]> Git Repo - qemu.git/blob - memory.c
spapr_vio: take care of creating our own AddressSpace/DMAContext
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "sysemu/kvm.h"
21 #include <assert.h>
22
23 #include "exec/memory-internal.h"
24
25 //#define DEBUG_UNASSIGNED
26
27 static unsigned memory_region_transaction_depth;
28 static bool memory_region_update_pending;
29 static bool global_dirty_log = false;
30
31 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
32     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
33
34 static QTAILQ_HEAD(, AddressSpace) address_spaces
35     = QTAILQ_HEAD_INITIALIZER(address_spaces);
36
37 typedef struct AddrRange AddrRange;
38
39 /*
40  * Note using signed integers limits us to physical addresses at most
41  * 63 bits wide.  They are needed for negative offsetting in aliases
42  * (large MemoryRegion::alias_offset).
43  */
44 struct AddrRange {
45     Int128 start;
46     Int128 size;
47 };
48
49 static AddrRange addrrange_make(Int128 start, Int128 size)
50 {
51     return (AddrRange) { start, size };
52 }
53
54 static bool addrrange_equal(AddrRange r1, AddrRange r2)
55 {
56     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
57 }
58
59 static Int128 addrrange_end(AddrRange r)
60 {
61     return int128_add(r.start, r.size);
62 }
63
64 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
65 {
66     int128_addto(&range.start, delta);
67     return range;
68 }
69
70 static bool addrrange_contains(AddrRange range, Int128 addr)
71 {
72     return int128_ge(addr, range.start)
73         && int128_lt(addr, addrrange_end(range));
74 }
75
76 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
77 {
78     return addrrange_contains(r1, r2.start)
79         || addrrange_contains(r2, r1.start);
80 }
81
82 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
83 {
84     Int128 start = int128_max(r1.start, r2.start);
85     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
86     return addrrange_make(start, int128_sub(end, start));
87 }
88
89 enum ListenerDirection { Forward, Reverse };
90
91 static bool memory_listener_match(MemoryListener *listener,
92                                   MemoryRegionSection *section)
93 {
94     return !listener->address_space_filter
95         || listener->address_space_filter == section->address_space;
96 }
97
98 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
99     do {                                                                \
100         MemoryListener *_listener;                                      \
101                                                                         \
102         switch (_direction) {                                           \
103         case Forward:                                                   \
104             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
105                 if (_listener->_callback) {                             \
106                     _listener->_callback(_listener, ##_args);           \
107                 }                                                       \
108             }                                                           \
109             break;                                                      \
110         case Reverse:                                                   \
111             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
112                                    memory_listeners, link) {            \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         default:                                                        \
119             abort();                                                    \
120         }                                                               \
121     } while (0)
122
123 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
124     do {                                                                \
125         MemoryListener *_listener;                                      \
126                                                                         \
127         switch (_direction) {                                           \
128         case Forward:                                                   \
129             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
130                 if (_listener->_callback                                \
131                     && memory_listener_match(_listener, _section)) {    \
132                     _listener->_callback(_listener, _section, ##_args); \
133                 }                                                       \
134             }                                                           \
135             break;                                                      \
136         case Reverse:                                                   \
137             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
138                                    memory_listeners, link) {            \
139                 if (_listener->_callback                                \
140                     && memory_listener_match(_listener, _section)) {    \
141                     _listener->_callback(_listener, _section, ##_args); \
142                 }                                                       \
143             }                                                           \
144             break;                                                      \
145         default:                                                        \
146             abort();                                                    \
147         }                                                               \
148     } while (0)
149
150 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
151     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
152         .mr = (fr)->mr,                                                 \
153         .address_space = (as),                                          \
154         .offset_within_region = (fr)->offset_in_region,                 \
155         .size = (fr)->addr.size,                                        \
156         .offset_within_address_space = int128_get64((fr)->addr.start),  \
157         .readonly = (fr)->readonly,                                     \
158               }))
159
160 struct CoalescedMemoryRange {
161     AddrRange addr;
162     QTAILQ_ENTRY(CoalescedMemoryRange) link;
163 };
164
165 struct MemoryRegionIoeventfd {
166     AddrRange addr;
167     bool match_data;
168     uint64_t data;
169     EventNotifier *e;
170 };
171
172 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
173                                            MemoryRegionIoeventfd b)
174 {
175     if (int128_lt(a.addr.start, b.addr.start)) {
176         return true;
177     } else if (int128_gt(a.addr.start, b.addr.start)) {
178         return false;
179     } else if (int128_lt(a.addr.size, b.addr.size)) {
180         return true;
181     } else if (int128_gt(a.addr.size, b.addr.size)) {
182         return false;
183     } else if (a.match_data < b.match_data) {
184         return true;
185     } else  if (a.match_data > b.match_data) {
186         return false;
187     } else if (a.match_data) {
188         if (a.data < b.data) {
189             return true;
190         } else if (a.data > b.data) {
191             return false;
192         }
193     }
194     if (a.e < b.e) {
195         return true;
196     } else if (a.e > b.e) {
197         return false;
198     }
199     return false;
200 }
201
202 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
203                                           MemoryRegionIoeventfd b)
204 {
205     return !memory_region_ioeventfd_before(a, b)
206         && !memory_region_ioeventfd_before(b, a);
207 }
208
209 typedef struct FlatRange FlatRange;
210 typedef struct FlatView FlatView;
211
212 /* Range of memory in the global map.  Addresses are absolute. */
213 struct FlatRange {
214     MemoryRegion *mr;
215     hwaddr offset_in_region;
216     AddrRange addr;
217     uint8_t dirty_log_mask;
218     bool romd_mode;
219     bool readonly;
220 };
221
222 /* Flattened global view of current active memory hierarchy.  Kept in sorted
223  * order.
224  */
225 struct FlatView {
226     FlatRange *ranges;
227     unsigned nr;
228     unsigned nr_allocated;
229 };
230
231 typedef struct AddressSpaceOps AddressSpaceOps;
232
233 #define FOR_EACH_FLAT_RANGE(var, view)          \
234     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
235
236 static bool flatrange_equal(FlatRange *a, FlatRange *b)
237 {
238     return a->mr == b->mr
239         && addrrange_equal(a->addr, b->addr)
240         && a->offset_in_region == b->offset_in_region
241         && a->romd_mode == b->romd_mode
242         && a->readonly == b->readonly;
243 }
244
245 static void flatview_init(FlatView *view)
246 {
247     view->ranges = NULL;
248     view->nr = 0;
249     view->nr_allocated = 0;
250 }
251
252 /* Insert a range into a given position.  Caller is responsible for maintaining
253  * sorting order.
254  */
255 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
256 {
257     if (view->nr == view->nr_allocated) {
258         view->nr_allocated = MAX(2 * view->nr, 10);
259         view->ranges = g_realloc(view->ranges,
260                                     view->nr_allocated * sizeof(*view->ranges));
261     }
262     memmove(view->ranges + pos + 1, view->ranges + pos,
263             (view->nr - pos) * sizeof(FlatRange));
264     view->ranges[pos] = *range;
265     ++view->nr;
266 }
267
268 static void flatview_destroy(FlatView *view)
269 {
270     g_free(view->ranges);
271 }
272
273 static bool can_merge(FlatRange *r1, FlatRange *r2)
274 {
275     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
276         && r1->mr == r2->mr
277         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
278                                 r1->addr.size),
279                      int128_make64(r2->offset_in_region))
280         && r1->dirty_log_mask == r2->dirty_log_mask
281         && r1->romd_mode == r2->romd_mode
282         && r1->readonly == r2->readonly;
283 }
284
285 /* Attempt to simplify a view by merging ajacent ranges */
286 static void flatview_simplify(FlatView *view)
287 {
288     unsigned i, j;
289
290     i = 0;
291     while (i < view->nr) {
292         j = i + 1;
293         while (j < view->nr
294                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
295             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
296             ++j;
297         }
298         ++i;
299         memmove(&view->ranges[i], &view->ranges[j],
300                 (view->nr - j) * sizeof(view->ranges[j]));
301         view->nr -= j - i;
302     }
303 }
304
305 static void memory_region_oldmmio_read_accessor(void *opaque,
306                                                 hwaddr addr,
307                                                 uint64_t *value,
308                                                 unsigned size,
309                                                 unsigned shift,
310                                                 uint64_t mask)
311 {
312     MemoryRegion *mr = opaque;
313     uint64_t tmp;
314
315     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
316     *value |= (tmp & mask) << shift;
317 }
318
319 static void memory_region_read_accessor(void *opaque,
320                                         hwaddr addr,
321                                         uint64_t *value,
322                                         unsigned size,
323                                         unsigned shift,
324                                         uint64_t mask)
325 {
326     MemoryRegion *mr = opaque;
327     uint64_t tmp;
328
329     if (mr->flush_coalesced_mmio) {
330         qemu_flush_coalesced_mmio_buffer();
331     }
332     tmp = mr->ops->read(mr->opaque, addr, size);
333     *value |= (tmp & mask) << shift;
334 }
335
336 static void memory_region_oldmmio_write_accessor(void *opaque,
337                                                  hwaddr addr,
338                                                  uint64_t *value,
339                                                  unsigned size,
340                                                  unsigned shift,
341                                                  uint64_t mask)
342 {
343     MemoryRegion *mr = opaque;
344     uint64_t tmp;
345
346     tmp = (*value >> shift) & mask;
347     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
348 }
349
350 static void memory_region_write_accessor(void *opaque,
351                                          hwaddr addr,
352                                          uint64_t *value,
353                                          unsigned size,
354                                          unsigned shift,
355                                          uint64_t mask)
356 {
357     MemoryRegion *mr = opaque;
358     uint64_t tmp;
359
360     if (mr->flush_coalesced_mmio) {
361         qemu_flush_coalesced_mmio_buffer();
362     }
363     tmp = (*value >> shift) & mask;
364     mr->ops->write(mr->opaque, addr, tmp, size);
365 }
366
367 static void access_with_adjusted_size(hwaddr addr,
368                                       uint64_t *value,
369                                       unsigned size,
370                                       unsigned access_size_min,
371                                       unsigned access_size_max,
372                                       void (*access)(void *opaque,
373                                                      hwaddr addr,
374                                                      uint64_t *value,
375                                                      unsigned size,
376                                                      unsigned shift,
377                                                      uint64_t mask),
378                                       void *opaque)
379 {
380     uint64_t access_mask;
381     unsigned access_size;
382     unsigned i;
383
384     if (!access_size_min) {
385         access_size_min = 1;
386     }
387     if (!access_size_max) {
388         access_size_max = 4;
389     }
390
391     /* FIXME: support unaligned access? */
392     access_size = MAX(MIN(size, access_size_max), access_size_min);
393     access_mask = -1ULL >> (64 - access_size * 8);
394     for (i = 0; i < size; i += access_size) {
395 #ifdef TARGET_WORDS_BIGENDIAN
396         access(opaque, addr + i, value, access_size,
397                (size - access_size - i) * 8, access_mask);
398 #else
399         access(opaque, addr + i, value, access_size, i * 8, access_mask);
400 #endif
401     }
402 }
403
404 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
405                                              unsigned width, bool write)
406 {
407     const MemoryRegionPortio *mrp;
408
409     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
410         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
411             && width == mrp->size
412             && (write ? (bool)mrp->write : (bool)mrp->read)) {
413             return mrp;
414         }
415     }
416     return NULL;
417 }
418
419 static void memory_region_iorange_read(IORange *iorange,
420                                        uint64_t offset,
421                                        unsigned width,
422                                        uint64_t *data)
423 {
424     MemoryRegionIORange *mrio
425         = container_of(iorange, MemoryRegionIORange, iorange);
426     MemoryRegion *mr = mrio->mr;
427
428     offset += mrio->offset;
429     if (mr->ops->old_portio) {
430         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
431                                                     width, false);
432
433         *data = ((uint64_t)1 << (width * 8)) - 1;
434         if (mrp) {
435             *data = mrp->read(mr->opaque, offset);
436         } else if (width == 2) {
437             mrp = find_portio(mr, offset - mrio->offset, 1, false);
438             assert(mrp);
439             *data = mrp->read(mr->opaque, offset) |
440                     (mrp->read(mr->opaque, offset + 1) << 8);
441         }
442         return;
443     }
444     *data = 0;
445     access_with_adjusted_size(offset, data, width,
446                               mr->ops->impl.min_access_size,
447                               mr->ops->impl.max_access_size,
448                               memory_region_read_accessor, mr);
449 }
450
451 static void memory_region_iorange_write(IORange *iorange,
452                                         uint64_t offset,
453                                         unsigned width,
454                                         uint64_t data)
455 {
456     MemoryRegionIORange *mrio
457         = container_of(iorange, MemoryRegionIORange, iorange);
458     MemoryRegion *mr = mrio->mr;
459
460     offset += mrio->offset;
461     if (mr->ops->old_portio) {
462         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
463                                                     width, true);
464
465         if (mrp) {
466             mrp->write(mr->opaque, offset, data);
467         } else if (width == 2) {
468             mrp = find_portio(mr, offset - mrio->offset, 1, true);
469             assert(mrp);
470             mrp->write(mr->opaque, offset, data & 0xff);
471             mrp->write(mr->opaque, offset + 1, data >> 8);
472         }
473         return;
474     }
475     access_with_adjusted_size(offset, &data, width,
476                               mr->ops->impl.min_access_size,
477                               mr->ops->impl.max_access_size,
478                               memory_region_write_accessor, mr);
479 }
480
481 static void memory_region_iorange_destructor(IORange *iorange)
482 {
483     g_free(container_of(iorange, MemoryRegionIORange, iorange));
484 }
485
486 const IORangeOps memory_region_iorange_ops = {
487     .read = memory_region_iorange_read,
488     .write = memory_region_iorange_write,
489     .destructor = memory_region_iorange_destructor,
490 };
491
492 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
493 {
494     AddressSpace *as;
495
496     while (mr->parent) {
497         mr = mr->parent;
498     }
499     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
500         if (mr == as->root) {
501             return as;
502         }
503     }
504     abort();
505 }
506
507 /* Render a memory region into the global view.  Ranges in @view obscure
508  * ranges in @mr.
509  */
510 static void render_memory_region(FlatView *view,
511                                  MemoryRegion *mr,
512                                  Int128 base,
513                                  AddrRange clip,
514                                  bool readonly)
515 {
516     MemoryRegion *subregion;
517     unsigned i;
518     hwaddr offset_in_region;
519     Int128 remain;
520     Int128 now;
521     FlatRange fr;
522     AddrRange tmp;
523
524     if (!mr->enabled) {
525         return;
526     }
527
528     int128_addto(&base, int128_make64(mr->addr));
529     readonly |= mr->readonly;
530
531     tmp = addrrange_make(base, mr->size);
532
533     if (!addrrange_intersects(tmp, clip)) {
534         return;
535     }
536
537     clip = addrrange_intersection(tmp, clip);
538
539     if (mr->alias) {
540         int128_subfrom(&base, int128_make64(mr->alias->addr));
541         int128_subfrom(&base, int128_make64(mr->alias_offset));
542         render_memory_region(view, mr->alias, base, clip, readonly);
543         return;
544     }
545
546     /* Render subregions in priority order. */
547     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
548         render_memory_region(view, subregion, base, clip, readonly);
549     }
550
551     if (!mr->terminates) {
552         return;
553     }
554
555     offset_in_region = int128_get64(int128_sub(clip.start, base));
556     base = clip.start;
557     remain = clip.size;
558
559     /* Render the region itself into any gaps left by the current view. */
560     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
561         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
562             continue;
563         }
564         if (int128_lt(base, view->ranges[i].addr.start)) {
565             now = int128_min(remain,
566                              int128_sub(view->ranges[i].addr.start, base));
567             fr.mr = mr;
568             fr.offset_in_region = offset_in_region;
569             fr.addr = addrrange_make(base, now);
570             fr.dirty_log_mask = mr->dirty_log_mask;
571             fr.romd_mode = mr->romd_mode;
572             fr.readonly = readonly;
573             flatview_insert(view, i, &fr);
574             ++i;
575             int128_addto(&base, now);
576             offset_in_region += int128_get64(now);
577             int128_subfrom(&remain, now);
578         }
579         now = int128_sub(int128_min(int128_add(base, remain),
580                                     addrrange_end(view->ranges[i].addr)),
581                          base);
582         int128_addto(&base, now);
583         offset_in_region += int128_get64(now);
584         int128_subfrom(&remain, now);
585     }
586     if (int128_nz(remain)) {
587         fr.mr = mr;
588         fr.offset_in_region = offset_in_region;
589         fr.addr = addrrange_make(base, remain);
590         fr.dirty_log_mask = mr->dirty_log_mask;
591         fr.romd_mode = mr->romd_mode;
592         fr.readonly = readonly;
593         flatview_insert(view, i, &fr);
594     }
595 }
596
597 /* Render a memory topology into a list of disjoint absolute ranges. */
598 static FlatView generate_memory_topology(MemoryRegion *mr)
599 {
600     FlatView view;
601
602     flatview_init(&view);
603
604     if (mr) {
605         render_memory_region(&view, mr, int128_zero(),
606                              addrrange_make(int128_zero(), int128_2_64()), false);
607     }
608     flatview_simplify(&view);
609
610     return view;
611 }
612
613 static void address_space_add_del_ioeventfds(AddressSpace *as,
614                                              MemoryRegionIoeventfd *fds_new,
615                                              unsigned fds_new_nb,
616                                              MemoryRegionIoeventfd *fds_old,
617                                              unsigned fds_old_nb)
618 {
619     unsigned iold, inew;
620     MemoryRegionIoeventfd *fd;
621     MemoryRegionSection section;
622
623     /* Generate a symmetric difference of the old and new fd sets, adding
624      * and deleting as necessary.
625      */
626
627     iold = inew = 0;
628     while (iold < fds_old_nb || inew < fds_new_nb) {
629         if (iold < fds_old_nb
630             && (inew == fds_new_nb
631                 || memory_region_ioeventfd_before(fds_old[iold],
632                                                   fds_new[inew]))) {
633             fd = &fds_old[iold];
634             section = (MemoryRegionSection) {
635                 .address_space = as,
636                 .offset_within_address_space = int128_get64(fd->addr.start),
637                 .size = fd->addr.size,
638             };
639             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
640                                  fd->match_data, fd->data, fd->e);
641             ++iold;
642         } else if (inew < fds_new_nb
643                    && (iold == fds_old_nb
644                        || memory_region_ioeventfd_before(fds_new[inew],
645                                                          fds_old[iold]))) {
646             fd = &fds_new[inew];
647             section = (MemoryRegionSection) {
648                 .address_space = as,
649                 .offset_within_address_space = int128_get64(fd->addr.start),
650                 .size = fd->addr.size,
651             };
652             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
653                                  fd->match_data, fd->data, fd->e);
654             ++inew;
655         } else {
656             ++iold;
657             ++inew;
658         }
659     }
660 }
661
662 static void address_space_update_ioeventfds(AddressSpace *as)
663 {
664     FlatRange *fr;
665     unsigned ioeventfd_nb = 0;
666     MemoryRegionIoeventfd *ioeventfds = NULL;
667     AddrRange tmp;
668     unsigned i;
669
670     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
671         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
672             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
673                                   int128_sub(fr->addr.start,
674                                              int128_make64(fr->offset_in_region)));
675             if (addrrange_intersects(fr->addr, tmp)) {
676                 ++ioeventfd_nb;
677                 ioeventfds = g_realloc(ioeventfds,
678                                           ioeventfd_nb * sizeof(*ioeventfds));
679                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
680                 ioeventfds[ioeventfd_nb-1].addr = tmp;
681             }
682         }
683     }
684
685     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
686                                      as->ioeventfds, as->ioeventfd_nb);
687
688     g_free(as->ioeventfds);
689     as->ioeventfds = ioeventfds;
690     as->ioeventfd_nb = ioeventfd_nb;
691 }
692
693 static void address_space_update_topology_pass(AddressSpace *as,
694                                                FlatView old_view,
695                                                FlatView new_view,
696                                                bool adding)
697 {
698     unsigned iold, inew;
699     FlatRange *frold, *frnew;
700
701     /* Generate a symmetric difference of the old and new memory maps.
702      * Kill ranges in the old map, and instantiate ranges in the new map.
703      */
704     iold = inew = 0;
705     while (iold < old_view.nr || inew < new_view.nr) {
706         if (iold < old_view.nr) {
707             frold = &old_view.ranges[iold];
708         } else {
709             frold = NULL;
710         }
711         if (inew < new_view.nr) {
712             frnew = &new_view.ranges[inew];
713         } else {
714             frnew = NULL;
715         }
716
717         if (frold
718             && (!frnew
719                 || int128_lt(frold->addr.start, frnew->addr.start)
720                 || (int128_eq(frold->addr.start, frnew->addr.start)
721                     && !flatrange_equal(frold, frnew)))) {
722             /* In old, but (not in new, or in new but attributes changed). */
723
724             if (!adding) {
725                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
726             }
727
728             ++iold;
729         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
730             /* In both (logging may have changed) */
731
732             if (adding) {
733                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
734                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
735                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
736                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
737                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
738                 }
739             }
740
741             ++iold;
742             ++inew;
743         } else {
744             /* In new */
745
746             if (adding) {
747                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
748             }
749
750             ++inew;
751         }
752     }
753 }
754
755
756 static void address_space_update_topology(AddressSpace *as)
757 {
758     FlatView old_view = *as->current_map;
759     FlatView new_view = generate_memory_topology(as->root);
760
761     address_space_update_topology_pass(as, old_view, new_view, false);
762     address_space_update_topology_pass(as, old_view, new_view, true);
763
764     *as->current_map = new_view;
765     flatview_destroy(&old_view);
766     address_space_update_ioeventfds(as);
767 }
768
769 void memory_region_transaction_begin(void)
770 {
771     qemu_flush_coalesced_mmio_buffer();
772     ++memory_region_transaction_depth;
773 }
774
775 void memory_region_transaction_commit(void)
776 {
777     AddressSpace *as;
778
779     assert(memory_region_transaction_depth);
780     --memory_region_transaction_depth;
781     if (!memory_region_transaction_depth && memory_region_update_pending) {
782         memory_region_update_pending = false;
783         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
784
785         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
786             address_space_update_topology(as);
787         }
788
789         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
790     }
791 }
792
793 static void memory_region_destructor_none(MemoryRegion *mr)
794 {
795 }
796
797 static void memory_region_destructor_ram(MemoryRegion *mr)
798 {
799     qemu_ram_free(mr->ram_addr);
800 }
801
802 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
803 {
804     qemu_ram_free_from_ptr(mr->ram_addr);
805 }
806
807 static void memory_region_destructor_rom_device(MemoryRegion *mr)
808 {
809     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
810 }
811
812 static bool memory_region_wrong_endianness(MemoryRegion *mr)
813 {
814 #ifdef TARGET_WORDS_BIGENDIAN
815     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
816 #else
817     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
818 #endif
819 }
820
821 void memory_region_init(MemoryRegion *mr,
822                         const char *name,
823                         uint64_t size)
824 {
825     mr->ops = &unassigned_mem_ops;
826     mr->opaque = NULL;
827     mr->iommu_ops = NULL;
828     mr->parent = NULL;
829     mr->size = int128_make64(size);
830     if (size == UINT64_MAX) {
831         mr->size = int128_2_64();
832     }
833     mr->addr = 0;
834     mr->subpage = false;
835     mr->enabled = true;
836     mr->terminates = false;
837     mr->ram = false;
838     mr->romd_mode = true;
839     mr->readonly = false;
840     mr->rom_device = false;
841     mr->destructor = memory_region_destructor_none;
842     mr->priority = 0;
843     mr->may_overlap = false;
844     mr->alias = NULL;
845     QTAILQ_INIT(&mr->subregions);
846     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
847     QTAILQ_INIT(&mr->coalesced);
848     mr->name = g_strdup(name);
849     mr->dirty_log_mask = 0;
850     mr->ioeventfd_nb = 0;
851     mr->ioeventfds = NULL;
852     mr->flush_coalesced_mmio = false;
853 }
854
855 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
856                                     unsigned size)
857 {
858 #ifdef DEBUG_UNASSIGNED
859     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
860 #endif
861 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
862     cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
863 #endif
864     return 0;
865 }
866
867 static void unassigned_mem_write(void *opaque, hwaddr addr,
868                                  uint64_t val, unsigned size)
869 {
870 #ifdef DEBUG_UNASSIGNED
871     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
872 #endif
873 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
874     cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
875 #endif
876 }
877
878 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
879                                    unsigned size, bool is_write)
880 {
881     return false;
882 }
883
884 const MemoryRegionOps unassigned_mem_ops = {
885     .valid.accepts = unassigned_mem_accepts,
886     .endianness = DEVICE_NATIVE_ENDIAN,
887 };
888
889 bool memory_region_access_valid(MemoryRegion *mr,
890                                 hwaddr addr,
891                                 unsigned size,
892                                 bool is_write)
893 {
894     int access_size_min, access_size_max;
895     int access_size, i;
896
897     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
898         return false;
899     }
900
901     if (!mr->ops->valid.accepts) {
902         return true;
903     }
904
905     access_size_min = mr->ops->valid.min_access_size;
906     if (!mr->ops->valid.min_access_size) {
907         access_size_min = 1;
908     }
909
910     access_size_max = mr->ops->valid.max_access_size;
911     if (!mr->ops->valid.max_access_size) {
912         access_size_max = 4;
913     }
914
915     access_size = MAX(MIN(size, access_size_max), access_size_min);
916     for (i = 0; i < size; i += access_size) {
917         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
918                                     is_write)) {
919             return false;
920         }
921     }
922
923     return true;
924 }
925
926 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
927                                              hwaddr addr,
928                                              unsigned size)
929 {
930     uint64_t data = 0;
931
932     if (mr->ops->read) {
933         access_with_adjusted_size(addr, &data, size,
934                                   mr->ops->impl.min_access_size,
935                                   mr->ops->impl.max_access_size,
936                                   memory_region_read_accessor, mr);
937     } else {
938         access_with_adjusted_size(addr, &data, size, 1, 4,
939                                   memory_region_oldmmio_read_accessor, mr);
940     }
941
942     return data;
943 }
944
945 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
946 {
947     if (memory_region_wrong_endianness(mr)) {
948         switch (size) {
949         case 1:
950             break;
951         case 2:
952             *data = bswap16(*data);
953             break;
954         case 4:
955             *data = bswap32(*data);
956             break;
957         case 8:
958             *data = bswap64(*data);
959             break;
960         default:
961             abort();
962         }
963     }
964 }
965
966 static bool memory_region_dispatch_read(MemoryRegion *mr,
967                                         hwaddr addr,
968                                         uint64_t *pval,
969                                         unsigned size)
970 {
971     if (!memory_region_access_valid(mr, addr, size, false)) {
972         *pval = unassigned_mem_read(mr, addr, size);
973         return true;
974     }
975
976     *pval = memory_region_dispatch_read1(mr, addr, size);
977     adjust_endianness(mr, pval, size);
978     return false;
979 }
980
981 static bool memory_region_dispatch_write(MemoryRegion *mr,
982                                          hwaddr addr,
983                                          uint64_t data,
984                                          unsigned size)
985 {
986     if (!memory_region_access_valid(mr, addr, size, true)) {
987         unassigned_mem_write(mr, addr, data, size);
988         return true;
989     }
990
991     adjust_endianness(mr, &data, size);
992
993     if (mr->ops->write) {
994         access_with_adjusted_size(addr, &data, size,
995                                   mr->ops->impl.min_access_size,
996                                   mr->ops->impl.max_access_size,
997                                   memory_region_write_accessor, mr);
998     } else {
999         access_with_adjusted_size(addr, &data, size, 1, 4,
1000                                   memory_region_oldmmio_write_accessor, mr);
1001     }
1002     return false;
1003 }
1004
1005 void memory_region_init_io(MemoryRegion *mr,
1006                            const MemoryRegionOps *ops,
1007                            void *opaque,
1008                            const char *name,
1009                            uint64_t size)
1010 {
1011     memory_region_init(mr, name, size);
1012     mr->ops = ops;
1013     mr->opaque = opaque;
1014     mr->terminates = true;
1015     mr->ram_addr = ~(ram_addr_t)0;
1016 }
1017
1018 void memory_region_init_ram(MemoryRegion *mr,
1019                             const char *name,
1020                             uint64_t size)
1021 {
1022     memory_region_init(mr, name, size);
1023     mr->ram = true;
1024     mr->terminates = true;
1025     mr->destructor = memory_region_destructor_ram;
1026     mr->ram_addr = qemu_ram_alloc(size, mr);
1027 }
1028
1029 void memory_region_init_ram_ptr(MemoryRegion *mr,
1030                                 const char *name,
1031                                 uint64_t size,
1032                                 void *ptr)
1033 {
1034     memory_region_init(mr, name, size);
1035     mr->ram = true;
1036     mr->terminates = true;
1037     mr->destructor = memory_region_destructor_ram_from_ptr;
1038     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1039 }
1040
1041 void memory_region_init_alias(MemoryRegion *mr,
1042                               const char *name,
1043                               MemoryRegion *orig,
1044                               hwaddr offset,
1045                               uint64_t size)
1046 {
1047     memory_region_init(mr, name, size);
1048     mr->alias = orig;
1049     mr->alias_offset = offset;
1050 }
1051
1052 void memory_region_init_rom_device(MemoryRegion *mr,
1053                                    const MemoryRegionOps *ops,
1054                                    void *opaque,
1055                                    const char *name,
1056                                    uint64_t size)
1057 {
1058     memory_region_init(mr, name, size);
1059     mr->ops = ops;
1060     mr->opaque = opaque;
1061     mr->terminates = true;
1062     mr->rom_device = true;
1063     mr->destructor = memory_region_destructor_rom_device;
1064     mr->ram_addr = qemu_ram_alloc(size, mr);
1065 }
1066
1067 void memory_region_init_iommu(MemoryRegion *mr,
1068                               const MemoryRegionIOMMUOps *ops,
1069                               const char *name,
1070                               uint64_t size)
1071 {
1072     memory_region_init(mr, name, size);
1073     mr->iommu_ops = ops,
1074     mr->terminates = true;  /* then re-forwards */
1075     notifier_list_init(&mr->iommu_notify);
1076 }
1077
1078 void memory_region_init_reservation(MemoryRegion *mr,
1079                                     const char *name,
1080                                     uint64_t size)
1081 {
1082     memory_region_init_io(mr, &unassigned_mem_ops, mr, name, size);
1083 }
1084
1085 void memory_region_destroy(MemoryRegion *mr)
1086 {
1087     assert(QTAILQ_EMPTY(&mr->subregions));
1088     assert(memory_region_transaction_depth == 0);
1089     mr->destructor(mr);
1090     memory_region_clear_coalescing(mr);
1091     g_free((char *)mr->name);
1092     g_free(mr->ioeventfds);
1093 }
1094
1095 uint64_t memory_region_size(MemoryRegion *mr)
1096 {
1097     if (int128_eq(mr->size, int128_2_64())) {
1098         return UINT64_MAX;
1099     }
1100     return int128_get64(mr->size);
1101 }
1102
1103 const char *memory_region_name(MemoryRegion *mr)
1104 {
1105     return mr->name;
1106 }
1107
1108 bool memory_region_is_ram(MemoryRegion *mr)
1109 {
1110     return mr->ram;
1111 }
1112
1113 bool memory_region_is_logging(MemoryRegion *mr)
1114 {
1115     return mr->dirty_log_mask;
1116 }
1117
1118 bool memory_region_is_rom(MemoryRegion *mr)
1119 {
1120     return mr->ram && mr->readonly;
1121 }
1122
1123 bool memory_region_is_iommu(MemoryRegion *mr)
1124 {
1125     return mr->iommu_ops;
1126 }
1127
1128 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1129 {
1130     notifier_list_add(&mr->iommu_notify, n);
1131 }
1132
1133 void memory_region_unregister_iommu_notifier(Notifier *n)
1134 {
1135     notifier_remove(n);
1136 }
1137
1138 void memory_region_notify_iommu(MemoryRegion *mr,
1139                                 IOMMUTLBEntry entry)
1140 {
1141     assert(memory_region_is_iommu(mr));
1142     notifier_list_notify(&mr->iommu_notify, &entry);
1143 }
1144
1145 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1146 {
1147     uint8_t mask = 1 << client;
1148
1149     memory_region_transaction_begin();
1150     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1151     memory_region_update_pending |= mr->enabled;
1152     memory_region_transaction_commit();
1153 }
1154
1155 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1156                              hwaddr size, unsigned client)
1157 {
1158     assert(mr->terminates);
1159     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1160                                          1 << client);
1161 }
1162
1163 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1164                              hwaddr size)
1165 {
1166     assert(mr->terminates);
1167     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1168 }
1169
1170 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1171                                         hwaddr size, unsigned client)
1172 {
1173     bool ret;
1174     assert(mr->terminates);
1175     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1176                                         1 << client);
1177     if (ret) {
1178         cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1179                                         mr->ram_addr + addr + size,
1180                                         1 << client);
1181     }
1182     return ret;
1183 }
1184
1185
1186 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1187 {
1188     AddressSpace *as;
1189     FlatRange *fr;
1190
1191     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1192         FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1193             if (fr->mr == mr) {
1194                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1195             }
1196         }
1197     }
1198 }
1199
1200 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1201 {
1202     if (mr->readonly != readonly) {
1203         memory_region_transaction_begin();
1204         mr->readonly = readonly;
1205         memory_region_update_pending |= mr->enabled;
1206         memory_region_transaction_commit();
1207     }
1208 }
1209
1210 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1211 {
1212     if (mr->romd_mode != romd_mode) {
1213         memory_region_transaction_begin();
1214         mr->romd_mode = romd_mode;
1215         memory_region_update_pending |= mr->enabled;
1216         memory_region_transaction_commit();
1217     }
1218 }
1219
1220 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1221                                hwaddr size, unsigned client)
1222 {
1223     assert(mr->terminates);
1224     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1225                                     mr->ram_addr + addr + size,
1226                                     1 << client);
1227 }
1228
1229 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1230 {
1231     if (mr->alias) {
1232         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1233     }
1234
1235     assert(mr->terminates);
1236
1237     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1238 }
1239
1240 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1241 {
1242     FlatRange *fr;
1243     CoalescedMemoryRange *cmr;
1244     AddrRange tmp;
1245     MemoryRegionSection section;
1246
1247     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1248         if (fr->mr == mr) {
1249             section = (MemoryRegionSection) {
1250                 .address_space = as,
1251                 .offset_within_address_space = int128_get64(fr->addr.start),
1252                 .size = fr->addr.size,
1253             };
1254
1255             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1256                                  int128_get64(fr->addr.start),
1257                                  int128_get64(fr->addr.size));
1258             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1259                 tmp = addrrange_shift(cmr->addr,
1260                                       int128_sub(fr->addr.start,
1261                                                  int128_make64(fr->offset_in_region)));
1262                 if (!addrrange_intersects(tmp, fr->addr)) {
1263                     continue;
1264                 }
1265                 tmp = addrrange_intersection(tmp, fr->addr);
1266                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1267                                      int128_get64(tmp.start),
1268                                      int128_get64(tmp.size));
1269             }
1270         }
1271     }
1272 }
1273
1274 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1275 {
1276     AddressSpace *as;
1277
1278     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1279         memory_region_update_coalesced_range_as(mr, as);
1280     }
1281 }
1282
1283 void memory_region_set_coalescing(MemoryRegion *mr)
1284 {
1285     memory_region_clear_coalescing(mr);
1286     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1287 }
1288
1289 void memory_region_add_coalescing(MemoryRegion *mr,
1290                                   hwaddr offset,
1291                                   uint64_t size)
1292 {
1293     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1294
1295     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1296     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1297     memory_region_update_coalesced_range(mr);
1298     memory_region_set_flush_coalesced(mr);
1299 }
1300
1301 void memory_region_clear_coalescing(MemoryRegion *mr)
1302 {
1303     CoalescedMemoryRange *cmr;
1304
1305     qemu_flush_coalesced_mmio_buffer();
1306     mr->flush_coalesced_mmio = false;
1307
1308     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1309         cmr = QTAILQ_FIRST(&mr->coalesced);
1310         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1311         g_free(cmr);
1312     }
1313     memory_region_update_coalesced_range(mr);
1314 }
1315
1316 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1317 {
1318     mr->flush_coalesced_mmio = true;
1319 }
1320
1321 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1322 {
1323     qemu_flush_coalesced_mmio_buffer();
1324     if (QTAILQ_EMPTY(&mr->coalesced)) {
1325         mr->flush_coalesced_mmio = false;
1326     }
1327 }
1328
1329 void memory_region_add_eventfd(MemoryRegion *mr,
1330                                hwaddr addr,
1331                                unsigned size,
1332                                bool match_data,
1333                                uint64_t data,
1334                                EventNotifier *e)
1335 {
1336     MemoryRegionIoeventfd mrfd = {
1337         .addr.start = int128_make64(addr),
1338         .addr.size = int128_make64(size),
1339         .match_data = match_data,
1340         .data = data,
1341         .e = e,
1342     };
1343     unsigned i;
1344
1345     adjust_endianness(mr, &mrfd.data, size);
1346     memory_region_transaction_begin();
1347     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1348         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1349             break;
1350         }
1351     }
1352     ++mr->ioeventfd_nb;
1353     mr->ioeventfds = g_realloc(mr->ioeventfds,
1354                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1355     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1356             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1357     mr->ioeventfds[i] = mrfd;
1358     memory_region_update_pending |= mr->enabled;
1359     memory_region_transaction_commit();
1360 }
1361
1362 void memory_region_del_eventfd(MemoryRegion *mr,
1363                                hwaddr addr,
1364                                unsigned size,
1365                                bool match_data,
1366                                uint64_t data,
1367                                EventNotifier *e)
1368 {
1369     MemoryRegionIoeventfd mrfd = {
1370         .addr.start = int128_make64(addr),
1371         .addr.size = int128_make64(size),
1372         .match_data = match_data,
1373         .data = data,
1374         .e = e,
1375     };
1376     unsigned i;
1377
1378     adjust_endianness(mr, &mrfd.data, size);
1379     memory_region_transaction_begin();
1380     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1381         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1382             break;
1383         }
1384     }
1385     assert(i != mr->ioeventfd_nb);
1386     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1387             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1388     --mr->ioeventfd_nb;
1389     mr->ioeventfds = g_realloc(mr->ioeventfds,
1390                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1391     memory_region_update_pending |= mr->enabled;
1392     memory_region_transaction_commit();
1393 }
1394
1395 static void memory_region_add_subregion_common(MemoryRegion *mr,
1396                                                hwaddr offset,
1397                                                MemoryRegion *subregion)
1398 {
1399     MemoryRegion *other;
1400
1401     memory_region_transaction_begin();
1402
1403     assert(!subregion->parent);
1404     subregion->parent = mr;
1405     subregion->addr = offset;
1406     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1407         if (subregion->may_overlap || other->may_overlap) {
1408             continue;
1409         }
1410         if (int128_ge(int128_make64(offset),
1411                       int128_add(int128_make64(other->addr), other->size))
1412             || int128_le(int128_add(int128_make64(offset), subregion->size),
1413                          int128_make64(other->addr))) {
1414             continue;
1415         }
1416 #if 0
1417         printf("warning: subregion collision %llx/%llx (%s) "
1418                "vs %llx/%llx (%s)\n",
1419                (unsigned long long)offset,
1420                (unsigned long long)int128_get64(subregion->size),
1421                subregion->name,
1422                (unsigned long long)other->addr,
1423                (unsigned long long)int128_get64(other->size),
1424                other->name);
1425 #endif
1426     }
1427     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1428         if (subregion->priority >= other->priority) {
1429             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1430             goto done;
1431         }
1432     }
1433     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1434 done:
1435     memory_region_update_pending |= mr->enabled && subregion->enabled;
1436     memory_region_transaction_commit();
1437 }
1438
1439
1440 void memory_region_add_subregion(MemoryRegion *mr,
1441                                  hwaddr offset,
1442                                  MemoryRegion *subregion)
1443 {
1444     subregion->may_overlap = false;
1445     subregion->priority = 0;
1446     memory_region_add_subregion_common(mr, offset, subregion);
1447 }
1448
1449 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1450                                          hwaddr offset,
1451                                          MemoryRegion *subregion,
1452                                          unsigned priority)
1453 {
1454     subregion->may_overlap = true;
1455     subregion->priority = priority;
1456     memory_region_add_subregion_common(mr, offset, subregion);
1457 }
1458
1459 void memory_region_del_subregion(MemoryRegion *mr,
1460                                  MemoryRegion *subregion)
1461 {
1462     memory_region_transaction_begin();
1463     assert(subregion->parent == mr);
1464     subregion->parent = NULL;
1465     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1466     memory_region_update_pending |= mr->enabled && subregion->enabled;
1467     memory_region_transaction_commit();
1468 }
1469
1470 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1471 {
1472     if (enabled == mr->enabled) {
1473         return;
1474     }
1475     memory_region_transaction_begin();
1476     mr->enabled = enabled;
1477     memory_region_update_pending = true;
1478     memory_region_transaction_commit();
1479 }
1480
1481 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1482 {
1483     MemoryRegion *parent = mr->parent;
1484     unsigned priority = mr->priority;
1485     bool may_overlap = mr->may_overlap;
1486
1487     if (addr == mr->addr || !parent) {
1488         mr->addr = addr;
1489         return;
1490     }
1491
1492     memory_region_transaction_begin();
1493     memory_region_del_subregion(parent, mr);
1494     if (may_overlap) {
1495         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1496     } else {
1497         memory_region_add_subregion(parent, addr, mr);
1498     }
1499     memory_region_transaction_commit();
1500 }
1501
1502 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1503 {
1504     assert(mr->alias);
1505
1506     if (offset == mr->alias_offset) {
1507         return;
1508     }
1509
1510     memory_region_transaction_begin();
1511     mr->alias_offset = offset;
1512     memory_region_update_pending |= mr->enabled;
1513     memory_region_transaction_commit();
1514 }
1515
1516 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1517 {
1518     return mr->ram_addr;
1519 }
1520
1521 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1522 {
1523     const AddrRange *addr = addr_;
1524     const FlatRange *fr = fr_;
1525
1526     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1527         return -1;
1528     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1529         return 1;
1530     }
1531     return 0;
1532 }
1533
1534 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1535 {
1536     return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1537                    sizeof(FlatRange), cmp_flatrange_addr);
1538 }
1539
1540 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1541                                        hwaddr addr, uint64_t size)
1542 {
1543     MemoryRegionSection ret = { .mr = NULL };
1544     MemoryRegion *root;
1545     AddressSpace *as;
1546     AddrRange range;
1547     FlatRange *fr;
1548
1549     addr += mr->addr;
1550     for (root = mr; root->parent; ) {
1551         root = root->parent;
1552         addr += root->addr;
1553     }
1554
1555     as = memory_region_to_address_space(root);
1556     range = addrrange_make(int128_make64(addr), int128_make64(size));
1557     fr = address_space_lookup(as, range);
1558     if (!fr) {
1559         return ret;
1560     }
1561
1562     while (fr > as->current_map->ranges
1563            && addrrange_intersects(fr[-1].addr, range)) {
1564         --fr;
1565     }
1566
1567     ret.mr = fr->mr;
1568     ret.address_space = as;
1569     range = addrrange_intersection(range, fr->addr);
1570     ret.offset_within_region = fr->offset_in_region;
1571     ret.offset_within_region += int128_get64(int128_sub(range.start,
1572                                                         fr->addr.start));
1573     ret.size = range.size;
1574     ret.offset_within_address_space = int128_get64(range.start);
1575     ret.readonly = fr->readonly;
1576     return ret;
1577 }
1578
1579 void address_space_sync_dirty_bitmap(AddressSpace *as)
1580 {
1581     FlatRange *fr;
1582
1583     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1584         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1585     }
1586 }
1587
1588 void memory_global_dirty_log_start(void)
1589 {
1590     global_dirty_log = true;
1591     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1592 }
1593
1594 void memory_global_dirty_log_stop(void)
1595 {
1596     global_dirty_log = false;
1597     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1598 }
1599
1600 static void listener_add_address_space(MemoryListener *listener,
1601                                        AddressSpace *as)
1602 {
1603     FlatRange *fr;
1604
1605     if (listener->address_space_filter
1606         && listener->address_space_filter != as) {
1607         return;
1608     }
1609
1610     if (global_dirty_log) {
1611         if (listener->log_global_start) {
1612             listener->log_global_start(listener);
1613         }
1614     }
1615
1616     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1617         MemoryRegionSection section = {
1618             .mr = fr->mr,
1619             .address_space = as,
1620             .offset_within_region = fr->offset_in_region,
1621             .size = fr->addr.size,
1622             .offset_within_address_space = int128_get64(fr->addr.start),
1623             .readonly = fr->readonly,
1624         };
1625         if (listener->region_add) {
1626             listener->region_add(listener, &section);
1627         }
1628     }
1629 }
1630
1631 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1632 {
1633     MemoryListener *other = NULL;
1634     AddressSpace *as;
1635
1636     listener->address_space_filter = filter;
1637     if (QTAILQ_EMPTY(&memory_listeners)
1638         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1639                                              memory_listeners)->priority) {
1640         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1641     } else {
1642         QTAILQ_FOREACH(other, &memory_listeners, link) {
1643             if (listener->priority < other->priority) {
1644                 break;
1645             }
1646         }
1647         QTAILQ_INSERT_BEFORE(other, listener, link);
1648     }
1649
1650     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1651         listener_add_address_space(listener, as);
1652     }
1653 }
1654
1655 void memory_listener_unregister(MemoryListener *listener)
1656 {
1657     QTAILQ_REMOVE(&memory_listeners, listener, link);
1658 }
1659
1660 void address_space_init(AddressSpace *as, MemoryRegion *root)
1661 {
1662     memory_region_transaction_begin();
1663     as->root = root;
1664     as->current_map = g_new(FlatView, 1);
1665     flatview_init(as->current_map);
1666     as->ioeventfd_nb = 0;
1667     as->ioeventfds = NULL;
1668     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1669     as->name = NULL;
1670     address_space_init_dispatch(as);
1671     memory_region_update_pending |= root->enabled;
1672     memory_region_transaction_commit();
1673 }
1674
1675 void address_space_destroy(AddressSpace *as)
1676 {
1677     /* Flush out anything from MemoryListeners listening in on this */
1678     memory_region_transaction_begin();
1679     as->root = NULL;
1680     memory_region_transaction_commit();
1681     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1682     address_space_destroy_dispatch(as);
1683     flatview_destroy(as->current_map);
1684     g_free(as->current_map);
1685     g_free(as->ioeventfds);
1686 }
1687
1688 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1689 {
1690     return memory_region_dispatch_read(mr, addr, pval, size);
1691 }
1692
1693 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1694                   uint64_t val, unsigned size)
1695 {
1696     return memory_region_dispatch_write(mr, addr, val, size);
1697 }
1698
1699 typedef struct MemoryRegionList MemoryRegionList;
1700
1701 struct MemoryRegionList {
1702     const MemoryRegion *mr;
1703     bool printed;
1704     QTAILQ_ENTRY(MemoryRegionList) queue;
1705 };
1706
1707 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1708
1709 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1710                            const MemoryRegion *mr, unsigned int level,
1711                            hwaddr base,
1712                            MemoryRegionListHead *alias_print_queue)
1713 {
1714     MemoryRegionList *new_ml, *ml, *next_ml;
1715     MemoryRegionListHead submr_print_queue;
1716     const MemoryRegion *submr;
1717     unsigned int i;
1718
1719     if (!mr || !mr->enabled) {
1720         return;
1721     }
1722
1723     for (i = 0; i < level; i++) {
1724         mon_printf(f, "  ");
1725     }
1726
1727     if (mr->alias) {
1728         MemoryRegionList *ml;
1729         bool found = false;
1730
1731         /* check if the alias is already in the queue */
1732         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1733             if (ml->mr == mr->alias && !ml->printed) {
1734                 found = true;
1735             }
1736         }
1737
1738         if (!found) {
1739             ml = g_new(MemoryRegionList, 1);
1740             ml->mr = mr->alias;
1741             ml->printed = false;
1742             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1743         }
1744         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1745                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1746                    "-" TARGET_FMT_plx "\n",
1747                    base + mr->addr,
1748                    base + mr->addr
1749                    + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1750                    mr->priority,
1751                    mr->romd_mode ? 'R' : '-',
1752                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1753                                                                        : '-',
1754                    mr->name,
1755                    mr->alias->name,
1756                    mr->alias_offset,
1757                    mr->alias_offset
1758                    + (hwaddr)int128_get64(mr->size) - 1);
1759     } else {
1760         mon_printf(f,
1761                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1762                    base + mr->addr,
1763                    base + mr->addr
1764                    + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1765                    mr->priority,
1766                    mr->romd_mode ? 'R' : '-',
1767                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1768                                                                        : '-',
1769                    mr->name);
1770     }
1771
1772     QTAILQ_INIT(&submr_print_queue);
1773
1774     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1775         new_ml = g_new(MemoryRegionList, 1);
1776         new_ml->mr = submr;
1777         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1778             if (new_ml->mr->addr < ml->mr->addr ||
1779                 (new_ml->mr->addr == ml->mr->addr &&
1780                  new_ml->mr->priority > ml->mr->priority)) {
1781                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1782                 new_ml = NULL;
1783                 break;
1784             }
1785         }
1786         if (new_ml) {
1787             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1788         }
1789     }
1790
1791     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1792         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1793                        alias_print_queue);
1794     }
1795
1796     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1797         g_free(ml);
1798     }
1799 }
1800
1801 void mtree_info(fprintf_function mon_printf, void *f)
1802 {
1803     MemoryRegionListHead ml_head;
1804     MemoryRegionList *ml, *ml2;
1805     AddressSpace *as;
1806
1807     QTAILQ_INIT(&ml_head);
1808
1809     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1810         if (!as->name) {
1811             continue;
1812         }
1813         mon_printf(f, "%s\n", as->name);
1814         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1815     }
1816
1817     mon_printf(f, "aliases\n");
1818     /* print aliased regions */
1819     QTAILQ_FOREACH(ml, &ml_head, queue) {
1820         if (!ml->printed) {
1821             mon_printf(f, "%s\n", ml->mr->name);
1822             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1823         }
1824     }
1825
1826     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1827         g_free(ml);
1828     }
1829 }
This page took 0.125602 seconds and 4 git commands to generate.