* XCR1 */
3088         return s->xcr[0];
3089     case 0x14:  /* SRGR2 */
3090         return s->srgr[1];
3091     case 0x16:  /* SRGR1 */
3092         return s->srgr[0];
3093     case 0x18:  /* MCR2 */
3094         return s->mcr[1];
3095     case 0x1a:  /* MCR1 */
3096         return s->mcr[0];
3097     case 0x1c:  /* RCERA */
3098         return s->rcer[0];
3099     case 0x1e:  /* RCERB */
3100         return s->rcer[1];
3101     case 0x20:  /* XCERA */
3102         return s->xcer[0];
3103     case 0x22:  /* XCERB */
3104         return s->xcer[1];
3105     case 0x24:  /* PCR0 */
3106         return s->pcr;
3107     case 0x26:  /* RCERC */
3108         return s->rcer[2];
3109     case 0x28:  /* RCERD */
3110         return s->rcer[3];
3111     case 0x2a:  /* XCERC */
3112         return s->xcer[2];
3113     case 0x2c:  /* XCERD */
3114         return s->xcer[3];
3115     case 0x2e:  /* RCERE */
3116         return s->rcer[4];
3117     case 0x30:  /* RCERF */
3118         return s->rcer[5];
3119     case 0x32:  /* XCERE */
3120         return s->xcer[4];
3121     case 0x34:  /* XCERF */
3122         return s->xcer[5];
3123     case 0x36:  /* RCERG */
3124         return s->rcer[6];
3125     case 0x38:  /* RCERH */
3126         return s->rcer[7];
3127     case 0x3a:  /* XCERG */
3128         return s->xcer[6];
3129     case 0x3c:  /* XCERH */
3130         return s->xcer[7];
3131     }
3132
3133     OMAP_BAD_REG(addr);
3134     return 0;
3135 }
3136
3137 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3138                 uint32_t value)
3139 {
3140     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3141     int offset = addr & OMAP_MPUI_REG_MASK;
3142
3143     switch (offset) {
3144     case 0x00:  /* DRR2 */
3145     case 0x02:  /* DRR1 */
3146         OMAP_RO_REG(addr);
3147         return;
3148
3149     case 0x04:  /* DXR2 */
3150         if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3151             return;
3152         /* Fall through.  */
3153     case 0x06:  /* DXR1 */
3154         if (s->tx_req > 1) {
3155             s->tx_req -= 2;
3156             if (s->codec && s->codec->cts) {
3157                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3158                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3159             }
3160             if (s->tx_req < 2)
3161                 omap_mcbsp_tx_done(s);
3162         } else
3163             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3164         return;
3165
3166     case 0x08:  /* SPCR2 */
3167         s->spcr[1] &= 0x0002;
3168         s->spcr[1] |= 0x03f9 & value;
3169         s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3170         if (~value & 1)                                 /* XRST */
3171             s->spcr[1] &= ~6;
3172         omap_mcbsp_req_update(s);
3173         return;
3174     case 0x0a:  /* SPCR1 */
3175         s->spcr[0] &= 0x0006;
3176         s->spcr[0] |= 0xf8f9 & value;
3177         if (value & (1 << 15))                          /* DLB */
3178             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3179         if (~value & 1) {                               /* RRST */
3180             s->spcr[0] &= ~6;
3181             s->rx_req = 0;
3182             omap_mcbsp_rx_done(s);
3183         }
3184         omap_mcbsp_req_update(s);
3185         return;
3186
3187     case 0x0c:  /* RCR2 */
3188         s->rcr[1] = value & 0xffff;
3189         return;
3190     case 0x0e:  /* RCR1 */
3191         s->rcr[0] = value & 0x7fe0;
3192         return;
3193     case 0x10:  /* XCR2 */
3194         s->xcr[1] = value & 0xffff;
3195         return;
3196     case 0x12:  /* XCR1 */
3197         s->xcr[0] = value & 0x7fe0;
3198         return;
3199     case 0x14:  /* SRGR2 */
3200         s->srgr[1] = value & 0xffff;
3201         omap_mcbsp_req_update(s);
3202         return;
3203     case 0x16:  /* SRGR1 */
3204         s->srgr[0] = value & 0xffff;
3205         omap_mcbsp_req_update(s);
3206         return;
3207     case 0x18:  /* MCR2 */
3208         s->mcr[1] = value & 0x03e3;
3209         if (value & 3)                                  /* XMCM */
3210             printf("%s: Tx channel selection mode enable attempt\n",
3211                             __FUNCTION__);
3212         return;
3213     case 0x1a:  /* MCR1 */
3214         s->mcr[0] = value & 0x03e1;
3215         if (value & 1)                                  /* RMCM */
3216             printf("%s: Rx channel selection mode enable attempt\n",
3217                             __FUNCTION__);
3218         return;
3219     case 0x1c:  /* RCERA */
3220         s->rcer[0] = value & 0xffff;
3221         return;
3222     case 0x1e:  /* RCERB */
3223         s->rcer[1] = value & 0xffff;
3224         return;
3225     case 0x20:  /* XCERA */
3226         s->xcer[0] = value & 0xffff;
3227         return;
3228     case 0x22:  /* XCERB */
3229         s->xcer[1] = value & 0xffff;
3230         return;
3231     case 0x24:  /* PCR0 */
3232         s->pcr = value & 0x7faf;
3233         return;
3234     case 0x26:  /* RCERC */
3235         s->rcer[2] = value & 0xffff;
3236         return;
3237     case 0x28:  /* RCERD */
3238         s->rcer[3] = value & 0xffff;
3239         return;
3240     case 0x2a:  /* XCERC */
3241         s->xcer[2] = value & 0xffff;
3242         return;
3243     case 0x2c:  /* XCERD */
3244         s->xcer[3] = value & 0xffff;
3245         return;
3246     case 0x2e:  /* RCERE */
3247         s->rcer[4] = value & 0xffff;
3248         return;
3249     case 0x30:  /* RCERF */
3250         s->rcer[5] = value & 0xffff;
3251         return;
3252     case 0x32:  /* XCERE */
3253         s->xcer[4] = value & 0xffff;
3254         return;
3255     case 0x34:  /* XCERF */
3256         s->xcer[5] = value & 0xffff;
3257         return;
3258     case 0x36:  /* RCERG */
3259         s->rcer[6] = value & 0xffff;
3260         return;
3261     case 0x38:  /* RCERH */
3262         s->rcer[7] = value & 0xffff;
3263         return;
3264     case 0x3a:  /* XCERG */
3265         s->xcer[6] = value & 0xffff;
3266         return;
3267     case 0x3c:  /* XCERH */
3268         s->xcer[7] = value & 0xffff;
3269         return;
3270     }
3271
3272     OMAP_BAD_REG(addr);
3273 }
3274
3275 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3276                 uint32_t value)
3277 {
3278     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3279     int offset = addr & OMAP_MPUI_REG_MASK;
3280
3281     if (offset == 0x04) {                               /* DXR */
3282         if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3283             return;
3284         if (s->tx_req > 3) {
3285             s->tx_req -= 4;
3286             if (s->codec && s->codec->cts) {
3287                 s->codec->out.fifo[s->codec->out.len ++] =
3288                         (value >> 24) & 0xff;
3289                 s->codec->out.fifo[s->codec->out.len ++] =
3290                         (value >> 16) & 0xff;
3291                 s->codec->out.fifo[s->codec->out.len ++] =
3292                         (value >> 8) & 0xff;
3293                 s->codec->out.fifo[s->codec->out.len ++] =
3294                         (value >> 0) & 0xff;
3295             }
3296             if (s->tx_req < 4)
3297                 omap_mcbsp_tx_done(s);
3298         } else
3299             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3300         return;
3301     }
3302
3303     omap_badwidth_write16(opaque, addr, value);
3304 }
3305
3306 static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
3307     omap_badwidth_read16,
3308     omap_mcbsp_read,
3309     omap_badwidth_read16,
3310 };
3311
3312 static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
3313     omap_badwidth_write16,
3314     omap_mcbsp_writeh,
3315     omap_mcbsp_writew,
3316 };
3317
3318 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3319 {
3320     memset(&s->spcr, 0, sizeof(s->spcr));
3321     memset(&s->rcr, 0, sizeof(s->rcr));
3322     memset(&s->xcr, 0, sizeof(s->xcr));
3323     s->srgr[0] = 0x0001;
3324     s->srgr[1] = 0x2000;
3325     memset(&s->mcr, 0, sizeof(s->mcr));
3326     memset(&s->pcr, 0, sizeof(s->pcr));
3327     memset(&s->rcer, 0, sizeof(s->rcer));
3328     memset(&s->xcer, 0, sizeof(s->xcer));
3329     s->tx_req = 0;
3330     s->rx_req = 0;
3331     s->tx_rate = 0;
3332     s->rx_rate = 0;
3333     qemu_del_timer(s->source_timer);
3334     qemu_del_timer(s->sink_timer);
3335 }
3336
3337 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3338                 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3339 {
3340     int iomemtype;
3341     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3342             g_malloc0(sizeof(struct omap_mcbsp_s));
3343
3344     s->txirq = irq[0];
3345     s->rxirq = irq[1];
3346     s->txdrq = dma[0];
3347     s->rxdrq = dma[1];
3348     s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3349     s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3350     omap_mcbsp_reset(s);
3351
3352     iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
3353                     omap_mcbsp_writefn, s, DEVICE_NATIVE_ENDIAN);
3354     cpu_register_physical_memory(base, 0x800, iomemtype);
3355
3356     return s;
3357 }
3358
3359 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3360 {
3361     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3362
3363     if (s->rx_rate) {
3364         s->rx_req = s->codec->in.len;
3365         omap_mcbsp_rx_newdata(s);
3366     }
3367 }
3368
3369 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3370 {
3371     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3372
3373     if (s->tx_rate) {
3374         s->tx_req = s->codec->out.size;
3375         omap_mcbsp_tx_newdata(s);
3376     }
3377 }
3378
3379 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3380 {
3381     s->codec = slave;
3382     slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3383     slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3384 }
3385
3386 /* LED Pulse Generators */
3387 struct omap_lpg_s {
3388     QEMUTimer *tm;
3389
3390     uint8_t control;
3391     uint8_t power;
3392     int64_t on;
3393     int64_t period;
3394     int clk;
3395     int cycle;
3396 };
3397
3398 static void omap_lpg_tick(void *opaque)
3399 {
3400     struct omap_lpg_s *s = opaque;
3401
3402     if (s->cycle)
3403         qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->period - s->on);
3404     else
3405         qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->on);
3406
3407     s->cycle = !s->cycle;
3408     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3409 }
3410
3411 static void omap_lpg_update(struct omap_lpg_s *s)
3412 {
3413     int64_t on, period = 1, ticks = 1000;
3414     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3415
3416     if (~s->control & (1 << 6))                                 /* LPGRES */
3417         on = 0;
3418     else if (s->control & (1 << 7))                             /* PERM_ON */
3419         on = period;
3420     else {
3421         period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3422                         256 / 32);
3423         on = (s->clk && s->power) ? muldiv64(ticks,
3424                         per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3425     }
3426
3427     qemu_del_timer(s->tm);
3428     if (on == period && s->on < s->period)
3429         printf("%s: LED is on\n", __FUNCTION__);
3430     else if (on == 0 && s->on)
3431         printf("%s: LED is off\n", __FUNCTION__);
3432     else if (on && (on != s->on || period != s->period)) {
3433         s->cycle = 0;
3434         s->on = on;
3435         s->period = period;
3436         omap_lpg_tick(s);
3437         return;
3438     }
3439
3440     s->on = on;
3441     s->period = period;
3442 }
3443
3444 static void omap_lpg_reset(struct omap_lpg_s *s)
3445 {
3446     s->control = 0x00;
3447     s->power = 0x00;
3448     s->clk = 1;
3449     omap_lpg_update(s);
3450 }
3451
3452 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
3453 {
3454     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3455     int offset = addr & OMAP_MPUI_REG_MASK;
3456
3457     switch (offset) {
3458     case 0x00:  /* LCR */
3459         return s->control;
3460
3461     case 0x04:  /* PMR */
3462         return s->power;
3463     }
3464
3465     OMAP_BAD_REG(addr);
3466     return 0;
3467 }
3468
3469 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
3470                 uint32_t value)
3471 {
3472     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3473     int offset = addr & OMAP_MPUI_REG_MASK;
3474
3475     switch (offset) {
3476     case 0x00:  /* LCR */
3477         if (~value & (1 << 6))                                  /* LPGRES */
3478             omap_lpg_reset(s);
3479         s->control = value & 0xff;
3480         omap_lpg_update(s);
3481         return;
3482
3483     case 0x04:  /* PMR */
3484         s->power = value & 0x01;
3485         omap_lpg_update(s);
3486         return;
3487
3488     default:
3489         OMAP_BAD_REG(addr);
3490         return;
3491     }
3492 }
3493
3494 static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
3495     omap_lpg_read,
3496     omap_badwidth_read8,
3497     omap_badwidth_read8,
3498 };
3499
3500 static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
3501     omap_lpg_write,
3502     omap_badwidth_write8,
3503     omap_badwidth_write8,
3504 };
3505
3506 static void omap_lpg_clk_update(void *opaque, int line, int on)
3507 {
3508     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3509
3510     s->clk = on;
3511     omap_lpg_update(s);
3512 }
3513
3514 static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
3515 {
3516     int iomemtype;
3517     struct omap_lpg_s *s = (struct omap_lpg_s *)
3518             g_malloc0(sizeof(struct omap_lpg_s));
3519
3520     s->tm = qemu_new_timer_ms(rt_clock, omap_lpg_tick, s);
3521
3522     omap_lpg_reset(s);
3523
3524     iomemtype = cpu_register_io_memory(omap_lpg_readfn,
3525                     omap_lpg_writefn, s, DEVICE_NATIVE_ENDIAN);
3526     cpu_register_physical_memory(base, 0x800, iomemtype);
3527
3528     omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3529
3530     return s;
3531 }
3532
3533 /* MPUI Peripheral Bridge configuration */
3534 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
3535 {
3536     if (addr == OMAP_MPUI_BASE) /* CMR */
3537         return 0xfe4d;
3538
3539     OMAP_BAD_REG(addr);
3540     return 0;
3541 }
3542
3543 static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
3544     omap_badwidth_read16,
3545     omap_mpui_io_read,
3546     omap_badwidth_read16,
3547 };
3548
3549 static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
3550     omap_badwidth_write16,
3551     omap_badwidth_write16,
3552     omap_badwidth_write16,
3553 };
3554
3555 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
3556 {
3557     int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
3558                     omap_mpui_io_writefn, mpu, DEVICE_NATIVE_ENDIAN);
3559     cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
3560 }
3561
3562 /* General chip reset */
3563 static void omap1_mpu_reset(void *opaque)
3564 {
3565     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3566
3567     omap_inth_reset(mpu->ih[0]);
3568     omap_inth_reset(mpu->ih[1]);
3569     omap_dma_reset(mpu->dma);
3570     omap_mpu_timer_reset(mpu->timer[0]);
3571     omap_mpu_timer_reset(mpu->timer[1]);
3572     omap_mpu_timer_reset(mpu->timer[2]);
3573     omap_wd_timer_reset(mpu->wdt);
3574     omap_os_timer_reset(mpu->os_timer);
3575     omap_lcdc_reset(mpu->lcd);
3576     omap_ulpd_pm_reset(mpu);
3577     omap_pin_cfg_reset(mpu);
3578     omap_mpui_reset(mpu);
3579     omap_tipb_bridge_reset(mpu->private_tipb);
3580     omap_tipb_bridge_reset(mpu->public_tipb);
3581     omap_dpll_reset(&mpu->dpll[0]);
3582     omap_dpll_reset(&mpu->dpll[1]);
3583     omap_dpll_reset(&mpu->dpll[2]);
3584     omap_uart_reset(mpu->uart[0]);
3585     omap_uart_reset(mpu->uart[1]);
3586     omap_uart_reset(mpu->uart[2]);
3587     omap_mmc_reset(mpu->mmc);
3588     omap_mpuio_reset(mpu->mpuio);
3589     omap_uwire_reset(mpu->microwire);
3590     omap_pwl_reset(mpu);
3591     omap_pwt_reset(mpu);
3592     omap_i2c_reset(mpu->i2c[0]);
3593     omap_rtc_reset(mpu->rtc);
3594     omap_mcbsp_reset(mpu->mcbsp1);
3595     omap_mcbsp_reset(mpu->mcbsp2);
3596     omap_mcbsp_reset(mpu->mcbsp3);
3597     omap_lpg_reset(mpu->led[0]);
3598     omap_lpg_reset(mpu->led[1]);
3599     omap_clkm_reset(mpu);
3600     cpu_reset(mpu->env);
3601 }
3602
3603 static const struct omap_map_s {
3604     target_phys_addr_t phys_dsp;
3605     target_phys_addr_t phys_mpu;
3606     uint32_t size;
3607     const char *name;
3608 } omap15xx_dsp_mm[] = {
3609     /* Strobe 0 */
3610     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3611     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3612     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3613     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3614     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3615     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3616     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3617     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3618     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3619     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3620     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3621     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3622     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3623     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3624     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3625     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3626     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3627     /* Strobe 1 */
3628     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3629
3630     { 0 }
3631 };
3632
3633 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
3634 {
3635     int io;
3636
3637     for (; map->phys_dsp; map ++) {
3638         io = cpu_get_physical_page_desc(map->phys_mpu);
3639
3640         cpu_register_physical_memory(map->phys_dsp, map->size, io);
3641     }
3642 }
3643
3644 void omap_mpu_wakeup(void *opaque, int irq, int req)
3645 {
3646     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3647
3648     if (mpu->env->halted)
3649         cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3650 }
3651
3652 static const struct dma_irq_map omap1_dma_irq_map[] = {
3653     { 0, OMAP_INT_DMA_CH0_6 },
3654     { 0, OMAP_INT_DMA_CH1_7 },
3655     { 0, OMAP_INT_DMA_CH2_8 },
3656     { 0, OMAP_INT_DMA_CH3 },
3657     { 0, OMAP_INT_DMA_CH4 },
3658     { 0, OMAP_INT_DMA_CH5 },
3659     { 1, OMAP_INT_1610_DMA_CH6 },
3660     { 1, OMAP_INT_1610_DMA_CH7 },
3661     { 1, OMAP_INT_1610_DMA_CH8 },
3662     { 1, OMAP_INT_1610_DMA_CH9 },
3663     { 1, OMAP_INT_1610_DMA_CH10 },
3664     { 1, OMAP_INT_1610_DMA_CH11 },
3665     { 1, OMAP_INT_1610_DMA_CH12 },
3666     { 1, OMAP_INT_1610_DMA_CH13 },
3667     { 1, OMAP_INT_1610_DMA_CH14 },
3668     { 1, OMAP_INT_1610_DMA_CH15 }
3669 };
3670
3671 /* DMA ports for OMAP1 */
3672 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3673                 target_phys_addr_t addr)
3674 {
3675     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3676 }
3677
3678 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3679                 target_phys_addr_t addr)
3680 {
3681     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3682                              addr);
3683 }
3684
3685 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3686                 target_phys_addr_t addr)
3687 {
3688     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3689 }
3690
3691 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3692                 target_phys_addr_t addr)
3693 {
3694     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3695 }
3696
3697 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3698                 target_phys_addr_t addr)
3699 {
3700     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3701 }
3702
3703 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3704                 target_phys_addr_t addr)
3705 {
3706     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3707 }
3708
3709 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3710                 const char *core)
3711 {
3712     int i;
3713     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3714             g_malloc0(sizeof(struct omap_mpu_state_s));
3715     ram_addr_t imif_base, emiff_base;
3716     qemu_irq *cpu_irq;
3717     qemu_irq dma_irqs[6];
3718     DriveInfo *dinfo;
3719
3720     if (!core)
3721         core = "ti925t";
3722
3723     /* Core */
3724     s->mpu_model = omap310;
3725     s->env = cpu_init(core);
3726     if (!s->env) {
3727         fprintf(stderr, "Unable to find CPU definition\n");
3728         exit(1);
3729     }
3730     s->sdram_size = sdram_size;
3731     s->sram_size = OMAP15XX_SRAM_SIZE;
3732
3733     s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3734
3735     /* Clocks */
3736     omap_clk_init(s);
3737
3738     /* Memory-mapped stuff */
3739     cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3740                     (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
3741                                                  s->sdram_size)) | IO_MEM_RAM);
3742     cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3743                     (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
3744                                                 s->sram_size)) | IO_MEM_RAM);
3745
3746     omap_clkm_init(0xfffece00, 0xe1008000, s);
3747
3748     cpu_irq = arm_pic_init_cpu(s->env);
3749     s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
3750                     cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
3751                     omap_findclk(s, "arminth_ck"));
3752     s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
3753                     omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
3754                     NULL, omap_findclk(s, "arminth_ck"));
3755
3756     for (i = 0; i < 6; i ++)
3757         dma_irqs[i] =
3758                 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
3759     s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
3760                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3761
3762     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3763     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3764     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3765     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3766     s->port[local    ].addr_valid = omap_validate_local_addr;
3767     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3768
3769     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3770     soc_dma_port_add_mem_ram(s->dma,
3771                     emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
3772     soc_dma_port_add_mem_ram(s->dma,
3773                     imif_base, OMAP_IMIF_BASE, s->sram_size);
3774
3775     s->timer[0] = omap_mpu_timer_init(0xfffec500,
3776                     s->irq[0][OMAP_INT_TIMER1],
3777                     omap_findclk(s, "mputim_ck"));
3778     s->timer[1] = omap_mpu_timer_init(0xfffec600,
3779                     s->irq[0][OMAP_INT_TIMER2],
3780                     omap_findclk(s, "mputim_ck"));
3781     s->timer[2] = omap_mpu_timer_init(0xfffec700,
3782                     s->irq[0][OMAP_INT_TIMER3],
3783                     omap_findclk(s, "mputim_ck"));
3784
3785     s->wdt = omap_wd_timer_init(0xfffec800,
3786                     s->irq[0][OMAP_INT_WD_TIMER],
3787                     omap_findclk(s, "armwdt_ck"));
3788
3789     s->os_timer = omap_os_timer_init(0xfffb9000,
3790                     s->irq[1][OMAP_INT_OS_TIMER],
3791                     omap_findclk(s, "clk32-kHz"));
3792
3793     s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3794                     omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
3795                     omap_findclk(s, "lcd_ck"));
3796
3797     omap_ulpd_pm_init(0xfffe0800, s);
3798     omap_pin_cfg_init(0xfffe1000, s);
3799     omap_id_init(s);
3800
3801     omap_mpui_init(0xfffec900, s);
3802
3803     s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3804                     s->irq[0][OMAP_INT_BRIDGE_PRIV],
3805                     omap_findclk(s, "tipb_ck"));
3806     s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3807                     s->irq[0][OMAP_INT_BRIDGE_PUB],
3808                     omap_findclk(s, "tipb_ck"));
3809
3810     omap_tcmi_init(0xfffecc00, s);
3811
3812     s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3813                     omap_findclk(s, "uart1_ck"),
3814                     omap_findclk(s, "uart1_ck"),
3815                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3816                     "uart1",
3817                     serial_hds[0]);
3818     s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3819                     omap_findclk(s, "uart2_ck"),
3820                     omap_findclk(s, "uart2_ck"),
3821                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3822                     "uart2",
3823                     serial_hds[0] ? serial_hds[1] : NULL);
3824     s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
3825                     omap_findclk(s, "uart3_ck"),
3826                     omap_findclk(s, "uart3_ck"),
3827                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3828                     "uart3",
3829                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3830
3831     omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3832     omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3833     omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3834
3835     dinfo = drive_get(IF_SD, 0, 0);
3836     if (!dinfo) {
3837         fprintf(stderr, "qemu: missing SecureDigital device\n");
3838         exit(1);
3839     }
3840     s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
3841                     s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
3842                     omap_findclk(s, "mmc_ck"));
3843
3844     s->mpuio = omap_mpuio_init(0xfffb5000,
3845                     s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3846                     s->wakeup, omap_findclk(s, "clk32-kHz"));
3847
3848     s->gpio = qdev_create(NULL, "omap-gpio");
3849     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3850     qdev_init_nofail(s->gpio);
3851     sysbus_connect_irq(sysbus_from_qdev(s->gpio), 0,
3852                     s->irq[0][OMAP_INT_GPIO_BANK1]);
3853     sysbus_mmio_map(sysbus_from_qdev(s->gpio), 0, 0xfffce000);
3854
3855     s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3856                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3857
3858     omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
3859     omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
3860
3861     s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
3862                     &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
3863
3864     s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
3865                     omap_findclk(s, "clk32-kHz"));
3866
3867     s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
3868                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
3869     s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
3870                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
3871     s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
3872                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
3873
3874     s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
3875     s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
3876
3877     /* Register mappings not currenlty implemented:
3878      * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
3879      * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
3880      * USB W2FC         fffb4000 - fffb47ff
3881      * Camera Interface fffb6800 - fffb6fff
3882      * USB Host         fffba000 - fffba7ff
3883      * FAC              fffba800 - fffbafff
3884      * HDQ/1-Wire       fffbc000 - fffbc7ff
3885      * TIPB switches    fffbc800 - fffbcfff
3886      * Mailbox          fffcf000 - fffcf7ff
3887      * Local bus IF     fffec100 - fffec1ff
3888      * Local bus MMU    fffec200 - fffec2ff
3889      * DSP MMU          fffed200 - fffed2ff
3890      */
3891
3892     omap_setup_dsp_mapping(omap15xx_dsp_mm);
3893     omap_setup_mpui_io(s);
3894
3895     qemu_register_reset(omap1_mpu_reset, s);
3896
3897     return s;
3898 }
This page took 0.242316 seconds and 4 git commands to generate.