4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static int lm_capable_kernel;
68 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
70 struct kvm_cpuid2 *cpuid;
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77 if (r == 0 && cpuid->nent >= max) {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
93 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
94 uint32_t index, int reg)
96 struct kvm_cpuid2 *cpuid;
102 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 for (i = 0; i < cpuid->nent; ++i) {
107 if (cpuid->entries[i].function == function &&
108 cpuid->entries[i].index == index) {
111 ret = cpuid->entries[i].eax;
114 ret = cpuid->entries[i].ebx;
117 ret = cpuid->entries[i].ecx;
120 ret = cpuid->entries[i].edx;
123 /* KVM before 2.6.30 misreports the following features */
124 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 /* On Intel, kvm returns cpuid according to the Intel spec,
128 * so add missing bits according to the AMD spec:
130 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
131 ret |= cpuid_1_edx & 0x183f7ff;
144 #ifdef CONFIG_KVM_PARA
145 struct kvm_para_features {
148 } para_features[] = {
149 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
150 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #ifdef KVM_CAP_ASYNC_PF
153 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
158 static int get_para_features(CPUState *env)
162 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
163 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
164 features |= (1 << para_features[i].feature);
172 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
177 r = kvm_check_extension(s, KVM_CAP_MCE);
180 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
185 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
187 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
190 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
192 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
195 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
197 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
201 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
202 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
203 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
208 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
209 static int kvm_mce_in_progress(CPUState *env)
211 struct kvm_msr_entry msr_mcg_status = {
212 .index = MSR_MCG_STATUS,
216 r = kvm_get_msr(env, &msr_mcg_status, 1);
217 if (r == -1 || r == 0) {
218 fprintf(stderr, "Failed to get MCE status\n");
221 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
224 struct kvm_x86_mce_data
227 struct kvm_x86_mce *mce;
231 static void kvm_do_inject_x86_mce(void *_data)
233 struct kvm_x86_mce_data *data = _data;
236 /* If there is an MCE exception being processed, ignore this SRAO MCE */
237 if ((data->env->mcg_cap & MCG_SER_P) &&
238 !(data->mce->status & MCI_STATUS_AR)) {
239 if (kvm_mce_in_progress(data->env)) {
244 r = kvm_set_mce(data->env, data->mce);
246 perror("kvm_set_mce FAILED");
247 if (data->abort_on_error) {
253 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
256 struct kvm_x86_mce_data data = {
259 .abort_on_error = (flag & ABORT_ON_ERROR),
263 fprintf(stderr, "MCE support is not enabled!\n");
267 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
270 static void kvm_mce_broadcast_rest(CPUState *env);
273 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
274 uint64_t mcg_status, uint64_t addr, uint64_t misc,
278 struct kvm_x86_mce mce = {
281 .mcg_status = mcg_status,
286 if (flag & MCE_BROADCAST) {
287 kvm_mce_broadcast_rest(cenv);
290 kvm_inject_x86_mce_on(cenv, &mce, flag);
292 if (flag & ABORT_ON_ERROR) {
298 int kvm_arch_init_vcpu(CPUState *env)
301 struct kvm_cpuid2 cpuid;
302 struct kvm_cpuid_entry2 entries[100];
303 } __attribute__((packed)) cpuid_data;
304 uint32_t limit, i, j, cpuid_i;
306 struct kvm_cpuid_entry2 *c;
307 #ifdef CONFIG_KVM_PARA
308 uint32_t signature[3];
311 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
313 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
314 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
315 env->cpuid_ext_features |= i;
317 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
319 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
321 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
327 #ifdef CONFIG_KVM_PARA
328 /* Paravirtualization CPUIDs */
329 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
330 c = &cpuid_data.entries[cpuid_i++];
331 memset(c, 0, sizeof(*c));
332 c->function = KVM_CPUID_SIGNATURE;
334 c->ebx = signature[0];
335 c->ecx = signature[1];
336 c->edx = signature[2];
338 c = &cpuid_data.entries[cpuid_i++];
339 memset(c, 0, sizeof(*c));
340 c->function = KVM_CPUID_FEATURES;
341 c->eax = env->cpuid_kvm_features & get_para_features(env);
344 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
346 for (i = 0; i <= limit; i++) {
347 c = &cpuid_data.entries[cpuid_i++];
351 /* Keep reading function 2 till all the input is received */
355 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
356 KVM_CPUID_FLAG_STATE_READ_NEXT;
357 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
358 times = c->eax & 0xff;
360 for (j = 1; j < times; ++j) {
361 c = &cpuid_data.entries[cpuid_i++];
363 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
364 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
375 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
377 if (i == 4 && c->eax == 0) {
380 if (i == 0xb && !(c->ecx & 0xff00)) {
383 if (i == 0xd && c->eax == 0) {
386 c = &cpuid_data.entries[cpuid_i++];
392 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
396 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
398 for (i = 0x80000000; i <= limit; i++) {
399 c = &cpuid_data.entries[cpuid_i++];
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 cpuid_data.cpuid.nent = cpuid_i;
409 if (((env->cpuid_version >> 8)&0xF) >= 6
410 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
411 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
415 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
416 perror("kvm_get_mce_cap_supported FAILED");
418 if (banks > MCE_BANKS_DEF)
419 banks = MCE_BANKS_DEF;
420 mcg_cap &= MCE_CAP_DEF;
422 if (kvm_setup_mce(env, &mcg_cap)) {
423 perror("kvm_setup_mce FAILED");
425 env->mcg_cap = mcg_cap;
431 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
434 void kvm_arch_reset_vcpu(CPUState *env)
436 env->exception_injected = -1;
437 env->interrupt_injected = -1;
438 env->nmi_injected = 0;
439 env->nmi_pending = 0;
441 if (kvm_irqchip_in_kernel()) {
442 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
443 KVM_MP_STATE_UNINITIALIZED;
445 env->mp_state = KVM_MP_STATE_RUNNABLE;
449 static int kvm_get_supported_msrs(KVMState *s)
451 static int kvm_supported_msrs;
455 if (kvm_supported_msrs == 0) {
456 struct kvm_msr_list msr_list, *kvm_msr_list;
458 kvm_supported_msrs = -1;
460 /* Obtain MSR list from KVM. These are the MSRs that we must
463 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
464 if (ret < 0 && ret != -E2BIG) {
467 /* Old kernel modules had a bug and could write beyond the provided
468 memory. Allocate at least a safe amount of 1K. */
469 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
471 sizeof(msr_list.indices[0])));
473 kvm_msr_list->nmsrs = msr_list.nmsrs;
474 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
478 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
479 if (kvm_msr_list->indices[i] == MSR_STAR) {
483 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
484 has_msr_hsave_pa = true;
496 static int kvm_init_identity_map_page(KVMState *s)
498 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
500 uint64_t addr = 0xfffbc000;
502 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
506 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
508 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
515 int kvm_arch_init(KVMState *s)
518 struct utsname utsname;
520 ret = kvm_get_supported_msrs(s);
526 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
528 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
529 * directly. In order to use vm86 mode, a TSS is needed. Since this
530 * must be part of guest physical memory, we need to allocate it. */
532 /* this address is 3 pages before the bios, and the bios should present
533 * as unavaible memory. FIXME, need to ensure the e820 map deals with
537 * Tell fw_cfg to notify the BIOS to reserve the range.
539 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
540 perror("e820_add_entry() table is full");
543 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
548 return kvm_init_identity_map_page(s);
551 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553 lhs->selector = rhs->selector;
554 lhs->base = rhs->base;
555 lhs->limit = rhs->limit;
567 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
569 unsigned flags = rhs->flags;
570 lhs->selector = rhs->selector;
571 lhs->base = rhs->base;
572 lhs->limit = rhs->limit;
573 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
574 lhs->present = (flags & DESC_P_MASK) != 0;
575 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
576 lhs->db = (flags >> DESC_B_SHIFT) & 1;
577 lhs->s = (flags & DESC_S_MASK) != 0;
578 lhs->l = (flags >> DESC_L_SHIFT) & 1;
579 lhs->g = (flags & DESC_G_MASK) != 0;
580 lhs->avl = (flags & DESC_AVL_MASK) != 0;
584 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
586 lhs->selector = rhs->selector;
587 lhs->base = rhs->base;
588 lhs->limit = rhs->limit;
589 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
590 (rhs->present * DESC_P_MASK) |
591 (rhs->dpl << DESC_DPL_SHIFT) |
592 (rhs->db << DESC_B_SHIFT) |
593 (rhs->s * DESC_S_MASK) |
594 (rhs->l << DESC_L_SHIFT) |
595 (rhs->g * DESC_G_MASK) |
596 (rhs->avl * DESC_AVL_MASK);
599 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
602 *kvm_reg = *qemu_reg;
604 *qemu_reg = *kvm_reg;
608 static int kvm_getput_regs(CPUState *env, int set)
610 struct kvm_regs regs;
614 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
620 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
621 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
622 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
623 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
624 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
625 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
626 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
627 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
629 kvm_getput_reg(®s.r8, &env->regs[8], set);
630 kvm_getput_reg(®s.r9, &env->regs[9], set);
631 kvm_getput_reg(®s.r10, &env->regs[10], set);
632 kvm_getput_reg(®s.r11, &env->regs[11], set);
633 kvm_getput_reg(®s.r12, &env->regs[12], set);
634 kvm_getput_reg(®s.r13, &env->regs[13], set);
635 kvm_getput_reg(®s.r14, &env->regs[14], set);
636 kvm_getput_reg(®s.r15, &env->regs[15], set);
639 kvm_getput_reg(®s.rflags, &env->eflags, set);
640 kvm_getput_reg(®s.rip, &env->eip, set);
643 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
649 static int kvm_put_fpu(CPUState *env)
654 memset(&fpu, 0, sizeof fpu);
655 fpu.fsw = env->fpus & ~(7 << 11);
656 fpu.fsw |= (env->fpstt & 7) << 11;
658 for (i = 0; i < 8; ++i) {
659 fpu.ftwx |= (!env->fptags[i]) << i;
661 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
662 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
663 fpu.mxcsr = env->mxcsr;
665 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
669 #define XSAVE_CWD_RIP 2
670 #define XSAVE_CWD_RDP 4
671 #define XSAVE_MXCSR 6
672 #define XSAVE_ST_SPACE 8
673 #define XSAVE_XMM_SPACE 40
674 #define XSAVE_XSTATE_BV 128
675 #define XSAVE_YMMH_SPACE 144
678 static int kvm_put_xsave(CPUState *env)
682 struct kvm_xsave* xsave;
683 uint16_t cwd, swd, twd, fop;
685 if (!kvm_has_xsave()) {
686 return kvm_put_fpu(env);
689 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
690 memset(xsave, 0, sizeof(struct kvm_xsave));
691 cwd = swd = twd = fop = 0;
692 swd = env->fpus & ~(7 << 11);
693 swd |= (env->fpstt & 7) << 11;
695 for (i = 0; i < 8; ++i) {
696 twd |= (!env->fptags[i]) << i;
698 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
699 xsave->region[1] = (uint32_t)(fop << 16) + twd;
700 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
702 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
703 sizeof env->xmm_regs);
704 xsave->region[XSAVE_MXCSR] = env->mxcsr;
705 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
706 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
707 sizeof env->ymmh_regs);
708 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
712 return kvm_put_fpu(env);
716 static int kvm_put_xcrs(CPUState *env)
719 struct kvm_xcrs xcrs;
721 if (!kvm_has_xcrs()) {
727 xcrs.xcrs[0].xcr = 0;
728 xcrs.xcrs[0].value = env->xcr0;
729 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
735 static int kvm_put_sregs(CPUState *env)
737 struct kvm_sregs sregs;
739 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
740 if (env->interrupt_injected >= 0) {
741 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
742 (uint64_t)1 << (env->interrupt_injected % 64);
745 if ((env->eflags & VM_MASK)) {
746 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
747 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
748 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
749 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
750 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
751 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
753 set_seg(&sregs.cs, &env->segs[R_CS]);
754 set_seg(&sregs.ds, &env->segs[R_DS]);
755 set_seg(&sregs.es, &env->segs[R_ES]);
756 set_seg(&sregs.fs, &env->segs[R_FS]);
757 set_seg(&sregs.gs, &env->segs[R_GS]);
758 set_seg(&sregs.ss, &env->segs[R_SS]);
761 set_seg(&sregs.tr, &env->tr);
762 set_seg(&sregs.ldt, &env->ldt);
764 sregs.idt.limit = env->idt.limit;
765 sregs.idt.base = env->idt.base;
766 sregs.gdt.limit = env->gdt.limit;
767 sregs.gdt.base = env->gdt.base;
769 sregs.cr0 = env->cr[0];
770 sregs.cr2 = env->cr[2];
771 sregs.cr3 = env->cr[3];
772 sregs.cr4 = env->cr[4];
774 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
775 sregs.apic_base = cpu_get_apic_base(env->apic_state);
777 sregs.efer = env->efer;
779 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
782 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
783 uint32_t index, uint64_t value)
785 entry->index = index;
789 static int kvm_put_msrs(CPUState *env, int level)
792 struct kvm_msrs info;
793 struct kvm_msr_entry entries[100];
795 struct kvm_msr_entry *msrs = msr_data.entries;
798 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
799 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
800 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
802 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
804 if (has_msr_hsave_pa) {
805 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
808 if (lm_capable_kernel) {
809 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
810 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
811 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
812 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
815 if (level == KVM_PUT_FULL_STATE) {
817 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
818 * writeback. Until this is fixed, we only write the offset to SMP
819 * guests after migration, desynchronizing the VCPUs, but avoiding
820 * huge jump-backs that would occur without any writeback at all.
822 if (smp_cpus == 1 || env->tsc != 0) {
823 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
827 * The following paravirtual MSRs have side effects on the guest or are
828 * too heavy for normal writeback. Limit them to reset or full state
831 if (level >= KVM_PUT_RESET_STATE) {
832 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
833 env->system_time_msr);
834 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
835 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
836 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
843 if (level == KVM_PUT_RESET_STATE) {
844 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
845 } else if (level == KVM_PUT_FULL_STATE) {
846 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
848 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
849 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
855 msr_data.info.nmsrs = n;
857 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
862 static int kvm_get_fpu(CPUState *env)
867 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
872 env->fpstt = (fpu.fsw >> 11) & 7;
875 for (i = 0; i < 8; ++i) {
876 env->fptags[i] = !((fpu.ftwx >> i) & 1);
878 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
879 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
880 env->mxcsr = fpu.mxcsr;
885 static int kvm_get_xsave(CPUState *env)
888 struct kvm_xsave* xsave;
890 uint16_t cwd, swd, twd, fop;
892 if (!kvm_has_xsave()) {
893 return kvm_get_fpu(env);
896 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
897 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
903 cwd = (uint16_t)xsave->region[0];
904 swd = (uint16_t)(xsave->region[0] >> 16);
905 twd = (uint16_t)xsave->region[1];
906 fop = (uint16_t)(xsave->region[1] >> 16);
907 env->fpstt = (swd >> 11) & 7;
910 for (i = 0; i < 8; ++i) {
911 env->fptags[i] = !((twd >> i) & 1);
913 env->mxcsr = xsave->region[XSAVE_MXCSR];
914 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
916 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
917 sizeof env->xmm_regs);
918 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
919 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
920 sizeof env->ymmh_regs);
924 return kvm_get_fpu(env);
928 static int kvm_get_xcrs(CPUState *env)
932 struct kvm_xcrs xcrs;
934 if (!kvm_has_xcrs()) {
938 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
943 for (i = 0; i < xcrs.nr_xcrs; i++) {
944 /* Only support xcr0 now */
945 if (xcrs.xcrs[0].xcr == 0) {
946 env->xcr0 = xcrs.xcrs[0].value;
956 static int kvm_get_sregs(CPUState *env)
958 struct kvm_sregs sregs;
962 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
967 /* There can only be one pending IRQ set in the bitmap at a time, so try
968 to find it and save its number instead (-1 for none). */
969 env->interrupt_injected = -1;
970 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
971 if (sregs.interrupt_bitmap[i]) {
972 bit = ctz64(sregs.interrupt_bitmap[i]);
973 env->interrupt_injected = i * 64 + bit;
978 get_seg(&env->segs[R_CS], &sregs.cs);
979 get_seg(&env->segs[R_DS], &sregs.ds);
980 get_seg(&env->segs[R_ES], &sregs.es);
981 get_seg(&env->segs[R_FS], &sregs.fs);
982 get_seg(&env->segs[R_GS], &sregs.gs);
983 get_seg(&env->segs[R_SS], &sregs.ss);
985 get_seg(&env->tr, &sregs.tr);
986 get_seg(&env->ldt, &sregs.ldt);
988 env->idt.limit = sregs.idt.limit;
989 env->idt.base = sregs.idt.base;
990 env->gdt.limit = sregs.gdt.limit;
991 env->gdt.base = sregs.gdt.base;
993 env->cr[0] = sregs.cr0;
994 env->cr[2] = sregs.cr2;
995 env->cr[3] = sregs.cr3;
996 env->cr[4] = sregs.cr4;
998 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1000 env->efer = sregs.efer;
1001 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1003 #define HFLAG_COPY_MASK \
1004 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1005 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1006 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1007 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1009 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1010 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1011 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1012 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1013 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1014 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1015 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1017 if (env->efer & MSR_EFER_LMA) {
1018 hflags |= HF_LMA_MASK;
1021 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1022 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1024 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1025 (DESC_B_SHIFT - HF_CS32_SHIFT);
1026 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1027 (DESC_B_SHIFT - HF_SS32_SHIFT);
1028 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1029 !(hflags & HF_CS32_MASK)) {
1030 hflags |= HF_ADDSEG_MASK;
1032 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1033 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1036 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1041 static int kvm_get_msrs(CPUState *env)
1044 struct kvm_msrs info;
1045 struct kvm_msr_entry entries[100];
1047 struct kvm_msr_entry *msrs = msr_data.entries;
1051 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1052 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1053 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1055 msrs[n++].index = MSR_STAR;
1057 if (has_msr_hsave_pa) {
1058 msrs[n++].index = MSR_VM_HSAVE_PA;
1060 msrs[n++].index = MSR_IA32_TSC;
1061 #ifdef TARGET_X86_64
1062 if (lm_capable_kernel) {
1063 msrs[n++].index = MSR_CSTAR;
1064 msrs[n++].index = MSR_KERNELGSBASE;
1065 msrs[n++].index = MSR_FMASK;
1066 msrs[n++].index = MSR_LSTAR;
1069 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1070 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1071 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1072 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1077 msrs[n++].index = MSR_MCG_STATUS;
1078 msrs[n++].index = MSR_MCG_CTL;
1079 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1080 msrs[n++].index = MSR_MC0_CTL + i;
1085 msr_data.info.nmsrs = n;
1086 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1091 for (i = 0; i < ret; i++) {
1092 switch (msrs[i].index) {
1093 case MSR_IA32_SYSENTER_CS:
1094 env->sysenter_cs = msrs[i].data;
1096 case MSR_IA32_SYSENTER_ESP:
1097 env->sysenter_esp = msrs[i].data;
1099 case MSR_IA32_SYSENTER_EIP:
1100 env->sysenter_eip = msrs[i].data;
1103 env->star = msrs[i].data;
1105 #ifdef TARGET_X86_64
1107 env->cstar = msrs[i].data;
1109 case MSR_KERNELGSBASE:
1110 env->kernelgsbase = msrs[i].data;
1113 env->fmask = msrs[i].data;
1116 env->lstar = msrs[i].data;
1120 env->tsc = msrs[i].data;
1122 case MSR_VM_HSAVE_PA:
1123 env->vm_hsave = msrs[i].data;
1125 case MSR_KVM_SYSTEM_TIME:
1126 env->system_time_msr = msrs[i].data;
1128 case MSR_KVM_WALL_CLOCK:
1129 env->wall_clock_msr = msrs[i].data;
1132 case MSR_MCG_STATUS:
1133 env->mcg_status = msrs[i].data;
1136 env->mcg_ctl = msrs[i].data;
1141 if (msrs[i].index >= MSR_MC0_CTL &&
1142 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1143 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1147 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1148 case MSR_KVM_ASYNC_PF_EN:
1149 env->async_pf_en_msr = msrs[i].data;
1158 static int kvm_put_mp_state(CPUState *env)
1160 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1162 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1165 static int kvm_get_mp_state(CPUState *env)
1167 struct kvm_mp_state mp_state;
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1174 env->mp_state = mp_state.mp_state;
1175 if (kvm_irqchip_in_kernel()) {
1176 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1181 static int kvm_put_vcpu_events(CPUState *env, int level)
1183 #ifdef KVM_CAP_VCPU_EVENTS
1184 struct kvm_vcpu_events events;
1186 if (!kvm_has_vcpu_events()) {
1190 events.exception.injected = (env->exception_injected >= 0);
1191 events.exception.nr = env->exception_injected;
1192 events.exception.has_error_code = env->has_error_code;
1193 events.exception.error_code = env->error_code;
1195 events.interrupt.injected = (env->interrupt_injected >= 0);
1196 events.interrupt.nr = env->interrupt_injected;
1197 events.interrupt.soft = env->soft_interrupt;
1199 events.nmi.injected = env->nmi_injected;
1200 events.nmi.pending = env->nmi_pending;
1201 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1203 events.sipi_vector = env->sipi_vector;
1206 if (level >= KVM_PUT_RESET_STATE) {
1208 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1211 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1217 static int kvm_get_vcpu_events(CPUState *env)
1219 #ifdef KVM_CAP_VCPU_EVENTS
1220 struct kvm_vcpu_events events;
1223 if (!kvm_has_vcpu_events()) {
1227 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1231 env->exception_injected =
1232 events.exception.injected ? events.exception.nr : -1;
1233 env->has_error_code = events.exception.has_error_code;
1234 env->error_code = events.exception.error_code;
1236 env->interrupt_injected =
1237 events.interrupt.injected ? events.interrupt.nr : -1;
1238 env->soft_interrupt = events.interrupt.soft;
1240 env->nmi_injected = events.nmi.injected;
1241 env->nmi_pending = events.nmi.pending;
1242 if (events.nmi.masked) {
1243 env->hflags2 |= HF2_NMI_MASK;
1245 env->hflags2 &= ~HF2_NMI_MASK;
1248 env->sipi_vector = events.sipi_vector;
1254 static int kvm_guest_debug_workarounds(CPUState *env)
1257 #ifdef KVM_CAP_SET_GUEST_DEBUG
1258 unsigned long reinject_trap = 0;
1260 if (!kvm_has_vcpu_events()) {
1261 if (env->exception_injected == 1) {
1262 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1263 } else if (env->exception_injected == 3) {
1264 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1266 env->exception_injected = -1;
1270 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1271 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1272 * by updating the debug state once again if single-stepping is on.
1273 * Another reason to call kvm_update_guest_debug here is a pending debug
1274 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1275 * reinject them via SET_GUEST_DEBUG.
1277 if (reinject_trap ||
1278 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1279 ret = kvm_update_guest_debug(env, reinject_trap);
1281 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1285 static int kvm_put_debugregs(CPUState *env)
1287 #ifdef KVM_CAP_DEBUGREGS
1288 struct kvm_debugregs dbgregs;
1291 if (!kvm_has_debugregs()) {
1295 for (i = 0; i < 4; i++) {
1296 dbgregs.db[i] = env->dr[i];
1298 dbgregs.dr6 = env->dr[6];
1299 dbgregs.dr7 = env->dr[7];
1302 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1308 static int kvm_get_debugregs(CPUState *env)
1310 #ifdef KVM_CAP_DEBUGREGS
1311 struct kvm_debugregs dbgregs;
1314 if (!kvm_has_debugregs()) {
1318 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1322 for (i = 0; i < 4; i++) {
1323 env->dr[i] = dbgregs.db[i];
1325 env->dr[4] = env->dr[6] = dbgregs.dr6;
1326 env->dr[5] = env->dr[7] = dbgregs.dr7;
1332 int kvm_arch_put_registers(CPUState *env, int level)
1336 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1338 ret = kvm_getput_regs(env, 1);
1342 ret = kvm_put_xsave(env);
1346 ret = kvm_put_xcrs(env);
1350 ret = kvm_put_sregs(env);
1354 ret = kvm_put_msrs(env, level);
1358 if (level >= KVM_PUT_RESET_STATE) {
1359 ret = kvm_put_mp_state(env);
1364 ret = kvm_put_vcpu_events(env, level);
1368 ret = kvm_put_debugregs(env);
1373 ret = kvm_guest_debug_workarounds(env);
1380 int kvm_arch_get_registers(CPUState *env)
1384 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1386 ret = kvm_getput_regs(env, 0);
1390 ret = kvm_get_xsave(env);
1394 ret = kvm_get_xcrs(env);
1398 ret = kvm_get_sregs(env);
1402 ret = kvm_get_msrs(env);
1406 ret = kvm_get_mp_state(env);
1410 ret = kvm_get_vcpu_events(env);
1414 ret = kvm_get_debugregs(env);
1421 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1424 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1425 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1426 DPRINTF("injected NMI\n");
1427 kvm_vcpu_ioctl(env, KVM_NMI);
1430 /* Try to inject an interrupt if the guest can accept it */
1431 if (run->ready_for_interrupt_injection &&
1432 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1433 (env->eflags & IF_MASK)) {
1436 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1437 irq = cpu_get_pic_interrupt(env);
1439 struct kvm_interrupt intr;
1442 DPRINTF("injected interrupt %d\n", irq);
1443 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1447 /* If we have an interrupt but the guest is not ready to receive an
1448 * interrupt, request an interrupt window exit. This will
1449 * cause a return to userspace as soon as the guest is ready to
1450 * receive interrupts. */
1451 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1452 run->request_interrupt_window = 1;
1454 run->request_interrupt_window = 0;
1457 DPRINTF("setting tpr\n");
1458 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1463 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1466 env->eflags |= IF_MASK;
1468 env->eflags &= ~IF_MASK;
1470 cpu_set_apic_tpr(env->apic_state, run->cr8);
1471 cpu_set_apic_base(env->apic_state, run->apic_base);
1476 int kvm_arch_process_irqchip_events(CPUState *env)
1478 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1479 kvm_cpu_synchronize_state(env);
1481 env->exception_index = EXCP_HALTED;
1484 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1485 kvm_cpu_synchronize_state(env);
1492 static int kvm_handle_halt(CPUState *env)
1494 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1495 (env->eflags & IF_MASK)) &&
1496 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1498 env->exception_index = EXCP_HLT;
1505 static bool host_supports_vmx(void)
1507 uint32_t ecx, unused;
1509 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1510 return ecx & CPUID_EXT_VMX;
1513 #define VMX_INVALID_GUEST_STATE 0x80000021
1515 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1520 switch (run->exit_reason) {
1522 DPRINTF("handle_hlt\n");
1523 ret = kvm_handle_halt(env);
1525 case KVM_EXIT_SET_TPR:
1528 case KVM_EXIT_FAIL_ENTRY:
1529 code = run->fail_entry.hardware_entry_failure_reason;
1530 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1532 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1534 "\nIf you're runnning a guest on an Intel machine without "
1535 "unrestricted mode\n"
1536 "support, the failure can be most likely due to the guest "
1537 "entering an invalid\n"
1538 "state for Intel VT. For example, the guest maybe running "
1539 "in big real mode\n"
1540 "which is not supported on less recent Intel processors."
1545 case KVM_EXIT_EXCEPTION:
1546 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1547 run->ex.exception, run->ex.error_code);
1551 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1559 #ifdef KVM_CAP_SET_GUEST_DEBUG
1560 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1562 static const uint8_t int3 = 0xcc;
1564 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1565 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1571 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1575 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1576 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1588 static int nb_hw_breakpoint;
1590 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1594 for (n = 0; n < nb_hw_breakpoint; n++) {
1595 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1596 (hw_breakpoint[n].len == len || len == -1)) {
1603 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1604 target_ulong len, int type)
1607 case GDB_BREAKPOINT_HW:
1610 case GDB_WATCHPOINT_WRITE:
1611 case GDB_WATCHPOINT_ACCESS:
1618 if (addr & (len - 1)) {
1630 if (nb_hw_breakpoint == 4) {
1633 if (find_hw_breakpoint(addr, len, type) >= 0) {
1636 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1637 hw_breakpoint[nb_hw_breakpoint].len = len;
1638 hw_breakpoint[nb_hw_breakpoint].type = type;
1644 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1645 target_ulong len, int type)
1649 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1654 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1659 void kvm_arch_remove_all_hw_breakpoints(void)
1661 nb_hw_breakpoint = 0;
1664 static CPUWatchpoint hw_watchpoint;
1666 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1671 if (arch_info->exception == 1) {
1672 if (arch_info->dr6 & (1 << 14)) {
1673 if (cpu_single_env->singlestep_enabled) {
1677 for (n = 0; n < 4; n++) {
1678 if (arch_info->dr6 & (1 << n)) {
1679 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1685 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1686 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1687 hw_watchpoint.flags = BP_MEM_WRITE;
1691 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1692 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1693 hw_watchpoint.flags = BP_MEM_ACCESS;
1699 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1703 cpu_synchronize_state(cpu_single_env);
1704 assert(cpu_single_env->exception_injected == -1);
1706 cpu_single_env->exception_injected = arch_info->exception;
1707 cpu_single_env->has_error_code = 0;
1713 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1715 const uint8_t type_code[] = {
1716 [GDB_BREAKPOINT_HW] = 0x0,
1717 [GDB_WATCHPOINT_WRITE] = 0x1,
1718 [GDB_WATCHPOINT_ACCESS] = 0x3
1720 const uint8_t len_code[] = {
1721 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1725 if (kvm_sw_breakpoints_active(env)) {
1726 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1728 if (nb_hw_breakpoint > 0) {
1729 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1730 dbg->arch.debugreg[7] = 0x0600;
1731 for (n = 0; n < nb_hw_breakpoint; n++) {
1732 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1733 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1734 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1735 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1739 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1741 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1743 return !(env->cr[0] & CR0_PE_MASK) ||
1744 ((env->segs[R_CS].selector & 3) != 3);
1747 static void hardware_memory_error(void)
1749 fprintf(stderr, "Hardware memory error!\n");
1754 static void kvm_mce_broadcast_rest(CPUState *env)
1756 struct kvm_x86_mce mce = {
1758 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1759 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1765 /* Broadcast MCA signal for processor version 06H_EH and above */
1766 if (cpu_x86_support_mca_broadcast(env)) {
1767 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1771 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1776 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1778 struct kvm_x86_mce mce = {
1780 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1781 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1782 | MCI_STATUS_AR | 0x134,
1783 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1785 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1789 r = kvm_set_mce(env, &mce);
1791 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1794 kvm_mce_broadcast_rest(env);
1797 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1799 struct kvm_x86_mce mce = {
1801 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1802 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1804 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1806 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1810 r = kvm_set_mce(env, &mce);
1812 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1815 kvm_mce_broadcast_rest(env);
1818 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1820 struct kvm_x86_mce mce = {
1822 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1823 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1825 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1827 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1830 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1831 kvm_mce_broadcast_rest(env);
1836 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1838 #if defined(KVM_CAP_MCE)
1840 ram_addr_t ram_addr;
1841 target_phys_addr_t paddr;
1843 if ((env->mcg_cap & MCG_SER_P) && addr
1844 && (code == BUS_MCEERR_AR
1845 || code == BUS_MCEERR_AO)) {
1846 vaddr = (void *)addr;
1847 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1848 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1849 fprintf(stderr, "Hardware memory error for memory used by "
1850 "QEMU itself instead of guest system!\n");
1851 /* Hope we are lucky for AO MCE */
1852 if (code == BUS_MCEERR_AO) {
1855 hardware_memory_error();
1859 if (code == BUS_MCEERR_AR) {
1860 /* Fake an Intel architectural Data Load SRAR UCR */
1861 kvm_mce_inj_srar_dataload(env, paddr);
1864 * If there is an MCE excpetion being processed, ignore
1867 if (!kvm_mce_in_progress(env)) {
1868 /* Fake an Intel architectural Memory scrubbing UCR */
1869 kvm_mce_inj_srao_memscrub(env, paddr);
1875 if (code == BUS_MCEERR_AO) {
1877 } else if (code == BUS_MCEERR_AR) {
1878 hardware_memory_error();
1886 int kvm_on_sigbus(int code, void *addr)
1888 #if defined(KVM_CAP_MCE)
1889 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1891 ram_addr_t ram_addr;
1892 target_phys_addr_t paddr;
1894 /* Hope we are lucky for AO MCE */
1896 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1897 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1898 fprintf(stderr, "Hardware memory error for memory used by "
1899 "QEMU itself instead of guest system!: %p\n", addr);
1902 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1906 if (code == BUS_MCEERR_AO) {
1908 } else if (code == BUS_MCEERR_AR) {
1909 hardware_memory_error();