2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
25 typedef struct RAMBlock RAMBlock;
29 struct MemoryRegion *mr;
32 ram_addr_t used_length;
33 ram_addr_t max_length;
34 void (*resized)(const char*, uint64_t length, void *host);
36 /* Protected by iothread lock. */
38 /* RCU-enabled, writes protected by the ramlist lock */
39 QLIST_ENTRY(RAMBlock) next;
43 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
45 assert(offset < block->used_length);
47 return (char *)block->host + offset;
50 typedef struct RAMList {
52 /* Protected by the iothread lock. */
53 unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
55 /* RCU-enabled, writes protected by the ramlist lock. */
56 QLIST_HEAD(, RAMBlock) blocks;
59 extern RAMList ram_list;
61 ram_addr_t last_ram_offset(void);
62 void qemu_mutex_lock_ramlist(void);
63 void qemu_mutex_unlock_ramlist(void);
65 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
66 bool share, const char *mem_path,
68 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
69 MemoryRegion *mr, Error **errp);
70 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
71 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
72 void (*resized)(const char*,
75 MemoryRegion *mr, Error **errp);
76 int qemu_get_ram_fd(ram_addr_t addr);
77 void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
78 void *qemu_get_ram_ptr(ram_addr_t addr);
79 void qemu_ram_free(ram_addr_t addr);
80 void qemu_ram_free_from_ptr(ram_addr_t addr);
82 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
84 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
85 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
87 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
91 unsigned long end, page, next;
93 assert(client < DIRTY_MEMORY_NUM);
95 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
96 page = start >> TARGET_PAGE_BITS;
97 next = find_next_bit(ram_list.dirty_memory[client], end, page);
102 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
106 unsigned long end, page, next;
108 assert(client < DIRTY_MEMORY_NUM);
110 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
111 page = start >> TARGET_PAGE_BITS;
112 next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
117 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
120 return cpu_physical_memory_get_dirty(addr, 1, client);
123 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
125 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
126 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
128 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
129 return !(vga && code && migration);
132 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
138 if (mask & (1 << DIRTY_MEMORY_VGA) &&
139 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
140 ret |= (1 << DIRTY_MEMORY_VGA);
142 if (mask & (1 << DIRTY_MEMORY_CODE) &&
143 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
144 ret |= (1 << DIRTY_MEMORY_CODE);
146 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
147 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
148 ret |= (1 << DIRTY_MEMORY_MIGRATION);
153 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
156 assert(client < DIRTY_MEMORY_NUM);
157 set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
160 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
164 unsigned long end, page;
165 unsigned long **d = ram_list.dirty_memory;
167 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
168 page = start >> TARGET_PAGE_BITS;
169 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
170 bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
172 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
173 bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
175 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
176 bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
178 xen_modified_memory(start, length);
182 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
187 unsigned long page_number, c;
190 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
191 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
192 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
194 /* start address is aligned at the start of a word? */
195 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
198 long nr = BITS_TO_LONGS(pages);
200 for (k = 0; k < nr; k++) {
202 unsigned long temp = leul_to_cpu(bitmap[k]);
203 unsigned long **d = ram_list.dirty_memory;
205 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
206 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
208 atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
212 xen_modified_memory(start, pages << TARGET_PAGE_BITS);
214 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
216 * bitmap-traveling is faster than memory-traveling (for addr...)
217 * especially when most of the memory is not dirty.
219 for (i = 0; i < len; i++) {
220 if (bitmap[i] != 0) {
221 c = leul_to_cpu(bitmap[i]);
225 page_number = (i * HOST_LONG_BITS + j) * hpratio;
226 addr = page_number * TARGET_PAGE_SIZE;
227 ram_addr = start + addr;
228 cpu_physical_memory_set_dirty_range(ram_addr,
229 TARGET_PAGE_SIZE * hpratio, clients);
235 #endif /* not _WIN32 */
237 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
241 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
244 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
245 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
246 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
251 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
256 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
257 uint64_t num_dirty = 0;
259 /* start address is aligned at the start of a word? */
260 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
262 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
263 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
265 for (k = page; k < page + nr; k++) {
267 unsigned long bits = atomic_xchg(&src[k], 0);
268 unsigned long new_dirty;
269 new_dirty = ~dest[k];
272 num_dirty += ctpopl(new_dirty);
276 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
277 if (cpu_physical_memory_test_and_clear_dirty(
280 DIRTY_MEMORY_MIGRATION)) {
281 long k = (start + addr) >> TARGET_PAGE_BITS;
282 if (!test_and_set_bit(k, dest)) {