4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #define DPRINTF(fmt, ...) \
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
52 typedef struct kvm_dirty_log KVMDirtyLog;
60 #ifdef KVM_CAP_COALESCED_MMIO
61 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 int broken_set_mem_region;
66 int robust_singlestep;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70 int irqchip_in_kernel;
74 static KVMState *kvm_state;
76 static KVMSlot *kvm_alloc_slot(KVMState *s)
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81 /* KVM private memory slots */
84 if (s->slots[i].memory_size == 0)
88 fprintf(stderr, "%s: no free slot available\n", __func__);
92 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
111 * Find overlapping slot with lowest start address
113 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
117 KVMSlot *found = NULL;
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
137 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139 struct kvm_userspace_memory_region mem;
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145 mem.flags = slot->flags;
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152 static void kvm_reset_vcpu(void *opaque)
154 CPUState *env = opaque;
156 kvm_arch_reset_vcpu(env);
159 int kvm_irqchip_in_kernel(void)
161 return kvm_state->irqchip_in_kernel;
164 int kvm_pit_in_kernel(void)
166 return kvm_state->pit_in_kernel;
170 int kvm_init_vcpu(CPUState *env)
172 KVMState *s = kvm_state;
176 DPRINTF("kvm_init_vcpu\n");
178 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
180 DPRINTF("kvm_create_vcpu failed\n");
187 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
189 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
195 if (env->kvm_run == MAP_FAILED) {
197 DPRINTF("mmap'ing vcpu state failed\n");
201 #ifdef KVM_CAP_COALESCED_MMIO
202 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
203 s->coalesced_mmio_ring = (void *) env->kvm_run +
204 s->coalesced_mmio * PAGE_SIZE;
207 ret = kvm_arch_init_vcpu(env);
209 qemu_register_reset(kvm_reset_vcpu, env);
210 kvm_arch_reset_vcpu(env);
217 * dirty pages logging control
219 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
220 ram_addr_t size, int flags, int mask)
222 KVMState *s = kvm_state;
223 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
228 TARGET_FMT_plx "\n", __func__, phys_addr,
229 (target_phys_addr_t)(phys_addr + size - 1));
233 old_flags = mem->flags;
235 flags = (mem->flags & ~mask) | flags;
238 /* If nothing changed effectively, no need to issue ioctl */
239 if (s->migration_log) {
240 flags |= KVM_MEM_LOG_DIRTY_PAGES;
242 if (flags == old_flags) {
246 return kvm_set_user_memory_region(s, mem);
249 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
251 return kvm_dirty_pages_log_change(phys_addr, size,
252 KVM_MEM_LOG_DIRTY_PAGES,
253 KVM_MEM_LOG_DIRTY_PAGES);
256 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
258 return kvm_dirty_pages_log_change(phys_addr, size,
260 KVM_MEM_LOG_DIRTY_PAGES);
263 static int kvm_set_migration_log(int enable)
265 KVMState *s = kvm_state;
269 s->migration_log = enable;
271 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
274 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
277 err = kvm_set_user_memory_region(s, mem);
285 static int test_le_bit(unsigned long nr, unsigned char *addr)
287 return (addr[nr >> 3] >> (nr & 7)) & 1;
291 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
292 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
293 * This means all bits are set to dirty.
295 * @start_add: start of logged region.
296 * @end_addr: end of logged region.
298 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
299 target_phys_addr_t end_addr)
301 KVMState *s = kvm_state;
302 unsigned long size, allocated_size = 0;
303 target_phys_addr_t phys_addr;
309 d.dirty_bitmap = NULL;
310 while (start_addr < end_addr) {
311 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
316 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
317 if (!d.dirty_bitmap) {
318 d.dirty_bitmap = qemu_malloc(size);
319 } else if (size > allocated_size) {
320 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
322 allocated_size = size;
323 memset(d.dirty_bitmap, 0, allocated_size);
327 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
328 DPRINTF("ioctl failed %d\n", errno);
333 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
334 phys_addr < mem->start_addr + mem->memory_size;
335 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
336 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
337 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
339 if (test_le_bit(nr, bitmap)) {
340 cpu_physical_memory_set_dirty(addr);
343 start_addr = phys_addr;
345 qemu_free(d.dirty_bitmap);
350 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
353 #ifdef KVM_CAP_COALESCED_MMIO
354 KVMState *s = kvm_state;
356 if (s->coalesced_mmio) {
357 struct kvm_coalesced_mmio_zone zone;
362 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
372 #ifdef KVM_CAP_COALESCED_MMIO
373 KVMState *s = kvm_state;
375 if (s->coalesced_mmio) {
376 struct kvm_coalesced_mmio_zone zone;
381 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388 int kvm_check_extension(KVMState *s, unsigned int extension)
392 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
400 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
402 ram_addr_t phys_offset)
404 KVMState *s = kvm_state;
405 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
409 if (start_addr & ~TARGET_PAGE_MASK) {
410 if (flags >= IO_MEM_UNASSIGNED) {
411 if (!kvm_lookup_overlapping_slot(s, start_addr,
412 start_addr + size)) {
415 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
417 fprintf(stderr, "Only page-aligned memory slots supported\n");
422 /* KVM does not support read-only slots */
423 phys_offset &= ~IO_MEM_ROM;
426 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
431 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
432 (start_addr + size <= mem->start_addr + mem->memory_size) &&
433 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
434 /* The new slot fits into the existing one and comes with
435 * identical parameters - nothing to be done. */
441 /* unregister the overlapping slot */
442 mem->memory_size = 0;
443 err = kvm_set_user_memory_region(s, mem);
445 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
446 __func__, strerror(-err));
450 /* Workaround for older KVM versions: we can't join slots, even not by
451 * unregistering the previous ones and then registering the larger
452 * slot. We have to maintain the existing fragmentation. Sigh.
454 * This workaround assumes that the new slot starts at the same
455 * address as the first existing one. If not or if some overlapping
456 * slot comes around later, we will fail (not seen in practice so far)
457 * - and actually require a recent KVM version. */
458 if (s->broken_set_mem_region &&
459 old.start_addr == start_addr && old.memory_size < size &&
460 flags < IO_MEM_UNASSIGNED) {
461 mem = kvm_alloc_slot(s);
462 mem->memory_size = old.memory_size;
463 mem->start_addr = old.start_addr;
464 mem->phys_offset = old.phys_offset;
467 err = kvm_set_user_memory_region(s, mem);
469 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
474 start_addr += old.memory_size;
475 phys_offset += old.memory_size;
476 size -= old.memory_size;
480 /* register prefix slot */
481 if (old.start_addr < start_addr) {
482 mem = kvm_alloc_slot(s);
483 mem->memory_size = start_addr - old.start_addr;
484 mem->start_addr = old.start_addr;
485 mem->phys_offset = old.phys_offset;
488 err = kvm_set_user_memory_region(s, mem);
490 fprintf(stderr, "%s: error registering prefix slot: %s\n",
491 __func__, strerror(-err));
496 /* register suffix slot */
497 if (old.start_addr + old.memory_size > start_addr + size) {
498 ram_addr_t size_delta;
500 mem = kvm_alloc_slot(s);
501 mem->start_addr = start_addr + size;
502 size_delta = mem->start_addr - old.start_addr;
503 mem->memory_size = old.memory_size - size_delta;
504 mem->phys_offset = old.phys_offset + size_delta;
507 err = kvm_set_user_memory_region(s, mem);
509 fprintf(stderr, "%s: error registering suffix slot: %s\n",
510 __func__, strerror(-err));
516 /* in case the KVM bug workaround already "consumed" the new slot */
520 /* KVM does not need to know about this memory */
521 if (flags >= IO_MEM_UNASSIGNED)
524 mem = kvm_alloc_slot(s);
525 mem->memory_size = size;
526 mem->start_addr = start_addr;
527 mem->phys_offset = phys_offset;
530 err = kvm_set_user_memory_region(s, mem);
532 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
538 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
539 target_phys_addr_t start_addr,
541 ram_addr_t phys_offset)
543 kvm_set_phys_mem(start_addr, size, phys_offset);
546 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
547 target_phys_addr_t start_addr,
548 target_phys_addr_t end_addr)
550 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
553 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
556 return kvm_set_migration_log(enable);
559 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
560 .set_memory = kvm_client_set_memory,
561 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
562 .migration_log = kvm_client_migration_log,
565 int kvm_init(int smp_cpus)
567 static const char upgrade_note[] =
568 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
569 "(see http://sourceforge.net/projects/kvm).\n";
575 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
579 s = qemu_mallocz(sizeof(KVMState));
581 #ifdef KVM_CAP_SET_GUEST_DEBUG
582 QTAILQ_INIT(&s->kvm_sw_breakpoints);
584 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
585 s->slots[i].slot = i;
588 s->fd = qemu_open("/dev/kvm", O_RDWR);
590 fprintf(stderr, "Could not access KVM kernel module: %m\n");
595 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
596 if (ret < KVM_API_VERSION) {
599 fprintf(stderr, "kvm version too old\n");
603 if (ret > KVM_API_VERSION) {
605 fprintf(stderr, "kvm version not supported\n");
609 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
612 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
613 "your host kernel command line\n");
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
620 * just use a user allocated buffer so we can use regular pages
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
633 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
642 s->coalesced_mmio = 0;
643 #ifdef KVM_CAP_COALESCED_MMIO
644 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
645 s->coalesced_mmio_ring = NULL;
648 s->broken_set_mem_region = 1;
649 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652 s->broken_set_mem_region = 0;
657 #ifdef KVM_CAP_VCPU_EVENTS
658 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
661 s->robust_singlestep = 0;
662 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
663 s->robust_singlestep =
664 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
667 ret = kvm_arch_init(s, smp_cpus);
672 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
688 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
694 for (i = 0; i < count; i++) {
695 if (direction == KVM_EXIT_IO_IN) {
698 stb_p(ptr, cpu_inb(port));
701 stw_p(ptr, cpu_inw(port));
704 stl_p(ptr, cpu_inl(port));
710 cpu_outb(port, ldub_p(ptr));
713 cpu_outw(port, lduw_p(ptr));
716 cpu_outl(port, ldl_p(ptr));
727 void kvm_flush_coalesced_mmio_buffer(void)
729 #ifdef KVM_CAP_COALESCED_MMIO
730 KVMState *s = kvm_state;
731 if (s->coalesced_mmio_ring) {
732 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
733 while (ring->first != ring->last) {
734 struct kvm_coalesced_mmio *ent;
736 ent = &ring->coalesced_mmio[ring->first];
738 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
740 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
746 void kvm_cpu_synchronize_state(CPUState *env)
748 if (!env->kvm_vcpu_dirty) {
749 kvm_arch_get_registers(env);
750 env->kvm_vcpu_dirty = 1;
754 void kvm_cpu_synchronize_post_reset(CPUState *env)
756 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
757 env->kvm_vcpu_dirty = 0;
760 void kvm_cpu_synchronize_post_init(CPUState *env)
762 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
763 env->kvm_vcpu_dirty = 0;
766 int kvm_cpu_exec(CPUState *env)
768 struct kvm_run *run = env->kvm_run;
771 DPRINTF("kvm_cpu_exec()\n");
774 #ifndef CONFIG_IOTHREAD
775 if (env->exit_request) {
776 DPRINTF("interrupt exit requested\n");
782 if (env->kvm_vcpu_dirty) {
783 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
784 env->kvm_vcpu_dirty = 0;
787 kvm_arch_pre_run(env, run);
788 qemu_mutex_unlock_iothread();
789 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
790 qemu_mutex_lock_iothread();
791 kvm_arch_post_run(env, run);
793 if (ret == -EINTR || ret == -EAGAIN) {
795 DPRINTF("io window exit\n");
801 DPRINTF("kvm run failed %s\n", strerror(-ret));
805 kvm_flush_coalesced_mmio_buffer();
807 ret = 0; /* exit loop */
808 switch (run->exit_reason) {
810 DPRINTF("handle_io\n");
811 ret = kvm_handle_io(run->io.port,
812 (uint8_t *)run + run->io.data_offset,
818 DPRINTF("handle_mmio\n");
819 cpu_physical_memory_rw(run->mmio.phys_addr,
825 case KVM_EXIT_IRQ_WINDOW_OPEN:
826 DPRINTF("irq_window_open\n");
828 case KVM_EXIT_SHUTDOWN:
829 DPRINTF("shutdown\n");
830 qemu_system_reset_request();
833 case KVM_EXIT_UNKNOWN:
834 DPRINTF("kvm_exit_unknown\n");
836 case KVM_EXIT_FAIL_ENTRY:
837 DPRINTF("kvm_exit_fail_entry\n");
839 case KVM_EXIT_EXCEPTION:
840 DPRINTF("kvm_exit_exception\n");
843 DPRINTF("kvm_exit_debug\n");
844 #ifdef KVM_CAP_SET_GUEST_DEBUG
845 if (kvm_arch_debug(&run->debug.arch)) {
846 gdb_set_stop_cpu(env);
848 env->exception_index = EXCP_DEBUG;
851 /* re-enter, this exception was guest-internal */
853 #endif /* KVM_CAP_SET_GUEST_DEBUG */
856 DPRINTF("kvm_arch_handle_exit\n");
857 ret = kvm_arch_handle_exit(env, run);
862 if (env->exit_request) {
863 env->exit_request = 0;
864 env->exception_index = EXCP_INTERRUPT;
870 int kvm_ioctl(KVMState *s, int type, ...)
877 arg = va_arg(ap, void *);
880 ret = ioctl(s->fd, type, arg);
887 int kvm_vm_ioctl(KVMState *s, int type, ...)
894 arg = va_arg(ap, void *);
897 ret = ioctl(s->vmfd, type, arg);
904 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
911 arg = va_arg(ap, void *);
914 ret = ioctl(env->kvm_fd, type, arg);
921 int kvm_has_sync_mmu(void)
923 #ifdef KVM_CAP_SYNC_MMU
924 KVMState *s = kvm_state;
926 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
932 int kvm_has_vcpu_events(void)
934 return kvm_state->vcpu_events;
937 int kvm_has_robust_singlestep(void)
939 return kvm_state->robust_singlestep;
942 void kvm_setup_guest_memory(void *start, size_t size)
944 if (!kvm_has_sync_mmu()) {
946 int ret = madvise(start, size, MADV_DONTFORK);
954 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
960 #ifdef KVM_CAP_SET_GUEST_DEBUG
961 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
963 #ifdef CONFIG_IOTHREAD
964 if (env != cpu_single_env) {
971 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
974 struct kvm_sw_breakpoint *bp;
976 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
983 int kvm_sw_breakpoints_active(CPUState *env)
985 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
988 struct kvm_set_guest_debug_data {
989 struct kvm_guest_debug dbg;
994 static void kvm_invoke_set_guest_debug(void *data)
996 struct kvm_set_guest_debug_data *dbg_data = data;
997 CPUState *env = dbg_data->env;
999 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1002 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1004 struct kvm_set_guest_debug_data data;
1006 data.dbg.control = reinject_trap;
1008 if (env->singlestep_enabled) {
1009 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1011 kvm_arch_update_guest_debug(env, &data.dbg);
1014 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1018 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1019 target_ulong len, int type)
1021 struct kvm_sw_breakpoint *bp;
1025 if (type == GDB_BREAKPOINT_SW) {
1026 bp = kvm_find_sw_breakpoint(current_env, addr);
1032 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1038 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1044 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1047 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1052 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1053 err = kvm_update_guest_debug(env, 0);
1060 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1061 target_ulong len, int type)
1063 struct kvm_sw_breakpoint *bp;
1067 if (type == GDB_BREAKPOINT_SW) {
1068 bp = kvm_find_sw_breakpoint(current_env, addr);
1072 if (bp->use_count > 1) {
1077 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1081 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1084 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1089 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1090 err = kvm_update_guest_debug(env, 0);
1097 void kvm_remove_all_breakpoints(CPUState *current_env)
1099 struct kvm_sw_breakpoint *bp, *next;
1100 KVMState *s = current_env->kvm_state;
1103 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1104 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1105 /* Try harder to find a CPU that currently sees the breakpoint. */
1106 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1107 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1112 kvm_arch_remove_all_hw_breakpoints();
1114 for (env = first_cpu; env != NULL; env = env->next_cpu)
1115 kvm_update_guest_debug(env, 0);
1118 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1120 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1125 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1126 target_ulong len, int type)
1131 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1132 target_ulong len, int type)
1137 void kvm_remove_all_breakpoints(CPUState *current_env)
1140 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1142 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1144 struct kvm_signal_mask *sigmask;
1148 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1150 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1153 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1154 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1160 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1162 #ifdef KVM_IOEVENTFD
1163 struct kvm_ioeventfd kick = {
1167 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1174 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1175 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);