4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
235 bool resolve_subpage)
237 MemoryRegionSection *section;
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
253 MemoryRegionSection *section;
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
273 MemoryRegionSection *section;
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
281 if (!mr->iommu_ops) {
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
294 as = iotlb.target_as;
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
309 assert(!section->mr->iommu_ops);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque, int version_id)
327 CPUState *cpu = opaque;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
352 CPUState *qemu_get_cpu(int index)
357 if (cpu->cpu_index == index) {
365 void cpu_exec_init(CPUArchState *env)
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
372 #if defined(CONFIG_USER_ONLY)
376 CPU_FOREACH(some_cpu) {
379 cpu->cpu_index = cpu_index;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
417 #endif /* TARGET_HAS_ICE */
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
435 target_ulong len_mask = ~(len - 1);
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
445 wp = g_malloc(sizeof(*wp));
448 wp->len_mask = len_mask;
451 /* keep all GDB-injected watchpoints in front */
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
457 tlb_flush_page(env, addr);
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
468 target_ulong len_mask = ~(len - 1);
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
486 tlb_flush_page(env, watchpoint->vaddr);
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
494 CPUWatchpoint *wp, *next;
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
507 #if defined(TARGET_HAS_ICE)
510 bp = g_malloc(sizeof(*bp));
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 #if defined(TARGET_HAS_ICE)
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
584 kvm_update_guest_debug(cpu, 0);
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
597 CPUState *cpu = ENV_GET_CPU(env);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
628 CPUArchState *cpu_copy(CPUArchState *env)
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
675 cpu_tlb_reset_dirty_all(start1, length);
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
688 length = end - start;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
694 tlb_reset_dirty_range_all(start, end, length);
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
701 in_migration = enable;
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
708 hwaddr paddr, hwaddr xlat,
710 target_ulong *address)
715 if (memory_region_is_ram(section->mr)) {
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
722 iotlb |= PHYS_SECTION_ROM;
725 iotlb = section - address_space_memory.dispatch->sections;
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
744 #endif /* defined(CONFIG_USER_ONLY) */
746 #if !defined(CONFIG_USER_ONLY)
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
752 static void *(*phys_mem_alloc)(ram_addr_t size) = qemu_anon_ram_alloc;
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
759 void phys_mem_set_alloc(void *(*alloc)(ram_addr_t))
761 phys_mem_alloc = alloc;
764 static uint16_t phys_section_add(MemoryRegionSection *section)
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
770 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
772 if (next_map.sections_nb == next_map.sections_nb_alloc) {
773 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
775 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
776 next_map.sections_nb_alloc);
778 next_map.sections[next_map.sections_nb] = *section;
779 memory_region_ref(section->mr);
780 return next_map.sections_nb++;
783 static void phys_section_destroy(MemoryRegion *mr)
785 memory_region_unref(mr);
788 subpage_t *subpage = container_of(mr, subpage_t, iomem);
789 memory_region_destroy(&subpage->iomem);
794 static void phys_sections_free(PhysPageMap *map)
796 while (map->sections_nb > 0) {
797 MemoryRegionSection *section = &map->sections[--map->sections_nb];
798 phys_section_destroy(section->mr);
800 g_free(map->sections);
805 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
808 hwaddr base = section->offset_within_address_space
810 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
811 next_map.nodes, next_map.sections);
812 MemoryRegionSection subsection = {
813 .offset_within_address_space = base,
814 .size = int128_make64(TARGET_PAGE_SIZE),
818 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
820 if (!(existing->mr->subpage)) {
821 subpage = subpage_init(d->as, base);
822 subsection.mr = &subpage->iomem;
823 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
824 phys_section_add(&subsection));
826 subpage = container_of(existing->mr, subpage_t, iomem);
828 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
829 end = start + int128_get64(section->size) - 1;
830 subpage_register(subpage, start, end, phys_section_add(section));
834 static void register_multipage(AddressSpaceDispatch *d,
835 MemoryRegionSection *section)
837 hwaddr start_addr = section->offset_within_address_space;
838 uint16_t section_index = phys_section_add(section);
839 uint64_t num_pages = int128_get64(int128_rshift(section->size,
843 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
846 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
848 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
849 AddressSpaceDispatch *d = as->next_dispatch;
850 MemoryRegionSection now = *section, remain = *section;
851 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
853 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
854 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
855 - now.offset_within_address_space;
857 now.size = int128_min(int128_make64(left), now.size);
858 register_subpage(d, &now);
860 now.size = int128_zero();
862 while (int128_ne(remain.size, now.size)) {
863 remain.size = int128_sub(remain.size, now.size);
864 remain.offset_within_address_space += int128_get64(now.size);
865 remain.offset_within_region += int128_get64(now.size);
867 if (int128_lt(remain.size, page_size)) {
868 register_subpage(d, &now);
869 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
870 now.size = page_size;
871 register_subpage(d, &now);
873 now.size = int128_and(now.size, int128_neg(page_size));
874 register_multipage(d, &now);
879 void qemu_flush_coalesced_mmio_buffer(void)
882 kvm_flush_coalesced_mmio_buffer();
885 void qemu_mutex_lock_ramlist(void)
887 qemu_mutex_lock(&ram_list.mutex);
890 void qemu_mutex_unlock_ramlist(void)
892 qemu_mutex_unlock(&ram_list.mutex);
895 #if defined(__linux__) && !defined(TARGET_S390X)
899 #define HUGETLBFS_MAGIC 0x958458f6
901 static long gethugepagesize(const char *path)
907 ret = statfs(path, &fs);
908 } while (ret != 0 && errno == EINTR);
915 if (fs.f_type != HUGETLBFS_MAGIC)
916 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
921 static void *file_ram_alloc(RAMBlock *block,
926 char *sanitized_name;
933 unsigned long hpagesize;
935 hpagesize = gethugepagesize(path);
940 if (memory < hpagesize) {
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name = g_strdup(block->mr->name);
951 for (c = sanitized_name; *c != '\0'; c++) {
956 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
958 g_free(sanitized_name);
960 fd = mkstemp(filename);
962 perror("unable to create backing store for hugepages");
969 memory = (memory+hpagesize-1) & ~(hpagesize-1);
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
977 if (ftruncate(fd, memory))
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
985 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
988 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
990 if (area == MAP_FAILED) {
991 perror("file_ram_alloc: can't mmap RAM pages");
1000 static ram_addr_t find_ram_offset(ram_addr_t size)
1002 RAMBlock *block, *next_block;
1003 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1005 assert(size != 0); /* it would hand out same offset multiple times */
1007 if (QTAILQ_EMPTY(&ram_list.blocks))
1010 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1011 ram_addr_t end, next = RAM_ADDR_MAX;
1013 end = block->offset + block->length;
1015 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1016 if (next_block->offset >= end) {
1017 next = MIN(next, next_block->offset);
1020 if (next - end >= size && next - end < mingap) {
1022 mingap = next - end;
1026 if (offset == RAM_ADDR_MAX) {
1027 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1035 ram_addr_t last_ram_offset(void)
1038 ram_addr_t last = 0;
1040 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1041 last = MAX(last, block->offset + block->length);
1046 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1050 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1051 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1052 "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1064 RAMBlock *new_block, *block;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1074 assert(!new_block->idstr[0]);
1077 char *id = qdev_get_dev_path(dev);
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1094 qemu_mutex_unlock_ramlist();
1097 static int memory_try_enable_merging(void *addr, size_t len)
1099 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1100 /* disabled by the user */
1104 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1107 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1110 RAMBlock *block, *new_block;
1112 size = TARGET_PAGE_ALIGN(size);
1113 new_block = g_malloc0(sizeof(*new_block));
1116 /* This assumes the iothread lock is taken here too. */
1117 qemu_mutex_lock_ramlist();
1119 new_block->offset = find_ram_offset(size);
1121 new_block->host = host;
1122 new_block->flags |= RAM_PREALLOC_MASK;
1123 } else if (xen_enabled()) {
1125 fprintf(stderr, "-mem-path not supported with Xen\n");
1128 xen_ram_alloc(new_block->offset, size, mr);
1131 #if defined (__linux__) && !defined(TARGET_S390X)
1132 new_block->host = file_ram_alloc(new_block, size, mem_path);
1134 fprintf(stderr, "-mem-path option unsupported\n");
1138 if (!new_block->host) {
1139 new_block->host = phys_mem_alloc(size);
1140 memory_try_enable_merging(new_block->host, size);
1143 new_block->length = size;
1145 /* Keep the list sorted from biggest to smallest block. */
1146 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1147 if (block->length < new_block->length) {
1152 QTAILQ_INSERT_BEFORE(block, new_block, next);
1154 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1156 ram_list.mru_block = NULL;
1159 qemu_mutex_unlock_ramlist();
1161 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1162 last_ram_offset() >> TARGET_PAGE_BITS);
1163 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1164 0, size >> TARGET_PAGE_BITS);
1165 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1167 qemu_ram_setup_dump(new_block->host, size);
1168 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1171 kvm_setup_guest_memory(new_block->host, size);
1173 return new_block->offset;
1176 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1178 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1181 void qemu_ram_free_from_ptr(ram_addr_t addr)
1185 /* This assumes the iothread lock is taken here too. */
1186 qemu_mutex_lock_ramlist();
1187 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1188 if (addr == block->offset) {
1189 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1190 ram_list.mru_block = NULL;
1196 qemu_mutex_unlock_ramlist();
1199 void qemu_ram_free(ram_addr_t addr)
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
1205 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1206 if (addr == block->offset) {
1207 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1208 ram_list.mru_block = NULL;
1210 if (block->flags & RAM_PREALLOC_MASK) {
1212 } else if (xen_enabled()) {
1213 xen_invalidate_map_cache_entry(block->host);
1214 } else if (block->fd >= 0) {
1215 munmap(block->host, block->length);
1218 qemu_anon_ram_free(block->host, block->length);
1224 qemu_mutex_unlock_ramlist();
1229 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1236 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1237 offset = addr - block->offset;
1238 if (offset < block->length) {
1239 vaddr = block->host + offset;
1240 if (block->flags & RAM_PREALLOC_MASK) {
1242 } else if (xen_enabled()) {
1246 munmap(vaddr, length);
1247 if (block->fd >= 0) {
1249 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1252 flags |= MAP_PRIVATE;
1254 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1255 flags, block->fd, offset);
1257 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1258 flags |= MAP_SHARED | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1262 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1263 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1267 if (area != vaddr) {
1268 fprintf(stderr, "Could not remap addr: "
1269 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1273 memory_try_enable_merging(vaddr, length);
1274 qemu_ram_setup_dump(vaddr, length);
1280 #endif /* !_WIN32 */
1282 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1286 /* The list is protected by the iothread lock here. */
1287 block = ram_list.mru_block;
1288 if (block && addr - block->offset < block->length) {
1291 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1292 if (addr - block->offset < block->length) {
1297 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 ram_list.mru_block = block;
1305 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1306 With the exception of the softmmu code in this file, this should
1307 only be used for local memory (e.g. video ram) that the device owns,
1308 and knows it isn't going to access beyond the end of the block.
1310 It should not be used for general purpose DMA.
1311 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1313 void *qemu_get_ram_ptr(ram_addr_t addr)
1315 RAMBlock *block = qemu_get_ram_block(addr);
1317 if (xen_enabled()) {
1318 /* We need to check if the requested address is in the RAM
1319 * because we don't want to map the entire memory in QEMU.
1320 * In that case just map until the end of the page.
1322 if (block->offset == 0) {
1323 return xen_map_cache(addr, 0, 0);
1324 } else if (block->host == NULL) {
1326 xen_map_cache(block->offset, block->length, 1);
1329 return block->host + (addr - block->offset);
1332 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1333 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1335 * ??? Is this still necessary?
1337 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1341 /* The list is protected by the iothread lock here. */
1342 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1343 if (addr - block->offset < block->length) {
1344 if (xen_enabled()) {
1345 /* We need to check if the requested address is in the RAM
1346 * because we don't want to map the entire memory in QEMU.
1347 * In that case just map until the end of the page.
1349 if (block->offset == 0) {
1350 return xen_map_cache(addr, 0, 0);
1351 } else if (block->host == NULL) {
1353 xen_map_cache(block->offset, block->length, 1);
1356 return block->host + (addr - block->offset);
1360 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1366 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1367 * but takes a size argument */
1368 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1373 if (xen_enabled()) {
1374 return xen_map_cache(addr, *size, 1);
1378 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1379 if (addr - block->offset < block->length) {
1380 if (addr - block->offset + *size > block->length)
1381 *size = block->length - addr + block->offset;
1382 return block->host + (addr - block->offset);
1386 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1396 uint8_t *host = ptr;
1398 if (xen_enabled()) {
1399 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1400 return qemu_get_ram_block(*ram_addr)->mr;
1403 block = ram_list.mru_block;
1404 if (block && block->host && host - block->host < block->length) {
1408 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1409 /* This case append when the block is not mapped. */
1410 if (block->host == NULL) {
1413 if (host - block->host < block->length) {
1421 *ram_addr = block->offset + (host - block->host);
1425 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1426 uint64_t val, unsigned size)
1429 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1430 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1431 tb_invalidate_phys_page_fast(ram_addr, size);
1432 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1436 stb_p(qemu_get_ram_ptr(ram_addr), val);
1439 stw_p(qemu_get_ram_ptr(ram_addr), val);
1442 stl_p(qemu_get_ram_ptr(ram_addr), val);
1447 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1448 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1449 /* we remove the notdirty callback only if the code has been
1451 if (dirty_flags == 0xff) {
1452 CPUArchState *env = current_cpu->env_ptr;
1453 tlb_set_dirty(env, env->mem_io_vaddr);
1457 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1463 static const MemoryRegionOps notdirty_mem_ops = {
1464 .write = notdirty_mem_write,
1465 .valid.accepts = notdirty_mem_accepts,
1466 .endianness = DEVICE_NATIVE_ENDIAN,
1469 /* Generate a debug exception if a watchpoint has been hit. */
1470 static void check_watchpoint(int offset, int len_mask, int flags)
1472 CPUArchState *env = current_cpu->env_ptr;
1473 target_ulong pc, cs_base;
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
1492 tb_check_watchpoint(env);
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1499 cpu_resume_from_signal(env, NULL);
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
1508 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1511 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1523 static void watch_mem_write(void *opaque, hwaddr addr,
1524 uint64_t val, unsigned size)
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1529 stb_phys(addr, val);
1532 stw_phys(addr, val);
1535 stl_phys(addr, val);
1541 static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
1547 static uint64_t subpage_read(void *opaque, hwaddr addr,
1550 subpage_t *subpage = opaque;
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1570 static void subpage_write(void *opaque, hwaddr addr,
1571 uint64_t value, unsigned len)
1573 subpage_t *subpage = opaque;
1576 #if defined(DEBUG_SUBPAGE)
1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
1597 static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1600 subpage_t *subpage = opaque;
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1610 static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
1613 .valid.accepts = subpage_accepts,
1614 .endianness = DEVICE_NATIVE_ENDIAN,
1617 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626 #if defined(DEBUG_SUBPAGE)
1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1628 mmio, start, end, idx, eidx, memory);
1630 for (; idx <= eidx; idx++) {
1631 mmio->sub_section[idx] = section;
1637 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1641 mmio = g_malloc0(sizeof(subpage_t));
1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1646 "subpage", TARGET_PAGE_SIZE);
1647 mmio->iomem.subpage = true;
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1657 static uint16_t dummy_section(MemoryRegion *mr)
1659 MemoryRegionSection section = {
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
1663 .size = int128_2_64(),
1666 return phys_section_add(§ion);
1669 MemoryRegion *iotlb_to_region(hwaddr index)
1671 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1674 static void io_mem_init(void)
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1678 "unassigned", UINT64_MAX);
1679 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1680 "notdirty", UINT64_MAX);
1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1682 "watch", UINT64_MAX);
1685 static void mem_begin(MemoryListener *listener)
1687 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1688 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1690 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1692 as->next_dispatch = d;
1695 static void mem_commit(MemoryListener *listener)
1697 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1698 AddressSpaceDispatch *cur = as->dispatch;
1699 AddressSpaceDispatch *next = as->next_dispatch;
1701 next->nodes = next_map.nodes;
1702 next->sections = next_map.sections;
1704 as->dispatch = next;
1708 static void core_begin(MemoryListener *listener)
1712 prev_map = g_new(PhysPageMap, 1);
1713 *prev_map = next_map;
1715 memset(&next_map, 0, sizeof(next_map));
1716 n = dummy_section(&io_mem_unassigned);
1717 assert(n == PHYS_SECTION_UNASSIGNED);
1718 n = dummy_section(&io_mem_notdirty);
1719 assert(n == PHYS_SECTION_NOTDIRTY);
1720 n = dummy_section(&io_mem_rom);
1721 assert(n == PHYS_SECTION_ROM);
1722 n = dummy_section(&io_mem_watch);
1723 assert(n == PHYS_SECTION_WATCH);
1726 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1727 * All AddressSpaceDispatch instances have switched to the next map.
1729 static void core_commit(MemoryListener *listener)
1731 phys_sections_free(prev_map);
1734 static void tcg_commit(MemoryListener *listener)
1738 /* since each CPU stores ram addresses in its TLB cache, we must
1739 reset the modified entries */
1742 CPUArchState *env = cpu->env_ptr;
1748 static void core_log_global_start(MemoryListener *listener)
1750 cpu_physical_memory_set_dirty_tracking(1);
1753 static void core_log_global_stop(MemoryListener *listener)
1755 cpu_physical_memory_set_dirty_tracking(0);
1758 static MemoryListener core_memory_listener = {
1759 .begin = core_begin,
1760 .commit = core_commit,
1761 .log_global_start = core_log_global_start,
1762 .log_global_stop = core_log_global_stop,
1766 static MemoryListener tcg_memory_listener = {
1767 .commit = tcg_commit,
1770 void address_space_init_dispatch(AddressSpace *as)
1772 as->dispatch = NULL;
1773 as->dispatch_listener = (MemoryListener) {
1775 .commit = mem_commit,
1776 .region_add = mem_add,
1777 .region_nop = mem_add,
1780 memory_listener_register(&as->dispatch_listener, as);
1783 void address_space_destroy_dispatch(AddressSpace *as)
1785 AddressSpaceDispatch *d = as->dispatch;
1787 memory_listener_unregister(&as->dispatch_listener);
1789 as->dispatch = NULL;
1792 static void memory_map_init(void)
1794 system_memory = g_malloc(sizeof(*system_memory));
1795 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1796 address_space_init(&address_space_memory, system_memory, "memory");
1798 system_io = g_malloc(sizeof(*system_io));
1799 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1801 address_space_init(&address_space_io, system_io, "I/O");
1803 memory_listener_register(&core_memory_listener, &address_space_memory);
1804 if (tcg_enabled()) {
1805 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1809 MemoryRegion *get_system_memory(void)
1811 return system_memory;
1814 MemoryRegion *get_system_io(void)
1819 #endif /* !defined(CONFIG_USER_ONLY) */
1821 /* physical memory access (slow version, mainly for debug) */
1822 #if defined(CONFIG_USER_ONLY)
1823 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1824 uint8_t *buf, int len, int is_write)
1831 page = addr & TARGET_PAGE_MASK;
1832 l = (page + TARGET_PAGE_SIZE) - addr;
1835 flags = page_get_flags(page);
1836 if (!(flags & PAGE_VALID))
1839 if (!(flags & PAGE_WRITE))
1841 /* XXX: this code should not depend on lock_user */
1842 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1845 unlock_user(p, addr, l);
1847 if (!(flags & PAGE_READ))
1849 /* XXX: this code should not depend on lock_user */
1850 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1853 unlock_user(p, addr, 0);
1864 static void invalidate_and_set_dirty(hwaddr addr,
1867 if (!cpu_physical_memory_is_dirty(addr)) {
1868 /* invalidate code */
1869 tb_invalidate_phys_page_range(addr, addr + length, 0);
1871 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1873 xen_modified_memory(addr, length);
1876 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1878 if (memory_region_is_ram(mr)) {
1879 return !(is_write && mr->readonly);
1881 if (memory_region_is_romd(mr)) {
1888 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1890 unsigned access_size_max = mr->ops->valid.max_access_size;
1892 /* Regions are assumed to support 1-4 byte accesses unless
1893 otherwise specified. */
1894 if (access_size_max == 0) {
1895 access_size_max = 4;
1898 /* Bound the maximum access by the alignment of the address. */
1899 if (!mr->ops->impl.unaligned) {
1900 unsigned align_size_max = addr & -addr;
1901 if (align_size_max != 0 && align_size_max < access_size_max) {
1902 access_size_max = align_size_max;
1906 /* Don't attempt accesses larger than the maximum. */
1907 if (l > access_size_max) {
1908 l = access_size_max;
1911 l = 1 << (qemu_fls(l) - 1);
1917 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1918 int len, bool is_write)
1929 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1932 if (!memory_access_is_direct(mr, is_write)) {
1933 l = memory_access_size(mr, l, addr1);
1934 /* XXX: could force current_cpu to NULL to avoid
1938 /* 64 bit write access */
1940 error |= io_mem_write(mr, addr1, val, 8);
1943 /* 32 bit write access */
1945 error |= io_mem_write(mr, addr1, val, 4);
1948 /* 16 bit write access */
1950 error |= io_mem_write(mr, addr1, val, 2);
1953 /* 8 bit write access */
1955 error |= io_mem_write(mr, addr1, val, 1);
1961 addr1 += memory_region_get_ram_addr(mr);
1963 ptr = qemu_get_ram_ptr(addr1);
1964 memcpy(ptr, buf, l);
1965 invalidate_and_set_dirty(addr1, l);
1968 if (!memory_access_is_direct(mr, is_write)) {
1970 l = memory_access_size(mr, l, addr1);
1973 /* 64 bit read access */
1974 error |= io_mem_read(mr, addr1, &val, 8);
1978 /* 32 bit read access */
1979 error |= io_mem_read(mr, addr1, &val, 4);
1983 /* 16 bit read access */
1984 error |= io_mem_read(mr, addr1, &val, 2);
1988 /* 8 bit read access */
1989 error |= io_mem_read(mr, addr1, &val, 1);
1997 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1998 memcpy(buf, ptr, l);
2009 bool address_space_write(AddressSpace *as, hwaddr addr,
2010 const uint8_t *buf, int len)
2012 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2015 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2017 return address_space_rw(as, addr, buf, len, false);
2021 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2022 int len, int is_write)
2024 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2027 /* used for ROM loading : can write in RAM and ROM */
2028 void cpu_physical_memory_write_rom(hwaddr addr,
2029 const uint8_t *buf, int len)
2038 mr = address_space_translate(&address_space_memory,
2039 addr, &addr1, &l, true);
2041 if (!(memory_region_is_ram(mr) ||
2042 memory_region_is_romd(mr))) {
2045 addr1 += memory_region_get_ram_addr(mr);
2047 ptr = qemu_get_ram_ptr(addr1);
2048 memcpy(ptr, buf, l);
2049 invalidate_and_set_dirty(addr1, l);
2064 static BounceBuffer bounce;
2066 typedef struct MapClient {
2068 void (*callback)(void *opaque);
2069 QLIST_ENTRY(MapClient) link;
2072 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2073 = QLIST_HEAD_INITIALIZER(map_client_list);
2075 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2077 MapClient *client = g_malloc(sizeof(*client));
2079 client->opaque = opaque;
2080 client->callback = callback;
2081 QLIST_INSERT_HEAD(&map_client_list, client, link);
2085 static void cpu_unregister_map_client(void *_client)
2087 MapClient *client = (MapClient *)_client;
2089 QLIST_REMOVE(client, link);
2093 static void cpu_notify_map_clients(void)
2097 while (!QLIST_EMPTY(&map_client_list)) {
2098 client = QLIST_FIRST(&map_client_list);
2099 client->callback(client->opaque);
2100 cpu_unregister_map_client(client);
2104 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2111 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2112 if (!memory_access_is_direct(mr, is_write)) {
2113 l = memory_access_size(mr, l, addr);
2114 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2125 /* Map a physical memory region into a host virtual address.
2126 * May map a subset of the requested range, given by and returned in *plen.
2127 * May return NULL if resources needed to perform the mapping are exhausted.
2128 * Use only for reads OR writes - not for read-modify-write operations.
2129 * Use cpu_register_map_client() to know when retrying the map operation is
2130 * likely to succeed.
2132 void *address_space_map(AddressSpace *as,
2139 hwaddr l, xlat, base;
2140 MemoryRegion *mr, *this_mr;
2148 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2149 if (!memory_access_is_direct(mr, is_write)) {
2150 if (bounce.buffer) {
2153 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2157 memory_region_ref(mr);
2160 address_space_read(as, addr, bounce.buffer, l);
2164 return bounce.buffer;
2168 raddr = memory_region_get_ram_addr(mr);
2179 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2180 if (this_mr != mr || xlat != base + done) {
2185 memory_region_ref(mr);
2187 return qemu_ram_ptr_length(raddr + base, plen);
2190 /* Unmaps a memory region previously mapped by address_space_map().
2191 * Will also mark the memory as dirty if is_write == 1. access_len gives
2192 * the amount of memory that was actually read or written by the caller.
2194 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2195 int is_write, hwaddr access_len)
2197 if (buffer != bounce.buffer) {
2201 mr = qemu_ram_addr_from_host(buffer, &addr1);
2204 while (access_len) {
2206 l = TARGET_PAGE_SIZE;
2209 invalidate_and_set_dirty(addr1, l);
2214 if (xen_enabled()) {
2215 xen_invalidate_map_cache_entry(buffer);
2217 memory_region_unref(mr);
2221 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2223 qemu_vfree(bounce.buffer);
2224 bounce.buffer = NULL;
2225 memory_region_unref(bounce.mr);
2226 cpu_notify_map_clients();
2229 void *cpu_physical_memory_map(hwaddr addr,
2233 return address_space_map(&address_space_memory, addr, plen, is_write);
2236 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2237 int is_write, hwaddr access_len)
2239 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2242 /* warning: addr must be aligned */
2243 static inline uint32_t ldl_phys_internal(hwaddr addr,
2244 enum device_endian endian)
2252 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2254 if (l < 4 || !memory_access_is_direct(mr, false)) {
2256 io_mem_read(mr, addr1, &val, 4);
2257 #if defined(TARGET_WORDS_BIGENDIAN)
2258 if (endian == DEVICE_LITTLE_ENDIAN) {
2262 if (endian == DEVICE_BIG_ENDIAN) {
2268 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2272 case DEVICE_LITTLE_ENDIAN:
2273 val = ldl_le_p(ptr);
2275 case DEVICE_BIG_ENDIAN:
2276 val = ldl_be_p(ptr);
2286 uint32_t ldl_phys(hwaddr addr)
2288 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2291 uint32_t ldl_le_phys(hwaddr addr)
2293 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2296 uint32_t ldl_be_phys(hwaddr addr)
2298 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2301 /* warning: addr must be aligned */
2302 static inline uint64_t ldq_phys_internal(hwaddr addr,
2303 enum device_endian endian)
2311 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2313 if (l < 8 || !memory_access_is_direct(mr, false)) {
2315 io_mem_read(mr, addr1, &val, 8);
2316 #if defined(TARGET_WORDS_BIGENDIAN)
2317 if (endian == DEVICE_LITTLE_ENDIAN) {
2321 if (endian == DEVICE_BIG_ENDIAN) {
2327 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2331 case DEVICE_LITTLE_ENDIAN:
2332 val = ldq_le_p(ptr);
2334 case DEVICE_BIG_ENDIAN:
2335 val = ldq_be_p(ptr);
2345 uint64_t ldq_phys(hwaddr addr)
2347 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2350 uint64_t ldq_le_phys(hwaddr addr)
2352 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2355 uint64_t ldq_be_phys(hwaddr addr)
2357 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2361 uint32_t ldub_phys(hwaddr addr)
2364 cpu_physical_memory_read(addr, &val, 1);
2368 /* warning: addr must be aligned */
2369 static inline uint32_t lduw_phys_internal(hwaddr addr,
2370 enum device_endian endian)
2378 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2380 if (l < 2 || !memory_access_is_direct(mr, false)) {
2382 io_mem_read(mr, addr1, &val, 2);
2383 #if defined(TARGET_WORDS_BIGENDIAN)
2384 if (endian == DEVICE_LITTLE_ENDIAN) {
2388 if (endian == DEVICE_BIG_ENDIAN) {
2394 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2398 case DEVICE_LITTLE_ENDIAN:
2399 val = lduw_le_p(ptr);
2401 case DEVICE_BIG_ENDIAN:
2402 val = lduw_be_p(ptr);
2412 uint32_t lduw_phys(hwaddr addr)
2414 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2417 uint32_t lduw_le_phys(hwaddr addr)
2419 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2422 uint32_t lduw_be_phys(hwaddr addr)
2424 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2427 /* warning: addr must be aligned. The ram page is not masked as dirty
2428 and the code inside is not invalidated. It is useful if the dirty
2429 bits are used to track modified PTEs */
2430 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2437 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2439 if (l < 4 || !memory_access_is_direct(mr, true)) {
2440 io_mem_write(mr, addr1, val, 4);
2442 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2443 ptr = qemu_get_ram_ptr(addr1);
2446 if (unlikely(in_migration)) {
2447 if (!cpu_physical_memory_is_dirty(addr1)) {
2448 /* invalidate code */
2449 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2451 cpu_physical_memory_set_dirty_flags(
2452 addr1, (0xff & ~CODE_DIRTY_FLAG));
2458 /* warning: addr must be aligned */
2459 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2460 enum device_endian endian)
2467 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2469 if (l < 4 || !memory_access_is_direct(mr, true)) {
2470 #if defined(TARGET_WORDS_BIGENDIAN)
2471 if (endian == DEVICE_LITTLE_ENDIAN) {
2475 if (endian == DEVICE_BIG_ENDIAN) {
2479 io_mem_write(mr, addr1, val, 4);
2482 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2483 ptr = qemu_get_ram_ptr(addr1);
2485 case DEVICE_LITTLE_ENDIAN:
2488 case DEVICE_BIG_ENDIAN:
2495 invalidate_and_set_dirty(addr1, 4);
2499 void stl_phys(hwaddr addr, uint32_t val)
2501 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2504 void stl_le_phys(hwaddr addr, uint32_t val)
2506 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2509 void stl_be_phys(hwaddr addr, uint32_t val)
2511 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2515 void stb_phys(hwaddr addr, uint32_t val)
2518 cpu_physical_memory_write(addr, &v, 1);
2521 /* warning: addr must be aligned */
2522 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2523 enum device_endian endian)
2530 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2532 if (l < 2 || !memory_access_is_direct(mr, true)) {
2533 #if defined(TARGET_WORDS_BIGENDIAN)
2534 if (endian == DEVICE_LITTLE_ENDIAN) {
2538 if (endian == DEVICE_BIG_ENDIAN) {
2542 io_mem_write(mr, addr1, val, 2);
2545 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2546 ptr = qemu_get_ram_ptr(addr1);
2548 case DEVICE_LITTLE_ENDIAN:
2551 case DEVICE_BIG_ENDIAN:
2558 invalidate_and_set_dirty(addr1, 2);
2562 void stw_phys(hwaddr addr, uint32_t val)
2564 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2567 void stw_le_phys(hwaddr addr, uint32_t val)
2569 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2572 void stw_be_phys(hwaddr addr, uint32_t val)
2574 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2578 void stq_phys(hwaddr addr, uint64_t val)
2581 cpu_physical_memory_write(addr, &val, 8);
2584 void stq_le_phys(hwaddr addr, uint64_t val)
2586 val = cpu_to_le64(val);
2587 cpu_physical_memory_write(addr, &val, 8);
2590 void stq_be_phys(hwaddr addr, uint64_t val)
2592 val = cpu_to_be64(val);
2593 cpu_physical_memory_write(addr, &val, 8);
2596 /* virtual memory access for debug (includes writing to ROM) */
2597 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2598 uint8_t *buf, int len, int is_write)
2605 page = addr & TARGET_PAGE_MASK;
2606 phys_addr = cpu_get_phys_page_debug(cpu, page);
2607 /* if no physical page mapped, return an error */
2608 if (phys_addr == -1)
2610 l = (page + TARGET_PAGE_SIZE) - addr;
2613 phys_addr += (addr & ~TARGET_PAGE_MASK);
2615 cpu_physical_memory_write_rom(phys_addr, buf, l);
2617 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2626 #if !defined(CONFIG_USER_ONLY)
2629 * A helper function for the _utterly broken_ virtio device model to find out if
2630 * it's running on a big endian machine. Don't do this at home kids!
2632 bool virtio_is_big_endian(void);
2633 bool virtio_is_big_endian(void)
2635 #if defined(TARGET_WORDS_BIGENDIAN)
2644 #ifndef CONFIG_USER_ONLY
2645 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2650 mr = address_space_translate(&address_space_memory,
2651 phys_addr, &phys_addr, &l, false);
2653 return !(memory_region_is_ram(mr) ||
2654 memory_region_is_romd(mr));
2657 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2661 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2662 func(block->host, block->offset, block->length, opaque);