4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include <sys/types.h>
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
37 #include "disas/disas.h"
39 #if defined(CONFIG_USER_ONLY)
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
48 #include <machine/profile.h>
57 #include "exec/address-spaces.h"
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
102 /* Size of the L2 (and L3, etc) page tables. */
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
113 #define V_L1_BITS V_L1_BITS_REM
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
125 /* The bottom level has pointers to PageDesc */
126 static void *l1_map[V_L1_SIZE];
128 /* code generation context */
131 /* translation block context */
132 #ifdef CONFIG_USER_ONLY
133 __thread int have_tb_lock;
138 #ifdef CONFIG_USER_ONLY
139 assert(!have_tb_lock);
140 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
147 #ifdef CONFIG_USER_ONLY
148 assert(have_tb_lock);
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
154 void tb_lock_reset(void)
156 #ifdef CONFIG_USER_ONLY
158 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
164 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
165 tb_page_addr_t phys_page2);
166 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
168 void cpu_gen_init(void)
170 tcg_context_init(&tcg_ctx);
173 /* return non zero if the very first instruction is invalid so that
174 * the virtual CPU can trigger an exception.
176 * '*gen_code_size_ptr' contains the size of the generated code (host
179 * Called with mmap_lock held for user-mode emulation.
181 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
183 TCGContext *s = &tcg_ctx;
184 tcg_insn_unit *gen_code_buf;
186 #ifdef CONFIG_PROFILER
190 #ifdef CONFIG_PROFILER
191 s->tb_count1++; /* includes aborted translations because of
193 ti = profile_getclock();
197 gen_intermediate_code(env, tb);
199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
201 /* generate machine code */
202 gen_code_buf = tb->tc_ptr;
203 tb->tb_next_offset[0] = 0xffff;
204 tb->tb_next_offset[1] = 0xffff;
205 s->tb_next_offset = tb->tb_next_offset;
206 #ifdef USE_DIRECT_JUMP
207 s->tb_jmp_offset = tb->tb_jmp_offset;
210 s->tb_jmp_offset = NULL;
211 s->tb_next = tb->tb_next;
214 #ifdef CONFIG_PROFILER
216 s->interm_time += profile_getclock() - ti;
217 s->code_time -= profile_getclock();
219 gen_code_size = tcg_gen_code(s, gen_code_buf);
220 *gen_code_size_ptr = gen_code_size;
221 #ifdef CONFIG_PROFILER
222 s->code_time += profile_getclock();
223 s->code_in_len += tb->size;
224 s->code_out_len += gen_code_size;
228 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
229 qemu_log("OUT: [size=%d]\n", gen_code_size);
230 log_disas(tb->tc_ptr, gen_code_size);
238 /* The cpu state corresponding to 'searched_pc' is restored.
240 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
241 uintptr_t searched_pc)
243 CPUArchState *env = cpu->env_ptr;
244 TCGContext *s = &tcg_ctx;
247 #ifdef CONFIG_PROFILER
251 #ifdef CONFIG_PROFILER
252 ti = profile_getclock();
256 gen_intermediate_code_pc(env, tb);
258 if (tb->cflags & CF_USE_ICOUNT) {
260 /* Reset the cycle counter to the start of the block. */
261 cpu->icount_decr.u16.low += tb->icount;
262 /* Clear the IO flag. */
266 /* find opc index corresponding to search_pc */
267 tc_ptr = (uintptr_t)tb->tc_ptr;
268 if (searched_pc < tc_ptr)
271 s->tb_next_offset = tb->tb_next_offset;
272 #ifdef USE_DIRECT_JUMP
273 s->tb_jmp_offset = tb->tb_jmp_offset;
276 s->tb_jmp_offset = NULL;
277 s->tb_next = tb->tb_next;
279 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
280 searched_pc - tc_ptr);
283 /* now find start of instruction before */
284 while (s->gen_opc_instr_start[j] == 0) {
287 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
289 restore_state_to_opc(env, tb, j);
291 #ifdef CONFIG_PROFILER
292 s->restore_time += profile_getclock() - ti;
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
300 TranslationBlock *tb;
302 tb = tb_find_pc(retaddr);
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 cpu->current_tb = NULL;
308 tb_phys_invalidate(tb, -1);
317 static __attribute__((unused)) void map_exec(void *addr, long size)
320 VirtualProtect(addr, size,
321 PAGE_EXECUTE_READWRITE, &old_protect);
324 static __attribute__((unused)) void map_exec(void *addr, long size)
326 unsigned long start, end, page_size;
328 page_size = getpagesize();
329 start = (unsigned long)addr;
330 start &= ~(page_size - 1);
332 end = (unsigned long)addr + size;
333 end += page_size - 1;
334 end &= ~(page_size - 1);
336 mprotect((void *)start, end - start,
337 PROT_READ | PROT_WRITE | PROT_EXEC);
341 void page_size_init(void)
343 /* NOTE: we can always suppose that qemu_host_page_size >=
345 qemu_real_host_page_size = getpagesize();
346 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
347 if (qemu_host_page_size == 0) {
348 qemu_host_page_size = qemu_real_host_page_size;
350 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
351 qemu_host_page_size = TARGET_PAGE_SIZE;
353 qemu_host_page_mask = ~(qemu_host_page_size - 1);
356 static void page_init(void)
359 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
361 #ifdef HAVE_KINFO_GETVMMAP
362 struct kinfo_vmentry *freep;
365 freep = kinfo_getvmmap(getpid(), &cnt);
368 for (i = 0; i < cnt; i++) {
369 unsigned long startaddr, endaddr;
371 startaddr = freep[i].kve_start;
372 endaddr = freep[i].kve_end;
373 if (h2g_valid(startaddr)) {
374 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
376 if (h2g_valid(endaddr)) {
377 endaddr = h2g(endaddr);
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
380 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
382 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
393 last_brk = (unsigned long)sbrk(0);
395 f = fopen("/compat/linux/proc/self/maps", "r");
400 unsigned long startaddr, endaddr;
403 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
405 if (n == 2 && h2g_valid(startaddr)) {
406 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
408 if (h2g_valid(endaddr)) {
409 endaddr = h2g(endaddr);
413 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
426 * Called with mmap_lock held for user-mode emulation.
428 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
434 /* Level 1. Always allocated. */
435 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
438 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
439 void **p = atomic_rcu_read(lp);
445 p = g_new0(void *, V_L2_SIZE);
446 atomic_rcu_set(lp, p);
449 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
452 pd = atomic_rcu_read(lp);
457 pd = g_new0(PageDesc, V_L2_SIZE);
458 atomic_rcu_set(lp, pd);
461 return pd + (index & (V_L2_SIZE - 1));
464 static inline PageDesc *page_find(tb_page_addr_t index)
466 return page_find_alloc(index, 0);
469 #if defined(CONFIG_USER_ONLY)
470 /* Currently it is not recommended to allocate big chunks of data in
471 user mode. It will change when a dedicated libc will be used. */
472 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
473 region in which the guest needs to run. Revisit this. */
474 #define USE_STATIC_CODE_GEN_BUFFER
477 /* ??? Should configure for this, not list operating systems here. */
478 #if (defined(__linux__) \
479 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
480 || defined(__DragonFly__) || defined(__OpenBSD__) \
481 || defined(__NetBSD__))
485 /* Minimum size of the code gen buffer. This number is randomly chosen,
486 but not so small that we can't have a fair number of TB's live. */
487 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
489 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
490 indicated, this is constrained by the range of direct branches on the
491 host cpu, as used by the TCG implementation of goto_tb. */
492 #if defined(__x86_64__)
493 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
494 #elif defined(__sparc__)
495 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
496 #elif defined(__aarch64__)
497 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
498 #elif defined(__arm__)
499 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
500 #elif defined(__s390x__)
501 /* We have a +- 4GB range on the branches; leave some slop. */
502 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
503 #elif defined(__mips__)
504 /* We have a 256MB branch region, but leave room to make sure the
505 main executable is also within that region. */
506 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
508 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
511 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
513 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
514 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
515 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
517 static inline size_t size_code_gen_buffer(size_t tb_size)
519 /* Size the buffer. */
521 #ifdef USE_STATIC_CODE_GEN_BUFFER
522 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 /* ??? Needs adjustments. */
525 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
526 static buffer, we could size this on RESERVED_VA, on the text
527 segment size of the executable, or continue to use the default. */
528 tb_size = (unsigned long)(ram_size / 4);
531 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
532 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
534 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
535 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
537 tcg_ctx.code_gen_buffer_size = tb_size;
542 /* In order to use J and JAL within the code_gen_buffer, we require
543 that the buffer not cross a 256MB boundary. */
544 static inline bool cross_256mb(void *addr, size_t size)
546 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
549 /* We weren't able to allocate a buffer without crossing that boundary,
550 so make do with the larger portion of the buffer that doesn't cross.
551 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
552 static inline void *split_cross_256mb(void *buf1, size_t size1)
554 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
555 size_t size2 = buf1 + size1 - buf2;
563 tcg_ctx.code_gen_buffer_size = size1;
568 #ifdef USE_STATIC_CODE_GEN_BUFFER
569 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
570 __attribute__((aligned(CODE_GEN_ALIGN)));
572 static inline void *alloc_code_gen_buffer(void)
574 void *buf = static_code_gen_buffer;
576 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
577 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
580 map_exec(buf, tcg_ctx.code_gen_buffer_size);
583 #elif defined(USE_MMAP)
584 static inline void *alloc_code_gen_buffer(void)
586 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
590 /* Constrain the position of the buffer based on the host cpu.
591 Note that these addresses are chosen in concert with the
592 addresses assigned in the relevant linker script file. */
593 # if defined(__PIE__) || defined(__PIC__)
594 /* Don't bother setting a preferred location if we're building
595 a position-independent executable. We're more likely to get
596 an address near the main executable if we let the kernel
597 choose the address. */
598 # elif defined(__x86_64__) && defined(MAP_32BIT)
599 /* Force the memory down into low memory with the executable.
600 Leave the choice of exact location with the kernel. */
602 /* Cannot expect to map more than 800MB in low memory. */
603 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
604 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
606 # elif defined(__sparc__)
607 start = 0x40000000ul;
608 # elif defined(__s390x__)
609 start = 0x90000000ul;
610 # elif defined(__mips__)
611 /* ??? We ought to more explicitly manage layout for softmmu too. */
612 # ifdef CONFIG_USER_ONLY
613 start = 0x68000000ul;
614 # elif _MIPS_SIM == _ABI64
615 start = 0x128000000ul;
617 start = 0x08000000ul;
621 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
622 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
623 if (buf == MAP_FAILED) {
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 /* Try again, with the original still mapped, to avoid re-acquiring
630 that 256mb crossing. This time don't specify an address. */
631 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
632 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
634 if (buf2 != MAP_FAILED) {
635 if (!cross_256mb(buf2, size1)) {
636 /* Success! Use the new buffer. */
640 /* Failure. Work with what we had. */
644 /* Split the original buffer. Free the smaller half. */
645 buf2 = split_cross_256mb(buf, size1);
646 size2 = tcg_ctx.code_gen_buffer_size;
647 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
655 static inline void *alloc_code_gen_buffer(void)
657 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
664 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
665 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
666 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
667 /* Success! Use the new buffer. */
671 /* Failure. Work with what we had. Since this is malloc
672 and not mmap, we can't free the other half. */
674 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
679 map_exec(buf, tcg_ctx.code_gen_buffer_size);
682 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
684 static inline void code_gen_alloc(size_t tb_size)
686 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
687 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
688 if (tcg_ctx.code_gen_buffer == NULL) {
689 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
693 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
696 /* Steal room for the prologue at the end of the buffer. This ensures
697 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
698 from TB's to the prologue are going to be in range. It also means
699 that we don't need to mark (additional) portions of the data segment
701 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
702 tcg_ctx.code_gen_buffer_size - 1024;
703 tcg_ctx.code_gen_buffer_size -= 1024;
705 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
706 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
707 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
708 CODE_GEN_AVG_BLOCK_SIZE;
710 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
711 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
714 /* Must be called before using the QEMU cpus. 'tb_size' is the size
715 (in bytes) allocated to the translation buffer. Zero means default
717 void tcg_exec_init(unsigned long tb_size)
720 code_gen_alloc(tb_size);
721 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
722 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
724 #if defined(CONFIG_SOFTMMU)
725 /* There's no guest base to take into account, so go ahead and
726 initialize the prologue now. */
727 tcg_prologue_init(&tcg_ctx);
731 bool tcg_enabled(void)
733 return tcg_ctx.code_gen_buffer != NULL;
736 /* Allocate a new translation block. Flush the translation buffer if
737 too many translation blocks or too much generated code. */
738 static TranslationBlock *tb_alloc(target_ulong pc)
740 TranslationBlock *tb;
742 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
743 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
744 tcg_ctx.code_gen_buffer_max_size) {
747 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
753 void tb_free(TranslationBlock *tb)
755 /* In practice this is mostly used for single use temporary TB
756 Ignore the hard cases and just back up if this TB happens to
757 be the last one generated. */
758 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
759 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
760 tcg_ctx.code_gen_ptr = tb->tc_ptr;
761 tcg_ctx.tb_ctx.nb_tbs--;
765 static inline void invalidate_page_bitmap(PageDesc *p)
767 if (p->code_bitmap) {
768 g_free(p->code_bitmap);
769 p->code_bitmap = NULL;
771 p->code_write_count = 0;
774 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
775 static void page_flush_tb_1(int level, void **lp)
785 for (i = 0; i < V_L2_SIZE; ++i) {
786 pd[i].first_tb = NULL;
787 invalidate_page_bitmap(pd + i);
792 for (i = 0; i < V_L2_SIZE; ++i) {
793 page_flush_tb_1(level - 1, pp + i);
798 static void page_flush_tb(void)
802 for (i = 0; i < V_L1_SIZE; i++) {
803 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
807 /* flush all the translation blocks */
808 /* XXX: tb_flush is currently not thread safe */
809 void tb_flush(CPUState *cpu)
811 #if defined(DEBUG_FLUSH)
812 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
813 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
814 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
815 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
816 tcg_ctx.tb_ctx.nb_tbs : 0);
818 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
819 > tcg_ctx.code_gen_buffer_size) {
820 cpu_abort(cpu, "Internal error: code buffer overflow\n");
822 tcg_ctx.tb_ctx.nb_tbs = 0;
825 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
828 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
831 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
832 /* XXX: flush processor icache at this point if cache flush is
834 tcg_ctx.tb_ctx.tb_flush_count++;
837 #ifdef DEBUG_TB_CHECK
839 static void tb_invalidate_check(target_ulong address)
841 TranslationBlock *tb;
844 address &= TARGET_PAGE_MASK;
845 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
846 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
847 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
848 address >= tb->pc + tb->size)) {
849 printf("ERROR invalidate: address=" TARGET_FMT_lx
850 " PC=%08lx size=%04x\n",
851 address, (long)tb->pc, tb->size);
857 /* verify that all the pages have correct rights for code */
858 static void tb_page_check(void)
860 TranslationBlock *tb;
861 int i, flags1, flags2;
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
865 tb = tb->phys_hash_next) {
866 flags1 = page_get_flags(tb->pc);
867 flags2 = page_get_flags(tb->pc + tb->size - 1);
868 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
869 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
870 (long)tb->pc, tb->size, flags1, flags2);
878 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
880 TranslationBlock *tb1;
885 *ptb = tb1->phys_hash_next;
888 ptb = &tb1->phys_hash_next;
892 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
894 TranslationBlock *tb1;
899 n1 = (uintptr_t)tb1 & 3;
900 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
902 *ptb = tb1->page_next[n1];
905 ptb = &tb1->page_next[n1];
909 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
911 TranslationBlock *tb1, **ptb;
914 ptb = &tb->jmp_next[n];
917 /* find tb(n) in circular list */
920 n1 = (uintptr_t)tb1 & 3;
921 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
922 if (n1 == n && tb1 == tb) {
926 ptb = &tb1->jmp_first;
928 ptb = &tb1->jmp_next[n1];
931 /* now we can suppress tb(n) from the list */
932 *ptb = tb->jmp_next[n];
934 tb->jmp_next[n] = NULL;
938 /* reset the jump entry 'n' of a TB so that it is not chained to
940 static inline void tb_reset_jump(TranslationBlock *tb, int n)
942 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
945 /* invalidate one TB */
946 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
951 tb_page_addr_t phys_pc;
952 TranslationBlock *tb1, *tb2;
954 /* remove the TB from the hash list */
955 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
956 h = tb_phys_hash_func(phys_pc);
957 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
959 /* remove the TB from the page list */
960 if (tb->page_addr[0] != page_addr) {
961 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
962 tb_page_remove(&p->first_tb, tb);
963 invalidate_page_bitmap(p);
965 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
966 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
967 tb_page_remove(&p->first_tb, tb);
968 invalidate_page_bitmap(p);
971 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
973 /* remove the TB from the hash list */
974 h = tb_jmp_cache_hash_func(tb->pc);
976 if (cpu->tb_jmp_cache[h] == tb) {
977 cpu->tb_jmp_cache[h] = NULL;
981 /* suppress this TB from the two jump lists */
982 tb_jmp_remove(tb, 0);
983 tb_jmp_remove(tb, 1);
985 /* suppress any remaining jumps to this TB */
988 n1 = (uintptr_t)tb1 & 3;
992 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
993 tb2 = tb1->jmp_next[n1];
994 tb_reset_jump(tb1, n1);
995 tb1->jmp_next[n1] = NULL;
998 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1000 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1003 static void build_page_bitmap(PageDesc *p)
1005 int n, tb_start, tb_end;
1006 TranslationBlock *tb;
1008 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1011 while (tb != NULL) {
1012 n = (uintptr_t)tb & 3;
1013 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1014 /* NOTE: this is subtle as a TB may span two physical pages */
1016 /* NOTE: tb_end may be after the end of the page, but
1017 it is not a problem */
1018 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1019 tb_end = tb_start + tb->size;
1020 if (tb_end > TARGET_PAGE_SIZE) {
1021 tb_end = TARGET_PAGE_SIZE;
1025 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1027 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1028 tb = tb->page_next[n];
1032 /* Called with mmap_lock held for user mode emulation. */
1033 TranslationBlock *tb_gen_code(CPUState *cpu,
1034 target_ulong pc, target_ulong cs_base,
1035 int flags, int cflags)
1037 CPUArchState *env = cpu->env_ptr;
1038 TranslationBlock *tb;
1039 tb_page_addr_t phys_pc, phys_page2;
1040 target_ulong virt_page2;
1043 phys_pc = get_page_addr_code(env, pc);
1045 cflags |= CF_USE_ICOUNT;
1049 /* flush must be done */
1051 /* cannot fail at this point */
1053 /* Don't forget to invalidate previous TB info. */
1054 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1056 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1057 tb->cs_base = cs_base;
1059 tb->cflags = cflags;
1060 cpu_gen_code(env, tb, &code_gen_size);
1061 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1062 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1064 /* check next page if needed */
1065 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1067 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1068 phys_page2 = get_page_addr_code(env, virt_page2);
1070 tb_link_page(tb, phys_pc, phys_page2);
1075 * Invalidate all TBs which intersect with the target physical address range
1076 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1077 * 'is_cpu_write_access' should be true if called from a real cpu write
1078 * access: the virtual CPU will exit the current TB if code is modified inside
1081 * Called with mmap_lock held for user-mode emulation
1083 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1085 while (start < end) {
1086 tb_invalidate_phys_page_range(start, end, 0);
1087 start &= TARGET_PAGE_MASK;
1088 start += TARGET_PAGE_SIZE;
1093 * Invalidate all TBs which intersect with the target physical address range
1094 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1095 * 'is_cpu_write_access' should be true if called from a real cpu write
1096 * access: the virtual CPU will exit the current TB if code is modified inside
1099 * Called with mmap_lock held for user-mode emulation
1101 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1102 int is_cpu_write_access)
1104 TranslationBlock *tb, *tb_next, *saved_tb;
1105 CPUState *cpu = current_cpu;
1106 #if defined(TARGET_HAS_PRECISE_SMC)
1107 CPUArchState *env = NULL;
1109 tb_page_addr_t tb_start, tb_end;
1112 #ifdef TARGET_HAS_PRECISE_SMC
1113 int current_tb_not_found = is_cpu_write_access;
1114 TranslationBlock *current_tb = NULL;
1115 int current_tb_modified = 0;
1116 target_ulong current_pc = 0;
1117 target_ulong current_cs_base = 0;
1118 int current_flags = 0;
1119 #endif /* TARGET_HAS_PRECISE_SMC */
1121 p = page_find(start >> TARGET_PAGE_BITS);
1125 #if defined(TARGET_HAS_PRECISE_SMC)
1131 /* we remove all the TBs in the range [start, end[ */
1132 /* XXX: see if in some cases it could be faster to invalidate all
1135 while (tb != NULL) {
1136 n = (uintptr_t)tb & 3;
1137 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1138 tb_next = tb->page_next[n];
1139 /* NOTE: this is subtle as a TB may span two physical pages */
1141 /* NOTE: tb_end may be after the end of the page, but
1142 it is not a problem */
1143 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1144 tb_end = tb_start + tb->size;
1146 tb_start = tb->page_addr[1];
1147 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1149 if (!(tb_end <= start || tb_start >= end)) {
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 if (current_tb_not_found) {
1152 current_tb_not_found = 0;
1154 if (cpu->mem_io_pc) {
1155 /* now we have a real cpu fault */
1156 current_tb = tb_find_pc(cpu->mem_io_pc);
1159 if (current_tb == tb &&
1160 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1161 /* If we are modifying the current TB, we must stop
1162 its execution. We could be more precise by checking
1163 that the modification is after the current PC, but it
1164 would require a specialized function to partially
1165 restore the CPU state */
1167 current_tb_modified = 1;
1168 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1169 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1172 #endif /* TARGET_HAS_PRECISE_SMC */
1173 /* we need to do that to handle the case where a signal
1174 occurs while doing tb_phys_invalidate() */
1177 saved_tb = cpu->current_tb;
1178 cpu->current_tb = NULL;
1180 tb_phys_invalidate(tb, -1);
1182 cpu->current_tb = saved_tb;
1183 if (cpu->interrupt_request && cpu->current_tb) {
1184 cpu_interrupt(cpu, cpu->interrupt_request);
1190 #if !defined(CONFIG_USER_ONLY)
1191 /* if no code remaining, no need to continue to use slow writes */
1193 invalidate_page_bitmap(p);
1194 tlb_unprotect_code(start);
1197 #ifdef TARGET_HAS_PRECISE_SMC
1198 if (current_tb_modified) {
1199 /* we generate a block containing just the instruction
1200 modifying the memory. It will ensure that it cannot modify
1202 cpu->current_tb = NULL;
1203 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1204 cpu_resume_from_signal(cpu, NULL);
1209 /* len must be <= 8 and start must be a multiple of len */
1210 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1216 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1217 cpu_single_env->mem_io_vaddr, len,
1218 cpu_single_env->eip,
1219 cpu_single_env->eip +
1220 (intptr_t)cpu_single_env->segs[R_CS].base);
1223 p = page_find(start >> TARGET_PAGE_BITS);
1227 if (!p->code_bitmap &&
1228 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1229 /* build code bitmap */
1230 build_page_bitmap(p);
1232 if (p->code_bitmap) {
1236 nr = start & ~TARGET_PAGE_MASK;
1237 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1238 if (b & ((1 << len) - 1)) {
1243 tb_invalidate_phys_page_range(start, start + len, 1);
1247 #if !defined(CONFIG_SOFTMMU)
1248 /* Called with mmap_lock held. */
1249 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1250 uintptr_t pc, void *puc,
1253 TranslationBlock *tb;
1256 #ifdef TARGET_HAS_PRECISE_SMC
1257 TranslationBlock *current_tb = NULL;
1258 CPUState *cpu = current_cpu;
1259 CPUArchState *env = NULL;
1260 int current_tb_modified = 0;
1261 target_ulong current_pc = 0;
1262 target_ulong current_cs_base = 0;
1263 int current_flags = 0;
1266 addr &= TARGET_PAGE_MASK;
1267 p = page_find(addr >> TARGET_PAGE_BITS);
1272 #ifdef TARGET_HAS_PRECISE_SMC
1273 if (tb && pc != 0) {
1274 current_tb = tb_find_pc(pc);
1280 while (tb != NULL) {
1281 n = (uintptr_t)tb & 3;
1282 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1283 #ifdef TARGET_HAS_PRECISE_SMC
1284 if (current_tb == tb &&
1285 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1286 /* If we are modifying the current TB, we must stop
1287 its execution. We could be more precise by checking
1288 that the modification is after the current PC, but it
1289 would require a specialized function to partially
1290 restore the CPU state */
1292 current_tb_modified = 1;
1293 cpu_restore_state_from_tb(cpu, current_tb, pc);
1294 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1297 #endif /* TARGET_HAS_PRECISE_SMC */
1298 tb_phys_invalidate(tb, addr);
1299 tb = tb->page_next[n];
1302 #ifdef TARGET_HAS_PRECISE_SMC
1303 if (current_tb_modified) {
1304 /* we generate a block containing just the instruction
1305 modifying the memory. It will ensure that it cannot modify
1307 cpu->current_tb = NULL;
1308 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1312 cpu_resume_from_signal(cpu, puc);
1318 /* add the tb in the target page and protect it if necessary
1320 * Called with mmap_lock held for user-mode emulation.
1322 static inline void tb_alloc_page(TranslationBlock *tb,
1323 unsigned int n, tb_page_addr_t page_addr)
1326 #ifndef CONFIG_USER_ONLY
1327 bool page_already_protected;
1330 tb->page_addr[n] = page_addr;
1331 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1332 tb->page_next[n] = p->first_tb;
1333 #ifndef CONFIG_USER_ONLY
1334 page_already_protected = p->first_tb != NULL;
1336 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1337 invalidate_page_bitmap(p);
1339 #if defined(CONFIG_USER_ONLY)
1340 if (p->flags & PAGE_WRITE) {
1345 /* force the host page as non writable (writes will have a
1346 page fault + mprotect overhead) */
1347 page_addr &= qemu_host_page_mask;
1349 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1350 addr += TARGET_PAGE_SIZE) {
1352 p2 = page_find(addr >> TARGET_PAGE_BITS);
1357 p2->flags &= ~PAGE_WRITE;
1359 mprotect(g2h(page_addr), qemu_host_page_size,
1360 (prot & PAGE_BITS) & ~PAGE_WRITE);
1361 #ifdef DEBUG_TB_INVALIDATE
1362 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1367 /* if some code is already present, then the pages are already
1368 protected. So we handle the case where only the first TB is
1369 allocated in a physical page */
1370 if (!page_already_protected) {
1371 tlb_protect_code(page_addr);
1376 /* add a new TB and link it to the physical page tables. phys_page2 is
1377 * (-1) to indicate that only one page contains the TB.
1379 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1380 tb_page_addr_t phys_page2)
1383 TranslationBlock **ptb;
1385 /* Grab the mmap lock to stop another thread invalidating this TB
1386 before we are done. */
1388 /* add in the physical hash table */
1389 h = tb_phys_hash_func(phys_pc);
1390 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1391 tb->phys_hash_next = *ptb;
1394 /* add in the page list */
1395 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1396 if (phys_page2 != -1) {
1397 tb_alloc_page(tb, 1, phys_page2);
1399 tb->page_addr[1] = -1;
1402 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1403 tb->jmp_next[0] = NULL;
1404 tb->jmp_next[1] = NULL;
1406 /* init original jump addresses */
1407 if (tb->tb_next_offset[0] != 0xffff) {
1408 tb_reset_jump(tb, 0);
1410 if (tb->tb_next_offset[1] != 0xffff) {
1411 tb_reset_jump(tb, 1);
1414 #ifdef DEBUG_TB_CHECK
1420 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1421 tb[1].tc_ptr. Return NULL if not found */
1422 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1424 int m_min, m_max, m;
1426 TranslationBlock *tb;
1428 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1431 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1432 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1435 /* binary search (cf Knuth) */
1437 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1438 while (m_min <= m_max) {
1439 m = (m_min + m_max) >> 1;
1440 tb = &tcg_ctx.tb_ctx.tbs[m];
1441 v = (uintptr_t)tb->tc_ptr;
1444 } else if (tc_ptr < v) {
1450 return &tcg_ctx.tb_ctx.tbs[m_max];
1453 #if !defined(CONFIG_USER_ONLY)
1454 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1456 ram_addr_t ram_addr;
1461 mr = address_space_translate(as, addr, &addr, &l, false);
1462 if (!(memory_region_is_ram(mr)
1463 || memory_region_is_romd(mr))) {
1467 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1469 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1472 #endif /* !defined(CONFIG_USER_ONLY) */
1474 void tb_check_watchpoint(CPUState *cpu)
1476 TranslationBlock *tb;
1478 tb = tb_find_pc(cpu->mem_io_pc);
1480 /* We can use retranslation to find the PC. */
1481 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1482 tb_phys_invalidate(tb, -1);
1484 /* The exception probably happened in a helper. The CPU state should
1485 have been saved before calling it. Fetch the PC from there. */
1486 CPUArchState *env = cpu->env_ptr;
1487 target_ulong pc, cs_base;
1488 tb_page_addr_t addr;
1491 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1492 addr = get_page_addr_code(env, pc);
1493 tb_invalidate_phys_range(addr, addr + 1);
1497 #ifndef CONFIG_USER_ONLY
1498 /* mask must never be zero, except for A20 change call */
1499 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1503 old_mask = cpu->interrupt_request;
1504 cpu->interrupt_request |= mask;
1507 * If called from iothread context, wake the target cpu in
1510 if (!qemu_cpu_is_self(cpu)) {
1516 cpu->icount_decr.u16.high = 0xffff;
1518 && (mask & ~old_mask) != 0) {
1519 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1522 cpu->tcg_exit_req = 1;
1526 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1528 /* in deterministic execution mode, instructions doing device I/Os
1529 must be at the end of the TB */
1530 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1532 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1533 CPUArchState *env = cpu->env_ptr;
1535 TranslationBlock *tb;
1537 target_ulong pc, cs_base;
1540 tb = tb_find_pc(retaddr);
1542 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1545 n = cpu->icount_decr.u16.low + tb->icount;
1546 cpu_restore_state_from_tb(cpu, tb, retaddr);
1547 /* Calculate how many instructions had been executed before the fault
1549 n = n - cpu->icount_decr.u16.low;
1550 /* Generate a new TB ending on the I/O insn. */
1552 /* On MIPS and SH, delay slot instructions can only be restarted if
1553 they were already the first instruction in the TB. If this is not
1554 the first instruction in a TB then re-execute the preceding
1556 #if defined(TARGET_MIPS)
1557 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1558 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1559 cpu->icount_decr.u16.low++;
1560 env->hflags &= ~MIPS_HFLAG_BMASK;
1562 #elif defined(TARGET_SH4)
1563 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1566 cpu->icount_decr.u16.low++;
1567 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1570 /* This should never happen. */
1571 if (n > CF_COUNT_MASK) {
1572 cpu_abort(cpu, "TB too big during recompile");
1575 cflags = n | CF_LAST_IO;
1577 cs_base = tb->cs_base;
1579 tb_phys_invalidate(tb, -1);
1580 if (tb->cflags & CF_NOCACHE) {
1582 /* Invalidate original TB if this TB was generated in
1583 * cpu_exec_nocache() */
1584 tb_phys_invalidate(tb->orig_tb, -1);
1588 /* FIXME: In theory this could raise an exception. In practice
1589 we have already translated the block once so it's probably ok. */
1590 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1591 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1592 the first in the TB) then we end up generating a whole new TB and
1593 repeating the fault, which is horribly inefficient.
1594 Better would be to execute just this insn uncached, or generate a
1596 cpu_resume_from_signal(cpu, NULL);
1599 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1603 /* Discard jump cache entries for any tb which might potentially
1604 overlap the flushed page. */
1605 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1606 memset(&cpu->tb_jmp_cache[i], 0,
1607 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1609 i = tb_jmp_cache_hash_page(addr);
1610 memset(&cpu->tb_jmp_cache[i], 0,
1611 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1614 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1616 int i, target_code_size, max_target_code_size;
1617 int direct_jmp_count, direct_jmp2_count, cross_page;
1618 TranslationBlock *tb;
1620 target_code_size = 0;
1621 max_target_code_size = 0;
1623 direct_jmp_count = 0;
1624 direct_jmp2_count = 0;
1625 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1626 tb = &tcg_ctx.tb_ctx.tbs[i];
1627 target_code_size += tb->size;
1628 if (tb->size > max_target_code_size) {
1629 max_target_code_size = tb->size;
1631 if (tb->page_addr[1] != -1) {
1634 if (tb->tb_next_offset[0] != 0xffff) {
1636 if (tb->tb_next_offset[1] != 0xffff) {
1637 direct_jmp2_count++;
1641 /* XXX: avoid using doubles ? */
1642 cpu_fprintf(f, "Translation buffer state:\n");
1643 cpu_fprintf(f, "gen code size %td/%zd\n",
1644 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1645 tcg_ctx.code_gen_buffer_max_size);
1646 cpu_fprintf(f, "TB count %d/%d\n",
1647 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1648 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1649 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1650 tcg_ctx.tb_ctx.nb_tbs : 0,
1651 max_target_code_size);
1652 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1653 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1654 tcg_ctx.code_gen_buffer) /
1655 tcg_ctx.tb_ctx.nb_tbs : 0,
1656 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1657 tcg_ctx.code_gen_buffer) /
1658 target_code_size : 0);
1659 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1660 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1661 tcg_ctx.tb_ctx.nb_tbs : 0);
1662 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1664 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1665 tcg_ctx.tb_ctx.nb_tbs : 0,
1667 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1668 tcg_ctx.tb_ctx.nb_tbs : 0);
1669 cpu_fprintf(f, "\nStatistics:\n");
1670 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1671 cpu_fprintf(f, "TB invalidate count %d\n",
1672 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1673 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1674 tcg_dump_info(f, cpu_fprintf);
1677 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1679 tcg_dump_op_count(f, cpu_fprintf);
1682 #else /* CONFIG_USER_ONLY */
1684 void cpu_interrupt(CPUState *cpu, int mask)
1686 cpu->interrupt_request |= mask;
1687 cpu->tcg_exit_req = 1;
1691 * Walks guest process memory "regions" one by one
1692 * and calls callback function 'fn' for each region.
1694 struct walk_memory_regions_data {
1695 walk_memory_regions_fn fn;
1701 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1702 target_ulong end, int new_prot)
1704 if (data->start != -1u) {
1705 int rc = data->fn(data->priv, data->start, end, data->prot);
1711 data->start = (new_prot ? end : -1u);
1712 data->prot = new_prot;
1717 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1718 target_ulong base, int level, void **lp)
1724 return walk_memory_regions_end(data, base, 0);
1730 for (i = 0; i < V_L2_SIZE; ++i) {
1731 int prot = pd[i].flags;
1733 pa = base | (i << TARGET_PAGE_BITS);
1734 if (prot != data->prot) {
1735 rc = walk_memory_regions_end(data, pa, prot);
1744 for (i = 0; i < V_L2_SIZE; ++i) {
1745 pa = base | ((target_ulong)i <<
1746 (TARGET_PAGE_BITS + V_L2_BITS * level));
1747 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1757 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1759 struct walk_memory_regions_data data;
1767 for (i = 0; i < V_L1_SIZE; i++) {
1768 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1769 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1775 return walk_memory_regions_end(&data, 0, 0);
1778 static int dump_region(void *priv, target_ulong start,
1779 target_ulong end, unsigned long prot)
1781 FILE *f = (FILE *)priv;
1783 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1784 " "TARGET_FMT_lx" %c%c%c\n",
1785 start, end, end - start,
1786 ((prot & PAGE_READ) ? 'r' : '-'),
1787 ((prot & PAGE_WRITE) ? 'w' : '-'),
1788 ((prot & PAGE_EXEC) ? 'x' : '-'));
1793 /* dump memory mappings */
1794 void page_dump(FILE *f)
1796 const int length = sizeof(target_ulong) * 2;
1797 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1798 length, "start", length, "end", length, "size", "prot");
1799 walk_memory_regions(f, dump_region);
1802 int page_get_flags(target_ulong address)
1806 p = page_find(address >> TARGET_PAGE_BITS);
1813 /* Modify the flags of a page and invalidate the code if necessary.
1814 The flag PAGE_WRITE_ORG is positioned automatically depending
1815 on PAGE_WRITE. The mmap_lock should already be held. */
1816 void page_set_flags(target_ulong start, target_ulong end, int flags)
1818 target_ulong addr, len;
1820 /* This function should never be called with addresses outside the
1821 guest address space. If this assert fires, it probably indicates
1822 a missing call to h2g_valid. */
1823 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1824 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1826 assert(start < end);
1828 start = start & TARGET_PAGE_MASK;
1829 end = TARGET_PAGE_ALIGN(end);
1831 if (flags & PAGE_WRITE) {
1832 flags |= PAGE_WRITE_ORG;
1835 for (addr = start, len = end - start;
1837 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1838 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1840 /* If the write protection bit is set, then we invalidate
1842 if (!(p->flags & PAGE_WRITE) &&
1843 (flags & PAGE_WRITE) &&
1845 tb_invalidate_phys_page(addr, 0, NULL, false);
1851 int page_check_range(target_ulong start, target_ulong len, int flags)
1857 /* This function should never be called with addresses outside the
1858 guest address space. If this assert fires, it probably indicates
1859 a missing call to h2g_valid. */
1860 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1861 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1867 if (start + len - 1 < start) {
1868 /* We've wrapped around. */
1872 /* must do before we loose bits in the next step */
1873 end = TARGET_PAGE_ALIGN(start + len);
1874 start = start & TARGET_PAGE_MASK;
1876 for (addr = start, len = end - start;
1878 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1879 p = page_find(addr >> TARGET_PAGE_BITS);
1883 if (!(p->flags & PAGE_VALID)) {
1887 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1890 if (flags & PAGE_WRITE) {
1891 if (!(p->flags & PAGE_WRITE_ORG)) {
1894 /* unprotect the page if it was put read-only because it
1895 contains translated code */
1896 if (!(p->flags & PAGE_WRITE)) {
1897 if (!page_unprotect(addr, 0, NULL)) {
1906 /* called from signal handler: invalidate the code and unprotect the
1907 page. Return TRUE if the fault was successfully handled. */
1908 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1912 target_ulong host_start, host_end, addr;
1914 /* Technically this isn't safe inside a signal handler. However we
1915 know this only ever happens in a synchronous SEGV handler, so in
1916 practice it seems to be ok. */
1919 p = page_find(address >> TARGET_PAGE_BITS);
1925 /* if the page was really writable, then we change its
1926 protection back to writable */
1927 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1928 host_start = address & qemu_host_page_mask;
1929 host_end = host_start + qemu_host_page_size;
1932 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1933 p = page_find(addr >> TARGET_PAGE_BITS);
1934 p->flags |= PAGE_WRITE;
1937 /* and since the content will be modified, we must invalidate
1938 the corresponding translated code. */
1939 tb_invalidate_phys_page(addr, pc, puc, true);
1940 #ifdef DEBUG_TB_CHECK
1941 tb_invalidate_check(addr);
1944 mprotect((void *)g2h(host_start), qemu_host_page_size,
1953 #endif /* CONFIG_USER_ONLY */