2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
23 #include "hw/block/flash.h"
25 #include "sysemu/blockdev.h"
26 #include "exec/memory.h"
27 #include "exec/address-spaces.h"
28 #include "hw/sysbus.h"
29 #include "qemu/error-report.h"
31 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
37 #define TYPE_ONE_NAND "onenand"
38 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
40 typedef struct OneNANDState {
41 SysBusDevice parent_obj;
52 BlockDriverState *bdrv;
53 BlockDriverState *bdrv_cur;
58 MemoryRegion mapped_ram;
59 uint8_t current_direction;
63 MemoryRegion container;
89 ONEN_BUF_DEST_BLOCK = 2,
90 ONEN_BUF_DEST_PAGE = 3,
95 ONEN_ERR_CMD = 1 << 10,
96 ONEN_ERR_ERASE = 1 << 11,
97 ONEN_ERR_PROG = 1 << 12,
98 ONEN_ERR_LOAD = 1 << 13,
102 ONEN_INT_RESET = 1 << 4,
103 ONEN_INT_ERASE = 1 << 5,
104 ONEN_INT_PROG = 1 << 6,
105 ONEN_INT_LOAD = 1 << 7,
110 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
111 ONEN_LOCK_LOCKED = 1 << 1,
112 ONEN_LOCK_UNLOCKED = 1 << 2,
115 static void onenand_mem_setup(OneNANDState *s)
117 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
118 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
119 * write boot commands. Also take note of the BWPS bit. */
120 memory_region_init(&s->container, OBJECT(s), "onenand",
121 0x10000 << s->shift);
122 memory_region_add_subregion(&s->container, 0, &s->iomem);
123 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
124 &s->ram, 0x0200 << s->shift,
126 memory_region_add_subregion_overlap(&s->container,
132 static void onenand_intr_update(OneNANDState *s)
134 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
137 static void onenand_pre_save(void *opaque)
139 OneNANDState *s = opaque;
140 if (s->current == s->otp) {
141 s->current_direction = 1;
142 } else if (s->current == s->image) {
143 s->current_direction = 2;
145 s->current_direction = 0;
149 static int onenand_post_load(void *opaque, int version_id)
151 OneNANDState *s = opaque;
152 switch (s->current_direction) {
159 s->current = s->image;
164 onenand_intr_update(s);
168 static const VMStateDescription vmstate_onenand = {
171 .minimum_version_id = 1,
172 .pre_save = onenand_pre_save,
173 .post_load = onenand_post_load,
174 .fields = (VMStateField[]) {
175 VMSTATE_UINT8(current_direction, OneNANDState),
176 VMSTATE_INT32(cycle, OneNANDState),
177 VMSTATE_INT32(otpmode, OneNANDState),
178 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
179 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
180 VMSTATE_INT32(bufaddr, OneNANDState),
181 VMSTATE_INT32(count, OneNANDState),
182 VMSTATE_UINT16(command, OneNANDState),
183 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
184 VMSTATE_UINT16(status, OneNANDState),
185 VMSTATE_UINT16(intstatus, OneNANDState),
186 VMSTATE_UINT16(wpstatus, OneNANDState),
187 VMSTATE_INT32(secs_cur, OneNANDState),
188 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
189 VMSTATE_UINT8(ecc.cp, OneNANDState),
190 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
191 VMSTATE_UINT16(ecc.count, OneNANDState),
192 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
193 ((64 + 2) << PAGE_SHIFT)),
194 VMSTATE_END_OF_LIST()
198 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
199 static void onenand_reset(OneNANDState *s, int cold)
201 memset(&s->addr, 0, sizeof(s->addr));
205 s->config[0] = 0x40c0;
206 s->config[1] = 0x0000;
207 onenand_intr_update(s);
208 qemu_irq_raise(s->rdy);
210 s->intstatus = cold ? 0x8080 : 0x8010;
213 s->wpstatus = 0x0002;
216 s->bdrv_cur = s->bdrv;
217 s->current = s->image;
218 s->secs_cur = s->secs;
221 /* Lock the whole flash */
222 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
224 if (s->bdrv_cur && bdrv_read(s->bdrv_cur, 0, s->boot[0], 8) < 0) {
225 hw_error("%s: Loading the BootRAM failed.\n", __func__);
230 static void onenand_system_reset(DeviceState *dev)
232 OneNANDState *s = ONE_NAND(dev);
237 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
241 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
242 else if (sec + secn > s->secs_cur)
245 memcpy(dest, s->current + (sec << 9), secn << 9);
250 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
256 uint32_t size = (uint32_t)secn * 512;
257 const uint8_t *sp = (const uint8_t *)src;
261 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
265 if (sec + secn > s->secs_cur) {
268 dp = (uint8_t *)s->current + (sec << 9);
273 for (i = 0; i < size; i++) {
277 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
280 if (dp && s->bdrv_cur) {
288 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
294 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
296 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
297 } else if (sec + secn > s->secs_cur)
300 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
305 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
310 const uint8_t *sp = (const uint8_t *)src;
311 uint8_t *dp = 0, *dpp = 0;
314 if (!dp || bdrv_read(s->bdrv_cur,
315 s->secs_cur + (sec >> 5),
319 dpp = dp + ((sec & 31) << 4);
322 if (sec + secn > s->secs_cur) {
325 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
330 for (i = 0; i < (secn << 4); i++) {
334 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
343 static inline int onenand_erase(OneNANDState *s, int sec, int num)
345 uint8_t *blankbuf, *tmpbuf;
346 blankbuf = g_malloc(512);
350 tmpbuf = g_malloc(512);
355 memset(blankbuf, 0xff, 512);
356 for (; num > 0; num--, sec++) {
358 int erasesec = s->secs_cur + (sec >> 5);
359 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1) < 0) {
362 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
365 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
366 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
370 if (sec + 1 > s->secs_cur) {
373 memcpy(s->current + (sec << 9), blankbuf, 512);
374 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
389 static void onenand_command(OneNANDState *s)
394 #define SETADDR(block, page) \
395 sec = (s->addr[page] & 3) + \
396 ((((s->addr[page] >> 2) & 0x3f) + \
397 (((s->addr[block] & 0xfff) | \
398 (s->addr[block] >> 15 ? \
399 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
401 buf = (s->bufaddr & 8) ? \
402 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
403 buf += (s->bufaddr & 3) << 9;
405 buf = (s->bufaddr & 8) ? \
406 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
407 buf += (s->bufaddr & 3) << 4;
409 switch (s->command) {
410 case 0x00: /* Load single/multiple sector data unit into buffer */
411 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
414 if (onenand_load_main(s, sec, s->count, buf))
415 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
419 if (onenand_load_spare(s, sec, s->count, buf))
420 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
423 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
424 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
425 * then we need two split the read/write into two chunks.
427 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
429 case 0x13: /* Load single/multiple spare sector into buffer */
430 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
433 if (onenand_load_spare(s, sec, s->count, buf))
434 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
436 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
437 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
438 * then we need two split the read/write into two chunks.
440 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
442 case 0x80: /* Program single/multiple sector data unit from buffer */
443 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
446 if (onenand_prog_main(s, sec, s->count, buf))
447 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
451 if (onenand_prog_spare(s, sec, s->count, buf))
452 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
455 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
456 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
457 * then we need two split the read/write into two chunks.
459 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
461 case 0x1a: /* Program single/multiple spare area sector from buffer */
462 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
465 if (onenand_prog_spare(s, sec, s->count, buf))
466 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
468 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
469 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
470 * then we need two split the read/write into two chunks.
472 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
474 case 0x1b: /* Copy-back program */
477 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
478 if (onenand_load_main(s, sec, s->count, buf))
479 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
481 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
482 if (onenand_prog_main(s, sec, s->count, buf))
483 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
485 /* TODO: spare areas */
487 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
490 case 0x23: /* Unlock NAND array block(s) */
491 s->intstatus |= ONEN_INT;
493 /* XXX the previous (?) area should be locked automatically */
494 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
495 if (b >= s->blocks) {
496 s->status |= ONEN_ERR_CMD;
499 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
502 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
505 case 0x27: /* Unlock All NAND array blocks */
506 s->intstatus |= ONEN_INT;
508 for (b = 0; b < s->blocks; b ++) {
509 if (b >= s->blocks) {
510 s->status |= ONEN_ERR_CMD;
513 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
516 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
520 case 0x2a: /* Lock NAND array block(s) */
521 s->intstatus |= ONEN_INT;
523 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
524 if (b >= s->blocks) {
525 s->status |= ONEN_ERR_CMD;
528 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
531 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
534 case 0x2c: /* Lock-tight NAND array block(s) */
535 s->intstatus |= ONEN_INT;
537 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
538 if (b >= s->blocks) {
539 s->status |= ONEN_ERR_CMD;
542 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
545 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
549 case 0x71: /* Erase-Verify-Read */
550 s->intstatus |= ONEN_INT;
552 case 0x95: /* Multi-block erase */
553 qemu_irq_pulse(s->intr);
555 case 0x94: /* Block erase */
556 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
557 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
558 << (BLOCK_SHIFT - 9);
559 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
560 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
562 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
564 case 0xb0: /* Erase suspend */
566 case 0x30: /* Erase resume */
567 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
570 case 0xf0: /* Reset NAND Flash core */
573 case 0xf3: /* Reset OneNAND */
577 case 0x65: /* OTP Access */
578 s->intstatus |= ONEN_INT;
581 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
582 s->addr[ONEN_BUF_BLOCK] = 0;
587 s->status |= ONEN_ERR_CMD;
588 s->intstatus |= ONEN_INT;
589 fprintf(stderr, "%s: unknown OneNAND command %x\n",
590 __func__, s->command);
593 onenand_intr_update(s);
596 static uint64_t onenand_read(void *opaque, hwaddr addr,
599 OneNANDState *s = (OneNANDState *) opaque;
600 int offset = addr >> s->shift;
603 case 0x0000 ... 0xc000:
604 return lduw_le_p(s->boot[0] + addr);
606 case 0xf000: /* Manufacturer ID */
608 case 0xf001: /* Device ID */
610 case 0xf002: /* Version ID */
612 /* TODO: get the following values from a real chip! */
613 case 0xf003: /* Data Buffer size */
614 return 1 << PAGE_SHIFT;
615 case 0xf004: /* Boot Buffer size */
617 case 0xf005: /* Amount of buffers */
619 case 0xf006: /* Technology */
622 case 0xf100 ... 0xf107: /* Start addresses */
623 return s->addr[offset - 0xf100];
625 case 0xf200: /* Start buffer */
626 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
628 case 0xf220: /* Command */
630 case 0xf221: /* System Configuration 1 */
631 return s->config[0] & 0xffe0;
632 case 0xf222: /* System Configuration 2 */
635 case 0xf240: /* Controller Status */
637 case 0xf241: /* Interrupt */
639 case 0xf24c: /* Unlock Start Block Address */
640 return s->unladdr[0];
641 case 0xf24d: /* Unlock End Block Address */
642 return s->unladdr[1];
643 case 0xf24e: /* Write Protection Status */
646 case 0xff00: /* ECC Status */
648 case 0xff01: /* ECC Result of main area data */
649 case 0xff02: /* ECC Result of spare area data */
650 case 0xff03: /* ECC Result of main area data */
651 case 0xff04: /* ECC Result of spare area data */
652 hw_error("%s: imeplement ECC\n", __FUNCTION__);
656 fprintf(stderr, "%s: unknown OneNAND register %x\n",
657 __FUNCTION__, offset);
661 static void onenand_write(void *opaque, hwaddr addr,
662 uint64_t value, unsigned size)
664 OneNANDState *s = (OneNANDState *) opaque;
665 int offset = addr >> s->shift;
669 case 0x0000 ... 0x01ff:
670 case 0x8000 ... 0x800f:
674 if (value == 0x0000) {
675 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
676 onenand_load_main(s, sec,
677 1 << (PAGE_SHIFT - 9), s->data[0][0]);
678 s->addr[ONEN_BUF_PAGE] += 4;
679 s->addr[ONEN_BUF_PAGE] &= 0xff;
685 case 0x00f0: /* Reset OneNAND */
689 case 0x00e0: /* Load Data into Buffer */
693 case 0x0090: /* Read Identification Data */
694 memset(s->boot[0], 0, 3 << s->shift);
695 s->boot[0][0 << s->shift] = s->id.man & 0xff;
696 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
697 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
701 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
702 __FUNCTION__, value);
706 case 0xf100 ... 0xf107: /* Start addresses */
707 s->addr[offset - 0xf100] = value;
710 case 0xf200: /* Start buffer */
711 s->bufaddr = (value >> 8) & 0xf;
712 if (PAGE_SHIFT == 11)
713 s->count = (value & 3) ?: 4;
714 else if (PAGE_SHIFT == 10)
715 s->count = (value & 1) ?: 2;
718 case 0xf220: /* Command */
719 if (s->intstatus & (1 << 15))
724 case 0xf221: /* System Configuration 1 */
725 s->config[0] = value;
726 onenand_intr_update(s);
727 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
729 case 0xf222: /* System Configuration 2 */
730 s->config[1] = value;
733 case 0xf241: /* Interrupt */
734 s->intstatus &= value;
735 if ((1 << 15) & ~s->intstatus)
736 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
737 ONEN_ERR_PROG | ONEN_ERR_LOAD);
738 onenand_intr_update(s);
740 case 0xf24c: /* Unlock Start Block Address */
741 s->unladdr[0] = value & (s->blocks - 1);
742 /* For some reason we have to set the end address to by default
743 * be same as start because the software forgets to write anything
745 s->unladdr[1] = value & (s->blocks - 1);
747 case 0xf24d: /* Unlock End Block Address */
748 s->unladdr[1] = value & (s->blocks - 1);
752 fprintf(stderr, "%s: unknown OneNAND register %x\n",
753 __FUNCTION__, offset);
757 static const MemoryRegionOps onenand_ops = {
758 .read = onenand_read,
759 .write = onenand_write,
760 .endianness = DEVICE_NATIVE_ENDIAN,
763 static int onenand_initfn(SysBusDevice *sbd)
765 DeviceState *dev = DEVICE(sbd);
766 OneNANDState *s = ONE_NAND(dev);
767 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
770 s->base = (hwaddr)-1;
772 s->blocks = size >> BLOCK_SHIFT;
774 s->blockwp = g_malloc(s->blocks);
775 s->density_mask = (s->id.dev & 0x08)
776 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
777 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
778 0x10000 << s->shift);
780 s->image = memset(g_malloc(size + (size >> 5)),
781 0xff, size + (size >> 5));
783 if (bdrv_is_read_only(s->bdrv)) {
784 error_report("Can't use a read-only drive");
787 s->bdrv_cur = s->bdrv;
789 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
790 0xff, (64 + 2) << PAGE_SHIFT);
791 memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
793 vmstate_register_ram_global(&s->ram);
794 ram = memory_region_get_ram_ptr(&s->ram);
795 s->boot[0] = ram + (0x0000 << s->shift);
796 s->boot[1] = ram + (0x8000 << s->shift);
797 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
798 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
799 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
800 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
801 onenand_mem_setup(s);
802 sysbus_init_irq(sbd, &s->intr);
803 sysbus_init_mmio(sbd, &s->container);
804 vmstate_register(dev,
805 ((s->shift & 0x7f) << 24)
806 | ((s->id.man & 0xff) << 16)
807 | ((s->id.dev & 0xff) << 8)
808 | (s->id.ver & 0xff),
809 &vmstate_onenand, s);
813 static Property onenand_properties[] = {
814 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
815 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
816 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
817 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
818 DEFINE_PROP_DRIVE("drive", OneNANDState, bdrv),
819 DEFINE_PROP_END_OF_LIST(),
822 static void onenand_class_init(ObjectClass *klass, void *data)
824 DeviceClass *dc = DEVICE_CLASS(klass);
825 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
827 k->init = onenand_initfn;
828 dc->reset = onenand_system_reset;
829 dc->props = onenand_properties;
832 static const TypeInfo onenand_info = {
833 .name = TYPE_ONE_NAND,
834 .parent = TYPE_SYS_BUS_DEVICE,
835 .instance_size = sizeof(OneNANDState),
836 .class_init = onenand_class_init,
839 static void onenand_register_types(void)
841 type_register_static(&onenand_info);
844 void *onenand_raw_otp(DeviceState *onenand_device)
846 OneNANDState *s = ONE_NAND(onenand_device);
851 type_init(onenand_register_types)