2 * RISC-V CPU helpers for qemu.
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30 #ifdef CONFIG_USER_ONLY
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
72 return ctz64(irqs); /* since non-zero */
74 return EXCP_NONE; /* indicates no pending interrupt */
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
96 #if !defined(CONFIG_USER_ONLY)
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
101 if (env->mstatus & MSTATUS_FS) {
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
115 bool current_virt = riscv_cpu_virt_enabled(env);
117 g_assert(riscv_has_ext(env, RVH));
119 #if defined(TARGET_RISCV64)
120 mstatus_mask |= MSTATUS64_UXL;
124 /* Current V=1 and we are about to change to V=0 */
125 env->vsstatus = env->mstatus & mstatus_mask;
126 env->mstatus &= ~mstatus_mask;
127 env->mstatus |= env->mstatus_hs;
129 #if defined(TARGET_RISCV32)
130 env->vsstatush = env->mstatush;
131 env->mstatush |= env->mstatush_hs;
134 env->vstvec = env->stvec;
135 env->stvec = env->stvec_hs;
137 env->vsscratch = env->sscratch;
138 env->sscratch = env->sscratch_hs;
140 env->vsepc = env->sepc;
141 env->sepc = env->sepc_hs;
143 env->vscause = env->scause;
144 env->scause = env->scause_hs;
146 env->vstval = env->sbadaddr;
147 env->sbadaddr = env->stval_hs;
149 env->vsatp = env->satp;
150 env->satp = env->satp_hs;
152 /* Current V=0 and we are about to change to V=1 */
153 env->mstatus_hs = env->mstatus & mstatus_mask;
154 env->mstatus &= ~mstatus_mask;
155 env->mstatus |= env->vsstatus;
157 #if defined(TARGET_RISCV32)
158 env->mstatush_hs = env->mstatush;
159 env->mstatush |= env->vsstatush;
162 env->stvec_hs = env->stvec;
163 env->stvec = env->vstvec;
165 env->sscratch_hs = env->sscratch;
166 env->sscratch = env->vsscratch;
168 env->sepc_hs = env->sepc;
169 env->sepc = env->vsepc;
171 env->scause_hs = env->scause;
172 env->scause = env->vscause;
174 env->stval_hs = env->sbadaddr;
175 env->sbadaddr = env->vstval;
177 env->satp_hs = env->satp;
178 env->satp = env->vsatp;
182 bool riscv_cpu_virt_enabled(CPURISCVState *env)
184 if (!riscv_has_ext(env, RVH)) {
188 return get_field(env->virt, VIRT_ONOFF);
191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
193 if (!riscv_has_ext(env, RVH)) {
197 /* Flush the TLB on all virt mode changes. */
198 if (get_field(env->virt, VIRT_ONOFF) != enable) {
199 tlb_flush(env_cpu(env));
202 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
207 if (!riscv_has_ext(env, RVH)) {
211 return get_field(env->virt, FORCE_HS_EXCEP);
214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
216 if (!riscv_has_ext(env, RVH)) {
220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
223 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
225 CPURISCVState *env = &cpu->env;
226 if (env->miclaim & interrupts) {
229 env->miclaim |= interrupts;
234 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
236 CPURISCVState *env = &cpu->env;
237 CPUState *cs = CPU(cpu);
238 uint32_t old = env->mip;
241 if (!qemu_mutex_iothread_locked()) {
243 qemu_mutex_lock_iothread();
246 env->mip = (env->mip & ~mask) | (value & mask);
249 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
251 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
255 qemu_mutex_unlock_iothread();
261 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void))
266 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
268 if (newpriv > PRV_M) {
269 g_assert_not_reached();
271 if (newpriv == PRV_H) {
274 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
278 * Clear the load reservation - otherwise a reservation placed in one
279 * context/process can be used by another, resulting in an SC succeeding
280 * incorrectly. Version 2.2 of the ISA specification explicitly requires
281 * this behaviour, while later revisions say that the kernel "should" use
282 * an SC instruction to force the yielding of a load reservation on a
283 * preemptive context switch. As a result, do both.
288 /* get_physical_address - get the physical address for this virtual address
290 * Do a page table walk to obtain the physical address corresponding to a
291 * virtual address. Returns 0 if the translation was successful
293 * Adapted from Spike's mmu_t::translate and mmu_t::walk
295 * @env: CPURISCVState
296 * @physical: This will be set to the calculated physical address
297 * @prot: The returned protection attributes
298 * @addr: The virtual address to be translated
299 * @access_type: The type of MMU access
300 * @mmu_idx: Indicates current privilege level
301 * @first_stage: Are we in first stage translation?
302 * Second stage is used for hypervisor guest translation
303 * @two_stage: Are we going to perform two stage translation
305 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
306 int *prot, target_ulong addr,
307 int access_type, int mmu_idx,
308 bool first_stage, bool two_stage)
310 /* NOTE: the env->pc value visible here will not be
311 * correct, but the value visible to the exception handler
312 * (riscv_cpu_do_interrupt) is correct */
314 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
316 bool use_background = false;
319 * Check if we should use the background registers for the two
320 * stage translation. We don't need to check if we actually need
321 * two stage translation as that happened before this function
322 * was called. Background registers will be used if the guest has
323 * forced a two stage translation to be on (in HS or M mode).
325 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
326 if (get_field(env->mstatus, MSTATUS_MPRV)) {
327 mode = get_field(env->mstatus, MSTATUS_MPP);
329 if (riscv_has_ext(env, RVH) &&
330 MSTATUS_MPV_ISSET(env)) {
331 use_background = true;
336 if (mode == PRV_S && access_type != MMU_INST_FETCH &&
337 riscv_has_ext(env, RVH) && !riscv_cpu_virt_enabled(env)) {
338 if (get_field(env->hstatus, HSTATUS_SPRV)) {
339 mode = get_field(env->mstatus, SSTATUS_SPP);
340 use_background = true;
344 if (first_stage == false) {
345 /* We are in stage 2 translation, this is similar to stage 1. */
346 /* Stage 2 is always taken as U-mode */
350 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
352 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
353 return TRANSLATE_SUCCESS;
359 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
361 if (first_stage == true) {
362 mxr = get_field(env->mstatus, MSTATUS_MXR);
364 mxr = get_field(env->vsstatus, MSTATUS_MXR);
367 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
368 if (first_stage == true) {
369 if (use_background) {
370 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
371 vm = get_field(env->vsatp, SATP_MODE);
373 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
374 vm = get_field(env->satp, SATP_MODE);
378 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
379 vm = get_field(env->hgatp, HGATP_MODE);
382 sum = get_field(env->mstatus, MSTATUS_SUM);
385 levels = 2; ptidxbits = 10; ptesize = 4; break;
387 levels = 3; ptidxbits = 9; ptesize = 8; break;
389 levels = 4; ptidxbits = 9; ptesize = 8; break;
391 levels = 5; ptidxbits = 9; ptesize = 8; break;
394 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
395 return TRANSLATE_SUCCESS;
397 g_assert_not_reached();
401 base = (hwaddr)(env->sptbr) << PGSHIFT;
402 sum = !get_field(env->mstatus, MSTATUS_PUM);
403 vm = get_field(env->mstatus, MSTATUS_VM);
406 levels = 2; ptidxbits = 10; ptesize = 4; break;
408 levels = 3; ptidxbits = 9; ptesize = 8; break;
410 levels = 4; ptidxbits = 9; ptesize = 8; break;
413 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
414 return TRANSLATE_SUCCESS;
416 g_assert_not_reached();
420 CPUState *cs = env_cpu(env);
421 int va_bits = PGSHIFT + levels * ptidxbits + widened;
422 target_ulong mask, masked_msbs;
424 if (TARGET_LONG_BITS > (va_bits - 1)) {
425 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
429 masked_msbs = (addr >> (va_bits - 1)) & mask;
431 if (masked_msbs != 0 && masked_msbs != mask) {
432 return TRANSLATE_FAIL;
435 int ptshift = (levels - 1) * ptidxbits;
438 #if !TCG_OVERSIZED_GUEST
441 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
444 idx = (addr >> (PGSHIFT + ptshift)) &
445 ((1 << (ptidxbits + widened)) - 1);
447 idx = (addr >> (PGSHIFT + ptshift)) &
448 ((1 << ptidxbits) - 1);
451 /* check that physical address of PTE is legal */
454 if (two_stage && first_stage) {
458 /* Do the second stage translation on the base PTE address. */
459 get_physical_address(env, &vbase, &vbase_prot, base, access_type,
460 mmu_idx, false, true);
462 pte_addr = vbase + idx * ptesize;
464 pte_addr = base + idx * ptesize;
467 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
468 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
469 1 << MMU_DATA_LOAD, PRV_S)) {
470 return TRANSLATE_PMP_FAIL;
473 #if defined(TARGET_RISCV32)
474 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
475 #elif defined(TARGET_RISCV64)
476 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
478 if (res != MEMTX_OK) {
479 return TRANSLATE_FAIL;
482 hwaddr ppn = pte >> PTE_PPN_SHIFT;
484 if (!(pte & PTE_V)) {
486 return TRANSLATE_FAIL;
487 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
488 /* Inner PTE, continue walking */
489 base = ppn << PGSHIFT;
490 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
491 /* Reserved leaf PTE flags: PTE_W */
492 return TRANSLATE_FAIL;
493 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
494 /* Reserved leaf PTE flags: PTE_W + PTE_X */
495 return TRANSLATE_FAIL;
496 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
497 (!sum || access_type == MMU_INST_FETCH))) {
498 /* User PTE flags when not U mode and mstatus.SUM is not set,
499 or the access type is an instruction fetch */
500 return TRANSLATE_FAIL;
501 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
502 /* Supervisor PTE flags when not S mode */
503 return TRANSLATE_FAIL;
504 } else if (ppn & ((1ULL << ptshift) - 1)) {
506 return TRANSLATE_FAIL;
507 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
508 ((pte & PTE_X) && mxr))) {
509 /* Read access check failed */
510 return TRANSLATE_FAIL;
511 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
512 /* Write access check failed */
513 return TRANSLATE_FAIL;
514 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
515 /* Fetch access check failed */
516 return TRANSLATE_FAIL;
518 /* if necessary, set accessed and dirty bits. */
519 target_ulong updated_pte = pte | PTE_A |
520 (access_type == MMU_DATA_STORE ? PTE_D : 0);
522 /* Page table updates need to be atomic with MTTCG enabled */
523 if (updated_pte != pte) {
525 * - if accessed or dirty bits need updating, and the PTE is
526 * in RAM, then we do so atomically with a compare and swap.
527 * - if the PTE is in IO space or ROM, then it can't be updated
528 * and we return TRANSLATE_FAIL.
529 * - if the PTE changed by the time we went to update it, then
530 * it is no longer valid and we must re-walk the page table.
533 hwaddr l = sizeof(target_ulong), addr1;
534 mr = address_space_translate(cs->as, pte_addr,
535 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
536 if (memory_region_is_ram(mr)) {
537 target_ulong *pte_pa =
538 qemu_map_ram_ptr(mr->ram_block, addr1);
539 #if TCG_OVERSIZED_GUEST
540 /* MTTCG is not enabled on oversized TCG guests so
541 * page table updates do not need to be atomic */
542 *pte_pa = pte = updated_pte;
544 target_ulong old_pte =
545 atomic_cmpxchg(pte_pa, pte, updated_pte);
546 if (old_pte != pte) {
553 /* misconfigured PTE in ROM (AD bits are not preset) or
554 * PTE is in IO space and can't be updated atomically */
555 return TRANSLATE_FAIL;
559 /* for superpage mappings, make a fake leaf PTE for the TLB's
561 target_ulong vpn = addr >> PGSHIFT;
563 *physical = (ppn | (vpn & ((1L << (ptshift + widened)) - 1))) <<
566 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
569 /* set permissions on the TLB entry */
570 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
576 /* add write permission on stores or if the page is already dirty,
577 so that we TLB miss on later writes to update the dirty bit */
579 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
582 return TRANSLATE_SUCCESS;
585 return TRANSLATE_FAIL;
588 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
589 MMUAccessType access_type, bool pmp_violation,
592 CPUState *cs = env_cpu(env);
593 int page_fault_exceptions;
595 page_fault_exceptions =
596 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
597 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
600 page_fault_exceptions =
601 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
604 switch (access_type) {
606 if (riscv_cpu_virt_enabled(env) && !first_stage) {
607 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
609 cs->exception_index = page_fault_exceptions ?
610 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
614 if (riscv_cpu_virt_enabled(env) && !first_stage) {
615 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
617 cs->exception_index = page_fault_exceptions ?
618 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
622 if (riscv_cpu_virt_enabled(env) && !first_stage) {
623 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
625 cs->exception_index = page_fault_exceptions ?
626 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
630 g_assert_not_reached();
632 env->badaddr = address;
635 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
637 RISCVCPU *cpu = RISCV_CPU(cs);
638 CPURISCVState *env = &cpu->env;
641 int mmu_idx = cpu_mmu_index(&cpu->env, false);
643 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx,
644 true, riscv_cpu_virt_enabled(env))) {
648 if (riscv_cpu_virt_enabled(env)) {
649 if (get_physical_address(env, &phys_addr, &prot, phys_addr,
650 0, mmu_idx, false, true)) {
658 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
659 vaddr addr, unsigned size,
660 MMUAccessType access_type,
661 int mmu_idx, MemTxAttrs attrs,
662 MemTxResult response, uintptr_t retaddr)
664 RISCVCPU *cpu = RISCV_CPU(cs);
665 CPURISCVState *env = &cpu->env;
667 if (access_type == MMU_DATA_STORE) {
668 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
670 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
674 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
677 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
678 MMUAccessType access_type, int mmu_idx,
681 RISCVCPU *cpu = RISCV_CPU(cs);
682 CPURISCVState *env = &cpu->env;
683 switch (access_type) {
685 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
688 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
691 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
694 g_assert_not_reached();
697 riscv_raise_exception(env, cs->exception_index, retaddr);
701 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
702 MMUAccessType access_type, int mmu_idx,
703 bool probe, uintptr_t retaddr)
705 RISCVCPU *cpu = RISCV_CPU(cs);
706 CPURISCVState *env = &cpu->env;
707 #ifndef CONFIG_USER_ONLY
711 bool pmp_violation = false;
712 bool m_mode_two_stage = false;
713 bool hs_mode_two_stage = false;
714 bool first_stage_error = true;
715 int ret = TRANSLATE_FAIL;
718 env->guest_phys_fault_addr = 0;
720 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
721 __func__, address, access_type, mmu_idx);
724 * Determine if we are in M mode and MPRV is set or in HS mode and SPRV is
725 * set and we want to access a virtulisation address.
727 if (riscv_has_ext(env, RVH)) {
728 m_mode_two_stage = env->priv == PRV_M &&
729 access_type != MMU_INST_FETCH &&
730 get_field(env->mstatus, MSTATUS_MPRV) &&
731 MSTATUS_MPV_ISSET(env);
733 hs_mode_two_stage = env->priv == PRV_S &&
734 !riscv_cpu_virt_enabled(env) &&
735 access_type != MMU_INST_FETCH &&
736 get_field(env->hstatus, HSTATUS_SPRV) &&
737 get_field(env->hstatus, HSTATUS_SPV);
740 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
741 if (get_field(env->mstatus, MSTATUS_MPRV)) {
742 mode = get_field(env->mstatus, MSTATUS_MPP);
746 if (riscv_cpu_virt_enabled(env) || m_mode_two_stage || hs_mode_two_stage) {
747 /* Two stage lookup */
748 ret = get_physical_address(env, &pa, &prot, address, access_type,
749 mmu_idx, true, true);
751 qemu_log_mask(CPU_LOG_MMU,
752 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
753 TARGET_FMT_plx " prot %d\n",
754 __func__, address, ret, pa, prot);
756 if (ret != TRANSLATE_FAIL) {
757 /* Second stage lookup */
760 ret = get_physical_address(env, &pa, &prot2, im_address,
761 access_type, mmu_idx, false, true);
763 qemu_log_mask(CPU_LOG_MMU,
764 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
765 TARGET_FMT_plx " prot %d\n",
766 __func__, im_address, ret, pa, prot2);
770 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
771 (ret == TRANSLATE_SUCCESS) &&
772 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
773 ret = TRANSLATE_PMP_FAIL;
776 if (ret != TRANSLATE_SUCCESS) {
778 * Guest physical address translation failed, this is a HS
781 first_stage_error = false;
782 env->guest_phys_fault_addr = (im_address |
784 (TARGET_PAGE_SIZE - 1))) >> 2;
788 /* Single stage lookup */
789 ret = get_physical_address(env, &pa, &prot, address, access_type,
790 mmu_idx, true, false);
792 qemu_log_mask(CPU_LOG_MMU,
793 "%s address=%" VADDR_PRIx " ret %d physical "
794 TARGET_FMT_plx " prot %d\n",
795 __func__, address, ret, pa, prot);
798 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
799 (ret == TRANSLATE_SUCCESS) &&
800 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
801 ret = TRANSLATE_PMP_FAIL;
803 if (ret == TRANSLATE_PMP_FAIL) {
804 pmp_violation = true;
807 if (ret == TRANSLATE_SUCCESS) {
808 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
809 prot, mmu_idx, TARGET_PAGE_SIZE);
814 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error);
815 riscv_raise_exception(env, cs->exception_index, retaddr);
821 switch (access_type) {
823 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
826 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
829 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
832 g_assert_not_reached();
834 env->badaddr = address;
835 cpu_loop_exit_restore(cs, retaddr);
842 * Adapted from Spike's processor_t::take_trap.
845 void riscv_cpu_do_interrupt(CPUState *cs)
847 #if !defined(CONFIG_USER_ONLY)
849 RISCVCPU *cpu = RISCV_CPU(cs);
850 CPURISCVState *env = &cpu->env;
851 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
854 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
855 * so we mask off the MSB and separate into trap type and cause.
857 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
858 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
859 target_ulong deleg = async ? env->mideleg : env->medeleg;
860 target_ulong tval = 0;
861 target_ulong htval = 0;
862 target_ulong mtval2 = 0;
865 /* set tval to badaddr for traps with address information */
867 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
868 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
869 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
870 force_hs_execp = true;
872 case RISCV_EXCP_INST_ADDR_MIS:
873 case RISCV_EXCP_INST_ACCESS_FAULT:
874 case RISCV_EXCP_LOAD_ADDR_MIS:
875 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
876 case RISCV_EXCP_LOAD_ACCESS_FAULT:
877 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
878 case RISCV_EXCP_INST_PAGE_FAULT:
879 case RISCV_EXCP_LOAD_PAGE_FAULT:
880 case RISCV_EXCP_STORE_PAGE_FAULT:
886 /* ecall is dispatched as one cause so translate based on mode */
887 if (cause == RISCV_EXCP_U_ECALL) {
888 assert(env->priv <= 3);
890 if (env->priv == PRV_M) {
891 cause = RISCV_EXCP_M_ECALL;
892 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
893 cause = RISCV_EXCP_VS_ECALL;
894 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
895 cause = RISCV_EXCP_S_ECALL;
896 } else if (env->priv == PRV_U) {
897 cause = RISCV_EXCP_U_ECALL;
902 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
903 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
905 if (env->priv <= PRV_S &&
906 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
907 /* handle the trap in S-mode */
908 if (riscv_has_ext(env, RVH)) {
909 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
911 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
914 * See if we need to adjust cause. Yes if its VS mode interrupt
915 * no if hypervisor has delegated one of hs mode's interrupt
917 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
920 /* Trap to VS mode */
921 } else if (riscv_cpu_virt_enabled(env)) {
922 /* Trap into HS mode, from virt */
923 riscv_cpu_swap_hypervisor_regs(env);
924 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
925 get_field(env->hstatus, HSTATUS_SPV));
926 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
927 get_field(env->mstatus, SSTATUS_SPP));
928 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
929 riscv_cpu_virt_enabled(env));
931 htval = env->guest_phys_fault_addr;
933 riscv_cpu_set_virt_enabled(env, 0);
934 riscv_cpu_set_force_hs_excep(env, 0);
936 /* Trap into HS mode */
937 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
938 get_field(env->hstatus, HSTATUS_SPV));
939 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
940 get_field(env->mstatus, SSTATUS_SPP));
941 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
942 riscv_cpu_virt_enabled(env));
944 htval = env->guest_phys_fault_addr;
949 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
950 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
951 s = set_field(s, MSTATUS_SPP, env->priv);
952 s = set_field(s, MSTATUS_SIE, 0);
954 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
956 env->sbadaddr = tval;
958 env->pc = (env->stvec >> 2 << 2) +
959 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
960 riscv_cpu_set_mode(env, PRV_S);
962 /* handle the trap in M-mode */
963 if (riscv_has_ext(env, RVH)) {
964 if (riscv_cpu_virt_enabled(env)) {
965 riscv_cpu_swap_hypervisor_regs(env);
967 #ifdef TARGET_RISCV32
968 env->mstatush = set_field(env->mstatush, MSTATUS_MPV,
969 riscv_cpu_virt_enabled(env));
970 env->mstatush = set_field(env->mstatush, MSTATUS_MTL,
971 riscv_cpu_force_hs_excep_enabled(env));
973 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
974 riscv_cpu_virt_enabled(env));
975 env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
976 riscv_cpu_force_hs_excep_enabled(env));
979 mtval2 = env->guest_phys_fault_addr;
981 /* Trapping to M mode, virt is disabled */
982 riscv_cpu_set_virt_enabled(env, 0);
983 riscv_cpu_set_force_hs_excep(env, 0);
987 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
988 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
989 s = set_field(s, MSTATUS_MPP, env->priv);
990 s = set_field(s, MSTATUS_MIE, 0);
992 env->mcause = cause | ~(((target_ulong)-1) >> async);
994 env->mbadaddr = tval;
995 env->mtval2 = mtval2;
996 env->pc = (env->mtvec >> 2 << 2) +
997 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
998 riscv_cpu_set_mode(env, PRV_M);
1001 /* NOTE: it is not necessary to yield load reservations here. It is only
1002 * necessary for an SC from "another hart" to cause a load reservation
1003 * to be yielded. Refer to the memory consistency model section of the
1004 * RISC-V ISA Specification.
1008 cs->exception_index = EXCP_NONE; /* mark handled to qemu */