]> Git Repo - qemu.git/blob - hw/block/nvme.c
block: m25p80: Support read only bdrvs.
[qemu.git] / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <[email protected]>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21  */
22
23 #include <hw/block/block.h>
24 #include <hw/hw.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27
28 #include "nvme.h"
29
30 static void nvme_process_sq(void *opaque);
31
32 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
33 {
34     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
35 }
36
37 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
38 {
39     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
40 }
41
42 static void nvme_inc_cq_tail(NvmeCQueue *cq)
43 {
44     cq->tail++;
45     if (cq->tail >= cq->size) {
46         cq->tail = 0;
47         cq->phase = !cq->phase;
48     }
49 }
50
51 static void nvme_inc_sq_head(NvmeSQueue *sq)
52 {
53     sq->head = (sq->head + 1) % sq->size;
54 }
55
56 static uint8_t nvme_cq_full(NvmeCQueue *cq)
57 {
58     return (cq->tail + 1) % cq->size == cq->head;
59 }
60
61 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
62 {
63     return sq->head == sq->tail;
64 }
65
66 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
67 {
68     if (cq->irq_enabled) {
69         if (msix_enabled(&(n->parent_obj))) {
70             msix_notify(&(n->parent_obj), cq->vector);
71         } else {
72             pci_irq_pulse(&n->parent_obj);
73         }
74     }
75 }
76
77 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
78     uint32_t len, NvmeCtrl *n)
79 {
80     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
81     trans_len = MIN(len, trans_len);
82     int num_prps = (len >> n->page_bits) + 1;
83
84     if (!prp1) {
85         return NVME_INVALID_FIELD | NVME_DNR;
86     }
87
88     pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
89     qemu_sglist_add(qsg, prp1, trans_len);
90     len -= trans_len;
91     if (len) {
92         if (!prp2) {
93             goto unmap;
94         }
95         if (len > n->page_size) {
96             uint64_t prp_list[n->max_prp_ents];
97             uint32_t nents, prp_trans;
98             int i = 0;
99
100             nents = (len + n->page_size - 1) >> n->page_bits;
101             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
102             pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
103             while (len != 0) {
104                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
105
106                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
107                     if (!prp_ent || prp_ent & (n->page_size - 1)) {
108                         goto unmap;
109                     }
110
111                     i = 0;
112                     nents = (len + n->page_size - 1) >> n->page_bits;
113                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
114                     pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
115                         prp_trans);
116                     prp_ent = le64_to_cpu(prp_list[i]);
117                 }
118
119                 if (!prp_ent || prp_ent & (n->page_size - 1)) {
120                     goto unmap;
121                 }
122
123                 trans_len = MIN(len, n->page_size);
124                 qemu_sglist_add(qsg, prp_ent, trans_len);
125                 len -= trans_len;
126                 i++;
127             }
128         } else {
129             if (prp2 & (n->page_size - 1)) {
130                 goto unmap;
131             }
132             qemu_sglist_add(qsg, prp2, len);
133         }
134     }
135     return NVME_SUCCESS;
136
137  unmap:
138     qemu_sglist_destroy(qsg);
139     return NVME_INVALID_FIELD | NVME_DNR;
140 }
141
142 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
143     uint64_t prp1, uint64_t prp2)
144 {
145     QEMUSGList qsg;
146
147     if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
148         return NVME_INVALID_FIELD | NVME_DNR;
149     }
150     if (dma_buf_read(ptr, len, &qsg)) {
151         qemu_sglist_destroy(&qsg);
152         return NVME_INVALID_FIELD | NVME_DNR;
153     }
154     return NVME_SUCCESS;
155 }
156
157 static void nvme_post_cqes(void *opaque)
158 {
159     NvmeCQueue *cq = opaque;
160     NvmeCtrl *n = cq->ctrl;
161     NvmeRequest *req, *next;
162
163     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
164         NvmeSQueue *sq;
165         hwaddr addr;
166
167         if (nvme_cq_full(cq)) {
168             break;
169         }
170
171         QTAILQ_REMOVE(&cq->req_list, req, entry);
172         sq = req->sq;
173         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
174         req->cqe.sq_id = cpu_to_le16(sq->sqid);
175         req->cqe.sq_head = cpu_to_le16(sq->head);
176         addr = cq->dma_addr + cq->tail * n->cqe_size;
177         nvme_inc_cq_tail(cq);
178         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
179             sizeof(req->cqe));
180         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
181     }
182     nvme_isr_notify(n, cq);
183 }
184
185 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
186 {
187     assert(cq->cqid == req->sq->cqid);
188     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
189     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
190     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
191 }
192
193 static void nvme_rw_cb(void *opaque, int ret)
194 {
195     NvmeRequest *req = opaque;
196     NvmeSQueue *sq = req->sq;
197     NvmeCtrl *n = sq->ctrl;
198     NvmeCQueue *cq = n->cq[sq->cqid];
199
200     bdrv_acct_done(n->conf.bs, &req->acct);
201     if (!ret) {
202         req->status = NVME_SUCCESS;
203     } else {
204         req->status = NVME_INTERNAL_DEV_ERROR;
205     }
206
207     qemu_sglist_destroy(&req->qsg);
208     nvme_enqueue_req_completion(cq, req);
209 }
210
211 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
212     NvmeRequest *req)
213 {
214     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
215     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
216     uint64_t slba = le64_to_cpu(rw->slba);
217     uint64_t prp1 = le64_to_cpu(rw->prp1);
218     uint64_t prp2 = le64_to_cpu(rw->prp2);
219
220     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
221     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
222     uint64_t data_size = nlb << data_shift;
223     uint64_t aio_slba  = slba << (data_shift - BDRV_SECTOR_BITS);
224     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
225
226     if ((slba + nlb) > ns->id_ns.nsze) {
227         return NVME_LBA_RANGE | NVME_DNR;
228     }
229     if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
230         return NVME_INVALID_FIELD | NVME_DNR;
231     }
232     assert((nlb << data_shift) == req->qsg.size);
233
234     dma_acct_start(n->conf.bs, &req->acct, &req->qsg, is_write ?
235         BDRV_ACCT_WRITE : BDRV_ACCT_READ);
236     req->aiocb = is_write ?
237         dma_bdrv_write(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req) :
238         dma_bdrv_read(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req);
239
240     return NVME_NO_COMPLETE;
241 }
242
243 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
244 {
245     NvmeNamespace *ns;
246     uint32_t nsid = le32_to_cpu(cmd->nsid);
247
248     if (nsid == 0 || nsid > n->num_namespaces) {
249         return NVME_INVALID_NSID | NVME_DNR;
250     }
251
252     ns = &n->namespaces[nsid - 1];
253     switch (cmd->opcode) {
254     case NVME_CMD_FLUSH:
255         return NVME_SUCCESS;
256     case NVME_CMD_WRITE:
257     case NVME_CMD_READ:
258         return nvme_rw(n, ns, cmd, req);
259     default:
260         return NVME_INVALID_OPCODE | NVME_DNR;
261     }
262 }
263
264 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
265 {
266     n->sq[sq->sqid] = NULL;
267     timer_del(sq->timer);
268     timer_free(sq->timer);
269     g_free(sq->io_req);
270     if (sq->sqid) {
271         g_free(sq);
272     }
273 }
274
275 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
276 {
277     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
278     NvmeRequest *req, *next;
279     NvmeSQueue *sq;
280     NvmeCQueue *cq;
281     uint16_t qid = le16_to_cpu(c->qid);
282
283     if (!qid || nvme_check_sqid(n, qid)) {
284         return NVME_INVALID_QID | NVME_DNR;
285     }
286
287     sq = n->sq[qid];
288     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
289         req = QTAILQ_FIRST(&sq->out_req_list);
290         assert(req->aiocb);
291         bdrv_aio_cancel(req->aiocb);
292     }
293     if (!nvme_check_cqid(n, sq->cqid)) {
294         cq = n->cq[sq->cqid];
295         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
296
297         nvme_post_cqes(cq);
298         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
299             if (req->sq == sq) {
300                 QTAILQ_REMOVE(&cq->req_list, req, entry);
301                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
302             }
303         }
304     }
305
306     nvme_free_sq(sq, n);
307     return NVME_SUCCESS;
308 }
309
310 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
311     uint16_t sqid, uint16_t cqid, uint16_t size)
312 {
313     int i;
314     NvmeCQueue *cq;
315
316     sq->ctrl = n;
317     sq->dma_addr = dma_addr;
318     sq->sqid = sqid;
319     sq->size = size;
320     sq->cqid = cqid;
321     sq->head = sq->tail = 0;
322     sq->io_req = g_malloc(sq->size * sizeof(*sq->io_req));
323
324     QTAILQ_INIT(&sq->req_list);
325     QTAILQ_INIT(&sq->out_req_list);
326     for (i = 0; i < sq->size; i++) {
327         sq->io_req[i].sq = sq;
328         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
329     }
330     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
331
332     assert(n->cq[cqid]);
333     cq = n->cq[cqid];
334     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
335     n->sq[sqid] = sq;
336 }
337
338 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
339 {
340     NvmeSQueue *sq;
341     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
342
343     uint16_t cqid = le16_to_cpu(c->cqid);
344     uint16_t sqid = le16_to_cpu(c->sqid);
345     uint16_t qsize = le16_to_cpu(c->qsize);
346     uint16_t qflags = le16_to_cpu(c->sq_flags);
347     uint64_t prp1 = le64_to_cpu(c->prp1);
348
349     if (!cqid || nvme_check_cqid(n, cqid)) {
350         return NVME_INVALID_CQID | NVME_DNR;
351     }
352     if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
353         return NVME_INVALID_QID | NVME_DNR;
354     }
355     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
356         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
357     }
358     if (!prp1 || prp1 & (n->page_size - 1)) {
359         return NVME_INVALID_FIELD | NVME_DNR;
360     }
361     if (!(NVME_SQ_FLAGS_PC(qflags))) {
362         return NVME_INVALID_FIELD | NVME_DNR;
363     }
364     sq = g_malloc0(sizeof(*sq));
365     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
366     return NVME_SUCCESS;
367 }
368
369 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
370 {
371     n->cq[cq->cqid] = NULL;
372     timer_del(cq->timer);
373     timer_free(cq->timer);
374     msix_vector_unuse(&n->parent_obj, cq->vector);
375     if (cq->cqid) {
376         g_free(cq);
377     }
378 }
379
380 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
381 {
382     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
383     NvmeCQueue *cq;
384     uint16_t qid = le16_to_cpu(c->qid);
385
386     if (!qid || nvme_check_cqid(n, qid)) {
387         return NVME_INVALID_CQID | NVME_DNR;
388     }
389
390     cq = n->cq[qid];
391     if (!QTAILQ_EMPTY(&cq->sq_list)) {
392         return NVME_INVALID_QUEUE_DEL;
393     }
394     nvme_free_cq(cq, n);
395     return NVME_SUCCESS;
396 }
397
398 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
399     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
400 {
401     cq->ctrl = n;
402     cq->cqid = cqid;
403     cq->size = size;
404     cq->dma_addr = dma_addr;
405     cq->phase = 1;
406     cq->irq_enabled = irq_enabled;
407     cq->vector = vector;
408     cq->head = cq->tail = 0;
409     QTAILQ_INIT(&cq->req_list);
410     QTAILQ_INIT(&cq->sq_list);
411     msix_vector_use(&n->parent_obj, cq->vector);
412     n->cq[cqid] = cq;
413     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
414 }
415
416 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
417 {
418     NvmeCQueue *cq;
419     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
420     uint16_t cqid = le16_to_cpu(c->cqid);
421     uint16_t vector = le16_to_cpu(c->irq_vector);
422     uint16_t qsize = le16_to_cpu(c->qsize);
423     uint16_t qflags = le16_to_cpu(c->cq_flags);
424     uint64_t prp1 = le64_to_cpu(c->prp1);
425
426     if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
427         return NVME_INVALID_CQID | NVME_DNR;
428     }
429     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
430         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
431     }
432     if (!prp1) {
433         return NVME_INVALID_FIELD | NVME_DNR;
434     }
435     if (vector > n->num_queues) {
436         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
437     }
438     if (!(NVME_CQ_FLAGS_PC(qflags))) {
439         return NVME_INVALID_FIELD | NVME_DNR;
440     }
441
442     cq = g_malloc0(sizeof(*cq));
443     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
444         NVME_CQ_FLAGS_IEN(qflags));
445     return NVME_SUCCESS;
446 }
447
448 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
449 {
450     NvmeNamespace *ns;
451     NvmeIdentify *c = (NvmeIdentify *)cmd;
452     uint32_t cns  = le32_to_cpu(c->cns);
453     uint32_t nsid = le32_to_cpu(c->nsid);
454     uint64_t prp1 = le64_to_cpu(c->prp1);
455     uint64_t prp2 = le64_to_cpu(c->prp2);
456
457     if (cns) {
458         return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
459             prp1, prp2);
460     }
461     if (nsid == 0 || nsid > n->num_namespaces) {
462         return NVME_INVALID_NSID | NVME_DNR;
463     }
464
465     ns = &n->namespaces[nsid - 1];
466     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
467         prp1, prp2);
468 }
469
470 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
471 {
472     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
473
474     switch (dw10) {
475     case NVME_NUMBER_OF_QUEUES:
476         req->cqe.result = cpu_to_le32(n->num_queues);
477         break;
478     default:
479         return NVME_INVALID_FIELD | NVME_DNR;
480     }
481     return NVME_SUCCESS;
482 }
483
484 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
485 {
486     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
487
488     switch (dw10) {
489     case NVME_NUMBER_OF_QUEUES:
490         req->cqe.result = cpu_to_le32(n->num_queues);
491         break;
492     default:
493         return NVME_INVALID_FIELD | NVME_DNR;
494     }
495     return NVME_SUCCESS;
496 }
497
498 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
499 {
500     switch (cmd->opcode) {
501     case NVME_ADM_CMD_DELETE_SQ:
502         return nvme_del_sq(n, cmd);
503     case NVME_ADM_CMD_CREATE_SQ:
504         return nvme_create_sq(n, cmd);
505     case NVME_ADM_CMD_DELETE_CQ:
506         return nvme_del_cq(n, cmd);
507     case NVME_ADM_CMD_CREATE_CQ:
508         return nvme_create_cq(n, cmd);
509     case NVME_ADM_CMD_IDENTIFY:
510         return nvme_identify(n, cmd);
511     case NVME_ADM_CMD_SET_FEATURES:
512         return nvme_set_feature(n, cmd, req);
513     case NVME_ADM_CMD_GET_FEATURES:
514         return nvme_get_feature(n, cmd, req);
515     default:
516         return NVME_INVALID_OPCODE | NVME_DNR;
517     }
518 }
519
520 static void nvme_process_sq(void *opaque)
521 {
522     NvmeSQueue *sq = opaque;
523     NvmeCtrl *n = sq->ctrl;
524     NvmeCQueue *cq = n->cq[sq->cqid];
525
526     uint16_t status;
527     hwaddr addr;
528     NvmeCmd cmd;
529     NvmeRequest *req;
530
531     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
532         addr = sq->dma_addr + sq->head * n->sqe_size;
533         pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
534         nvme_inc_sq_head(sq);
535
536         req = QTAILQ_FIRST(&sq->req_list);
537         QTAILQ_REMOVE(&sq->req_list, req, entry);
538         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
539         memset(&req->cqe, 0, sizeof(req->cqe));
540         req->cqe.cid = cmd.cid;
541
542         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
543             nvme_admin_cmd(n, &cmd, req);
544         if (status != NVME_NO_COMPLETE) {
545             req->status = status;
546             nvme_enqueue_req_completion(cq, req);
547         }
548     }
549 }
550
551 static void nvme_clear_ctrl(NvmeCtrl *n)
552 {
553     int i;
554
555     for (i = 0; i < n->num_queues; i++) {
556         if (n->sq[i] != NULL) {
557             nvme_free_sq(n->sq[i], n);
558         }
559     }
560     for (i = 0; i < n->num_queues; i++) {
561         if (n->cq[i] != NULL) {
562             nvme_free_cq(n->cq[i], n);
563         }
564     }
565
566     bdrv_flush(n->conf.bs);
567     n->bar.cc = 0;
568 }
569
570 static int nvme_start_ctrl(NvmeCtrl *n)
571 {
572     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
573     uint32_t page_size = 1 << page_bits;
574
575     if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
576             n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
577             NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
578             NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
579             NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
580             NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
581             NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
582             NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
583             !NVME_AQA_ASQS(n->bar.aqa) || NVME_AQA_ASQS(n->bar.aqa) > 4095 ||
584             !NVME_AQA_ACQS(n->bar.aqa) || NVME_AQA_ACQS(n->bar.aqa) > 4095) {
585         return -1;
586     }
587
588     n->page_bits = page_bits;
589     n->page_size = page_size;
590     n->max_prp_ents = n->page_size / sizeof(uint64_t);
591     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
592     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
593     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
594         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
595     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
596         NVME_AQA_ASQS(n->bar.aqa) + 1);
597
598     return 0;
599 }
600
601 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
602     unsigned size)
603 {
604     switch (offset) {
605     case 0xc:
606         n->bar.intms |= data & 0xffffffff;
607         n->bar.intmc = n->bar.intms;
608         break;
609     case 0x10:
610         n->bar.intms &= ~(data & 0xffffffff);
611         n->bar.intmc = n->bar.intms;
612         break;
613     case 0x14:
614         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
615             n->bar.cc = data;
616             if (nvme_start_ctrl(n)) {
617                 n->bar.csts = NVME_CSTS_FAILED;
618             } else {
619                 n->bar.csts = NVME_CSTS_READY;
620             }
621         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
622             nvme_clear_ctrl(n);
623             n->bar.csts &= ~NVME_CSTS_READY;
624         }
625         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
626                 nvme_clear_ctrl(n);
627                 n->bar.cc = data;
628                 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
629         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
630                 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
631                 n->bar.cc = data;
632         }
633         break;
634     case 0x24:
635         n->bar.aqa = data & 0xffffffff;
636         break;
637     case 0x28:
638         n->bar.asq = data;
639         break;
640     case 0x2c:
641         n->bar.asq |= data << 32;
642         break;
643     case 0x30:
644         n->bar.acq = data;
645         break;
646     case 0x34:
647         n->bar.acq |= data << 32;
648         break;
649     default:
650         break;
651     }
652 }
653
654 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
655 {
656     NvmeCtrl *n = (NvmeCtrl *)opaque;
657     uint8_t *ptr = (uint8_t *)&n->bar;
658     uint64_t val = 0;
659
660     if (addr < sizeof(n->bar)) {
661         memcpy(&val, ptr + addr, size);
662     }
663     return val;
664 }
665
666 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
667 {
668     uint32_t qid;
669
670     if (addr & ((1 << 2) - 1)) {
671         return;
672     }
673
674     if (((addr - 0x1000) >> 2) & 1) {
675         uint16_t new_head = val & 0xffff;
676         int start_sqs;
677         NvmeCQueue *cq;
678
679         qid = (addr - (0x1000 + (1 << 2))) >> 3;
680         if (nvme_check_cqid(n, qid)) {
681             return;
682         }
683
684         cq = n->cq[qid];
685         if (new_head >= cq->size) {
686             return;
687         }
688
689         start_sqs = nvme_cq_full(cq) ? 1 : 0;
690         cq->head = new_head;
691         if (start_sqs) {
692             NvmeSQueue *sq;
693             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
694                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
695             }
696             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
697         }
698
699         if (cq->tail != cq->head) {
700             nvme_isr_notify(n, cq);
701         }
702     } else {
703         uint16_t new_tail = val & 0xffff;
704         NvmeSQueue *sq;
705
706         qid = (addr - 0x1000) >> 3;
707         if (nvme_check_sqid(n, qid)) {
708             return;
709         }
710
711         sq = n->sq[qid];
712         if (new_tail >= sq->size) {
713             return;
714         }
715
716         sq->tail = new_tail;
717         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
718     }
719 }
720
721 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
722     unsigned size)
723 {
724     NvmeCtrl *n = (NvmeCtrl *)opaque;
725     if (addr < sizeof(n->bar)) {
726         nvme_write_bar(n, addr, data, size);
727     } else if (addr >= 0x1000) {
728         nvme_process_db(n, addr, data);
729     }
730 }
731
732 static const MemoryRegionOps nvme_mmio_ops = {
733     .read = nvme_mmio_read,
734     .write = nvme_mmio_write,
735     .endianness = DEVICE_LITTLE_ENDIAN,
736     .impl = {
737         .min_access_size = 2,
738         .max_access_size = 8,
739     },
740 };
741
742 static int nvme_init(PCIDevice *pci_dev)
743 {
744     NvmeCtrl *n = NVME(pci_dev);
745     NvmeIdCtrl *id = &n->id_ctrl;
746
747     int i;
748     int64_t bs_size;
749     uint8_t *pci_conf;
750
751     if (!(n->conf.bs)) {
752         return -1;
753     }
754
755     bs_size = bdrv_getlength(n->conf.bs);
756     if (bs_size < 0) {
757         return -1;
758     }
759
760     blkconf_serial(&n->conf, &n->serial);
761     if (!n->serial) {
762         return -1;
763     }
764
765     pci_conf = pci_dev->config;
766     pci_conf[PCI_INTERRUPT_PIN] = 1;
767     pci_config_set_prog_interface(pci_dev->config, 0x2);
768     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
769     pcie_endpoint_cap_init(&n->parent_obj, 0x80);
770
771     n->num_namespaces = 1;
772     n->num_queues = 64;
773     n->reg_size = 1 << qemu_fls(0x1004 + 2 * (n->num_queues + 1) * 4);
774     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
775
776     n->namespaces = g_malloc0(sizeof(*n->namespaces)*n->num_namespaces);
777     n->sq = g_malloc0(sizeof(*n->sq)*n->num_queues);
778     n->cq = g_malloc0(sizeof(*n->cq)*n->num_queues);
779
780     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
781                           "nvme", n->reg_size);
782     pci_register_bar(&n->parent_obj, 0,
783         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
784         &n->iomem);
785     msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
786
787     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
788     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
789     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
790     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
791     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
792     id->rab = 6;
793     id->ieee[0] = 0x00;
794     id->ieee[1] = 0x02;
795     id->ieee[2] = 0xb3;
796     id->oacs = cpu_to_le16(0);
797     id->frmw = 7 << 1;
798     id->lpa = 1 << 0;
799     id->sqes = (0x6 << 4) | 0x6;
800     id->cqes = (0x4 << 4) | 0x4;
801     id->nn = cpu_to_le32(n->num_namespaces);
802     id->psd[0].mp = cpu_to_le16(0x9c4);
803     id->psd[0].enlat = cpu_to_le32(0x10);
804     id->psd[0].exlat = cpu_to_le32(0x4);
805
806     n->bar.cap = 0;
807     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
808     NVME_CAP_SET_CQR(n->bar.cap, 1);
809     NVME_CAP_SET_AMS(n->bar.cap, 1);
810     NVME_CAP_SET_TO(n->bar.cap, 0xf);
811     NVME_CAP_SET_CSS(n->bar.cap, 1);
812
813     n->bar.vs = 0x00010001;
814     n->bar.intmc = n->bar.intms = 0;
815
816     for (i = 0; i < n->num_namespaces; i++) {
817         NvmeNamespace *ns = &n->namespaces[i];
818         NvmeIdNs *id_ns = &ns->id_ns;
819         id_ns->nsfeat = 0;
820         id_ns->nlbaf = 0;
821         id_ns->flbas = 0;
822         id_ns->mc = 0;
823         id_ns->dpc = 0;
824         id_ns->dps = 0;
825         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
826         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
827             cpu_to_le64(n->ns_size >>
828                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
829     }
830     return 0;
831 }
832
833 static void nvme_exit(PCIDevice *pci_dev)
834 {
835     NvmeCtrl *n = NVME(pci_dev);
836
837     nvme_clear_ctrl(n);
838     g_free(n->namespaces);
839     g_free(n->cq);
840     g_free(n->sq);
841     msix_uninit_exclusive_bar(pci_dev);
842     memory_region_destroy(&n->iomem);
843 }
844
845 static Property nvme_props[] = {
846     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
847     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
848     DEFINE_PROP_END_OF_LIST(),
849 };
850
851 static const VMStateDescription nvme_vmstate = {
852     .name = "nvme",
853     .unmigratable = 1,
854 };
855
856 static void nvme_class_init(ObjectClass *oc, void *data)
857 {
858     DeviceClass *dc = DEVICE_CLASS(oc);
859     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
860
861     pc->init = nvme_init;
862     pc->exit = nvme_exit;
863     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
864     pc->vendor_id = PCI_VENDOR_ID_INTEL;
865     pc->device_id = 0x5845;
866     pc->revision = 1;
867     pc->is_express = 1;
868
869     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
870     dc->desc = "Non-Volatile Memory Express";
871     dc->props = nvme_props;
872     dc->vmsd = &nvme_vmstate;
873 }
874
875 static const TypeInfo nvme_info = {
876     .name          = "nvme",
877     .parent        = TYPE_PCI_DEVICE,
878     .instance_size = sizeof(NvmeCtrl),
879     .class_init    = nvme_class_init,
880 };
881
882 static void nvme_register_types(void)
883 {
884     type_register_static(&nvme_info);
885 }
886
887 type_init(nvme_register_types)
This page took 0.075648 seconds and 4 git commands to generate.