4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 /* debug LANCE card */
29 #ifndef LANCE_LOG_TX_BUFFERS
30 #define LANCE_LOG_TX_BUFFERS 4
31 #define LANCE_LOG_RX_BUFFERS 4
34 #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */
35 #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */
42 #define LE_MAXREG (LE_CSR3 + 1)
47 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */
49 #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */
50 #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */
51 #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */
52 #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */
53 #define LE_C0_MERR 0x0800 /* ME: Memory error */
54 #define LE_C0_RINT 0x0400 /* Received interrupt */
55 #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */
56 #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */
57 #define LE_C0_INTR 0x0080 /* Interrupt or error */
58 #define LE_C0_INEA 0x0040 /* Interrupt enable */
59 #define LE_C0_RXON 0x0020 /* Receiver on */
60 #define LE_C0_TXON 0x0010 /* Transmitter on */
61 #define LE_C0_TDMD 0x0008 /* Transmitter demand */
62 #define LE_C0_STOP 0x0004 /* Stop the card */
63 #define LE_C0_STRT 0x0002 /* Start the card */
64 #define LE_C0_INIT 0x0001 /* Init the card */
66 #define LE_C3_BSWP 0x4 /* SWAP */
67 #define LE_C3_ACON 0x2 /* ALE Control */
68 #define LE_C3_BCON 0x1 /* Byte control */
70 /* Receive message descriptor 1 */
71 #define LE_R1_OWN 0x80 /* Who owns the entry */
72 #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */
73 #define LE_R1_FRA 0x20 /* FRA: Frame error */
74 #define LE_R1_OFL 0x10 /* OFL: Frame overflow */
75 #define LE_R1_CRC 0x08 /* CRC error */
76 #define LE_R1_BUF 0x04 /* BUF: Buffer error */
77 #define LE_R1_SOP 0x02 /* Start of packet */
78 #define LE_R1_EOP 0x01 /* End of packet */
79 #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */
81 #define LE_T1_OWN 0x80 /* Lance owns the packet */
82 #define LE_T1_ERR 0x40 /* Error summary */
83 #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */
84 #define LE_T1_EONE 0x08 /* Error: one retry needed */
85 #define LE_T1_EDEF 0x04 /* Error: deferred */
86 #define LE_T1_SOP 0x02 /* Start of packet */
87 #define LE_T1_EOP 0x01 /* End of packet */
88 #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */
90 #define LE_T3_BUF 0x8000 /* Buffer error */
91 #define LE_T3_UFL 0x4000 /* Error underflow */
92 #define LE_T3_LCOL 0x1000 /* Error late collision */
93 #define LE_T3_CLOS 0x0800 /* Error carrier loss */
94 #define LE_T3_RTY 0x0400 /* Error retry */
95 #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */
97 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
98 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
99 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
101 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
102 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
103 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
105 #define PKT_BUF_SZ 1544
106 #define RX_BUFF_SIZE PKT_BUF_SZ
107 #define TX_BUFF_SIZE PKT_BUF_SZ
109 struct lance_rx_desc {
110 unsigned short rmd0; /* low address of packet */
111 unsigned char rmd1_bits; /* descriptor bits */
112 unsigned char rmd1_hadr; /* high address of packet */
113 short length; /* This length is 2s complement (negative)!
116 unsigned short mblength; /* This is the actual number of bytes received */
119 struct lance_tx_desc {
120 unsigned short tmd0; /* low address of packet */
121 unsigned char tmd1_bits; /* descriptor bits */
122 unsigned char tmd1_hadr; /* high address of packet */
123 short length; /* Length is 2s complement (negative)! */
127 /* The LANCE initialization block, described in databook. */
128 /* On the Sparc, this block should be on a DMA region */
129 struct lance_init_block {
130 unsigned short mode; /* Pre-set mode (reg. 15) */
131 unsigned char phys_addr[6]; /* Physical ethernet address */
132 unsigned filter[2]; /* Multicast filter. */
134 /* Receive and transmit ring base, along with extra bits. */
135 unsigned short rx_ptr; /* receive descriptor addr */
136 unsigned short rx_len; /* receive len and high addr */
137 unsigned short tx_ptr; /* transmit descriptor addr */
138 unsigned short tx_len; /* transmit len and high addr */
140 /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
141 struct lance_rx_desc brx_ring[RX_RING_SIZE];
142 struct lance_tx_desc btx_ring[TX_RING_SIZE];
144 char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
145 char pad[2]; /* align rx_buf for copy_and_sum(). */
146 char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
151 /* Structure to describe the current status of DMA registers on the Sparc */
152 struct sparc_dma_registers {
153 uint32_t cond_reg; /* DMA condition register */
154 uint32_t st_addr; /* Start address of this transfer */
155 uint32_t cnt; /* How many bytes to transfer */
156 uint32_t dma_test; /* DMA test register */
160 typedef struct LEDMAState {
162 uint32_t regs[LEDMA_REGS];
165 typedef struct LANCEState {
170 uint16_t regs[LE_MAXREG];
171 uint8_t phys[6]; /* mac address */
176 static unsigned int rxptr, txptr;
178 static void lance_send(void *opaque);
180 static void lance_reset(LANCEState *s)
182 memcpy(s->phys, s->nd->macaddr, 6);
185 s->regs[LE_CSR0] = LE_C0_STOP;
188 static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
190 LANCEState *s = opaque;
193 saddr = addr - s->paddr;
194 switch (saddr >> 1) {
196 return s->regs[s->addr];
205 static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
207 LANCEState *s = opaque;
211 saddr = addr - s->paddr;
212 switch (saddr >> 1) {
216 if (val & LE_C0_STOP) {
217 s->regs[LE_CSR0] = LE_C0_STOP;
221 reg = s->regs[LE_CSR0];
223 // 1 = clear for some bits
224 reg &= ~(val & 0x7f00);
227 reg &= ~(LE_C0_ERR | LE_C0_INTR);
235 reg |= val & LE_C0_INEA;
238 if (val & LE_C0_INIT) {
239 reg |= LE_C0_IDON | LE_C0_INIT;
242 else if (val & LE_C0_STRT) {
243 reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
247 s->regs[LE_CSR0] = reg;
250 //if (val & LE_C0_TDMD)
252 if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
253 pic_set_irq(s->irq, 1);
256 s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
257 s->regs[s->addr] = val;
260 s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
261 s->regs[s->addr] = val;
264 s->regs[s->addr] = val;
278 static CPUReadMemoryFunc *lance_mem_read[3] = {
284 static CPUWriteMemoryFunc *lance_mem_write[3] = {
291 /* return the max buffer size if the LANCE can receive more data */
292 static int lance_can_receive(void *opaque)
294 LANCEState *s = opaque;
295 void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
296 struct lance_init_block *ib;
300 if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
303 ib = (void *) iommu_translate(dmaptr);
305 for (i = 0; i < RX_RING_SIZE; i++) {
306 cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
308 if (temp == (LE_R1_OWN)) {
310 fprintf(stderr, "lance: can receive %d\n", RX_BUFF_SIZE);
316 fprintf(stderr, "lance: cannot receive\n");
321 #define MIN_BUF_SIZE 60
323 static void lance_receive(void *opaque, const uint8_t *buf, int size)
325 LANCEState *s = opaque;
326 void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
327 struct lance_init_block *ib;
328 unsigned int i, old_rxptr, j;
331 if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
334 ib = (void *) iommu_translate(dmaptr);
337 for (i = rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
338 cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
339 if (temp == (LE_R1_OWN)) {
340 rxptr = (rxptr + 1) & RX_RING_MOD_MASK;
343 cpu_physical_memory_write(&ib->brx_ring[i].mblength, (void *) &temp, 2);
345 cpu_physical_memory_write(&ib->rx_buf[i], buf, size);
347 for (j = 0; j < size; j++) {
348 cpu_physical_memory_write(((void *)&ib->rx_buf[i]) + j, &buf[j], 1);
352 cpu_physical_memory_write(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
353 s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
354 if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
355 pic_set_irq(s->irq, 1);
357 fprintf(stderr, "lance: got packet, len %d\n", size);
364 static void lance_send(void *opaque)
366 LANCEState *s = opaque;
367 void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
368 struct lance_init_block *ib;
369 unsigned int i, old_txptr, j;
371 char pkt_buf[PKT_BUF_SZ];
373 if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
376 ib = (void *) iommu_translate(dmaptr);
379 for (i = txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
380 cpu_physical_memory_read(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
381 if (temp == (LE_T1_POK|LE_T1_OWN)) {
382 cpu_physical_memory_read(&ib->btx_ring[i].length, (void *) &temp, 2);
386 cpu_physical_memory_read(&ib->tx_buf[i], pkt_buf, temp);
388 for (j = 0; j < temp; j++) {
389 cpu_physical_memory_read(((void *)&ib->tx_buf[i]) + j, &pkt_buf[j], 1);
394 fprintf(stderr, "lance: sending packet, len %d\n", temp);
396 qemu_send_packet(s->nd, pkt_buf, temp);
398 cpu_physical_memory_write(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
399 txptr = (txptr + 1) & TX_RING_MOD_MASK;
400 s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
405 static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
407 LEDMAState *s = opaque;
410 saddr = (addr - s->addr) >> 2;
411 if (saddr < LEDMA_REGS)
412 return s->regs[saddr];
417 static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
419 LEDMAState *s = opaque;
422 saddr = (addr - s->addr) >> 2;
423 if (saddr < LEDMA_REGS)
424 s->regs[saddr] = val;
427 static CPUReadMemoryFunc *ledma_mem_read[3] = {
433 static CPUWriteMemoryFunc *ledma_mem_write[3] = {
439 void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
443 int lance_io_memory, ledma_io_memory;
445 s = qemu_mallocz(sizeof(LANCEState));
453 lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
454 cpu_register_physical_memory(leaddr, 8, lance_io_memory);
456 led = qemu_mallocz(sizeof(LEDMAState));
462 ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
463 cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
466 qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);