4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
58 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
70 int robust_singlestep;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75 int irqchip_in_kernel;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
99 fprintf(stderr, "%s: no free slot available\n", __func__);
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
122 * Find overlapping slot with lowest start address
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
128 KVMSlot *found = NULL;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 DPRINTF("kvm_create_vcpu failed\n");
214 env->kvm_vcpu_dirty = 1;
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 if (env->kvm_run == MAP_FAILED) {
227 DPRINTF("mmap'ing vcpu state failed\n");
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
236 ret = kvm_arch_init_vcpu(env);
238 qemu_register_reset(kvm_reset_vcpu, env);
239 kvm_arch_reset_vcpu(env);
246 * dirty pages logging control
248 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
249 ram_addr_t size, int flags, int mask)
251 KVMState *s = kvm_state;
252 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
256 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
257 TARGET_FMT_plx "\n", __func__, phys_addr,
258 (target_phys_addr_t)(phys_addr + size - 1));
262 old_flags = mem->flags;
264 flags = (mem->flags & ~mask) | flags;
267 /* If nothing changed effectively, no need to issue ioctl */
268 if (s->migration_log) {
269 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 if (flags == old_flags) {
275 return kvm_set_user_memory_region(s, mem);
278 static int kvm_log_start(CPUPhysMemoryClient *client,
279 target_phys_addr_t phys_addr, ram_addr_t size)
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
285 static int kvm_log_stop(CPUPhysMemoryClient *client,
286 target_phys_addr_t phys_addr, ram_addr_t size)
288 return kvm_dirty_pages_log_change(phys_addr, size, 0,
289 KVM_MEM_LOG_DIRTY_PAGES);
292 static int kvm_set_migration_log(int enable)
294 KVMState *s = kvm_state;
298 s->migration_log = enable;
300 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
303 if (!mem->memory_size) {
306 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
309 err = kvm_set_user_memory_region(s, mem);
317 /* get kvm's dirty pages bitmap and update qemu's */
318 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
319 unsigned long *bitmap,
320 unsigned long offset,
321 unsigned long mem_size)
324 unsigned long page_number, addr, addr1, c;
326 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
330 * bitmap-traveling is faster than memory-traveling (for addr...)
331 * especially when most of the memory is not dirty.
333 for (i = 0; i < len; i++) {
334 if (bitmap[i] != 0) {
335 c = leul_to_cpu(bitmap[i]);
339 page_number = i * HOST_LONG_BITS + j;
340 addr1 = page_number * TARGET_PAGE_SIZE;
341 addr = offset + addr1;
342 ram_addr = cpu_get_physical_page_desc(addr);
343 cpu_physical_memory_set_dirty(ram_addr);
350 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
353 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
354 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
355 * This means all bits are set to dirty.
357 * @start_add: start of logged region.
358 * @end_addr: end of logged region.
360 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
361 target_phys_addr_t end_addr)
363 KVMState *s = kvm_state;
364 unsigned long size, allocated_size = 0;
369 d.dirty_bitmap = NULL;
370 while (start_addr < end_addr) {
371 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
376 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
377 if (!d.dirty_bitmap) {
378 d.dirty_bitmap = qemu_malloc(size);
379 } else if (size > allocated_size) {
380 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 allocated_size = size;
383 memset(d.dirty_bitmap, 0, allocated_size);
387 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
388 DPRINTF("ioctl failed %d\n", errno);
393 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
394 mem->start_addr, mem->memory_size);
395 start_addr = mem->start_addr + mem->memory_size;
397 qemu_free(d.dirty_bitmap);
402 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
405 KVMState *s = kvm_state;
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
419 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
422 KVMState *s = kvm_state;
424 if (s->coalesced_mmio) {
425 struct kvm_coalesced_mmio_zone zone;
430 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
436 int kvm_check_extension(KVMState *s, unsigned int extension)
440 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
448 static int kvm_check_many_ioeventfds(void)
450 /* Userspace can use ioeventfd for io notification. This requires a host
451 * that supports eventfd(2) and an I/O thread; since eventfd does not
452 * support SIGIO it cannot interrupt the vcpu.
454 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
455 * can avoid creating too many ioeventfds.
457 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
460 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
461 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
462 if (ioeventfds[i] < 0) {
465 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
467 close(ioeventfds[i]);
472 /* Decide whether many devices are supported or not */
473 ret = i == ARRAY_SIZE(ioeventfds);
476 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
477 close(ioeventfds[i]);
485 static const KVMCapabilityInfo *
486 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
489 if (!kvm_check_extension(s, list->value)) {
497 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
498 ram_addr_t phys_offset)
500 KVMState *s = kvm_state;
501 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
505 /* kvm works in page size chunks, but the function may be called
506 with sub-page size and unaligned start address. */
507 size = TARGET_PAGE_ALIGN(size);
508 start_addr = TARGET_PAGE_ALIGN(start_addr);
510 /* KVM does not support read-only slots */
511 phys_offset &= ~IO_MEM_ROM;
514 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
519 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
520 (start_addr + size <= mem->start_addr + mem->memory_size) &&
521 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
522 /* The new slot fits into the existing one and comes with
523 * identical parameters - nothing to be done. */
529 /* unregister the overlapping slot */
530 mem->memory_size = 0;
531 err = kvm_set_user_memory_region(s, mem);
533 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
534 __func__, strerror(-err));
538 /* Workaround for older KVM versions: we can't join slots, even not by
539 * unregistering the previous ones and then registering the larger
540 * slot. We have to maintain the existing fragmentation. Sigh.
542 * This workaround assumes that the new slot starts at the same
543 * address as the first existing one. If not or if some overlapping
544 * slot comes around later, we will fail (not seen in practice so far)
545 * - and actually require a recent KVM version. */
546 if (s->broken_set_mem_region &&
547 old.start_addr == start_addr && old.memory_size < size &&
548 flags < IO_MEM_UNASSIGNED) {
549 mem = kvm_alloc_slot(s);
550 mem->memory_size = old.memory_size;
551 mem->start_addr = old.start_addr;
552 mem->phys_offset = old.phys_offset;
555 err = kvm_set_user_memory_region(s, mem);
557 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
562 start_addr += old.memory_size;
563 phys_offset += old.memory_size;
564 size -= old.memory_size;
568 /* register prefix slot */
569 if (old.start_addr < start_addr) {
570 mem = kvm_alloc_slot(s);
571 mem->memory_size = start_addr - old.start_addr;
572 mem->start_addr = old.start_addr;
573 mem->phys_offset = old.phys_offset;
576 err = kvm_set_user_memory_region(s, mem);
578 fprintf(stderr, "%s: error registering prefix slot: %s\n",
579 __func__, strerror(-err));
584 /* register suffix slot */
585 if (old.start_addr + old.memory_size > start_addr + size) {
586 ram_addr_t size_delta;
588 mem = kvm_alloc_slot(s);
589 mem->start_addr = start_addr + size;
590 size_delta = mem->start_addr - old.start_addr;
591 mem->memory_size = old.memory_size - size_delta;
592 mem->phys_offset = old.phys_offset + size_delta;
595 err = kvm_set_user_memory_region(s, mem);
597 fprintf(stderr, "%s: error registering suffix slot: %s\n",
598 __func__, strerror(-err));
604 /* in case the KVM bug workaround already "consumed" the new slot */
608 /* KVM does not need to know about this memory */
609 if (flags >= IO_MEM_UNASSIGNED) {
612 mem = kvm_alloc_slot(s);
613 mem->memory_size = size;
614 mem->start_addr = start_addr;
615 mem->phys_offset = phys_offset;
618 err = kvm_set_user_memory_region(s, mem);
620 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
626 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
627 target_phys_addr_t start_addr,
628 ram_addr_t size, ram_addr_t phys_offset)
630 kvm_set_phys_mem(start_addr, size, phys_offset);
633 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
634 target_phys_addr_t start_addr,
635 target_phys_addr_t end_addr)
637 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
640 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
643 return kvm_set_migration_log(enable);
646 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
647 .set_memory = kvm_client_set_memory,
648 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
649 .migration_log = kvm_client_migration_log,
650 .log_start = kvm_log_start,
651 .log_stop = kvm_log_stop,
656 static const char upgrade_note[] =
657 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
658 "(see http://sourceforge.net/projects/kvm).\n";
660 const KVMCapabilityInfo *missing_cap;
664 s = qemu_mallocz(sizeof(KVMState));
666 #ifdef KVM_CAP_SET_GUEST_DEBUG
667 QTAILQ_INIT(&s->kvm_sw_breakpoints);
669 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
670 s->slots[i].slot = i;
673 s->fd = qemu_open("/dev/kvm", O_RDWR);
675 fprintf(stderr, "Could not access KVM kernel module: %m\n");
680 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
681 if (ret < KVM_API_VERSION) {
685 fprintf(stderr, "kvm version too old\n");
689 if (ret > KVM_API_VERSION) {
691 fprintf(stderr, "kvm version not supported\n");
695 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
698 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
699 "your host kernel command line\n");
704 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
707 kvm_check_extension_list(s, kvm_arch_required_capabilities);
711 fprintf(stderr, "kvm does not support %s\n%s",
712 missing_cap->name, upgrade_note);
716 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
718 s->broken_set_mem_region = 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
722 s->broken_set_mem_region = 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
731 s->robust_singlestep = 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
738 #ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
752 ret = kvm_arch_init(s);
758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
778 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
788 stb_p(ptr, cpu_inb(port));
791 stw_p(ptr, cpu_inw(port));
794 stl_p(ptr, cpu_inl(port));
800 cpu_outb(port, ldub_p(ptr));
803 cpu_outw(port, lduw_p(ptr));
806 cpu_outl(port, ldl_p(ptr));
815 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
816 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
818 fprintf(stderr, "KVM internal error.");
819 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
822 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
823 for (i = 0; i < run->internal.ndata; ++i) {
824 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
825 i, (uint64_t)run->internal.data[i]);
828 fprintf(stderr, "\n");
830 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
831 fprintf(stderr, "emulation failure\n");
832 if (!kvm_arch_stop_on_emulation_error(env)) {
833 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
834 return EXCP_INTERRUPT;
837 /* FIXME: Should trigger a qmp message to let management know
838 * something went wrong.
844 void kvm_flush_coalesced_mmio_buffer(void)
846 KVMState *s = kvm_state;
847 if (s->coalesced_mmio_ring) {
848 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
849 while (ring->first != ring->last) {
850 struct kvm_coalesced_mmio *ent;
852 ent = &ring->coalesced_mmio[ring->first];
854 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
856 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
861 static void do_kvm_cpu_synchronize_state(void *_env)
863 CPUState *env = _env;
865 if (!env->kvm_vcpu_dirty) {
866 kvm_arch_get_registers(env);
867 env->kvm_vcpu_dirty = 1;
871 void kvm_cpu_synchronize_state(CPUState *env)
873 if (!env->kvm_vcpu_dirty) {
874 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
878 void kvm_cpu_synchronize_post_reset(CPUState *env)
880 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
881 env->kvm_vcpu_dirty = 0;
884 void kvm_cpu_synchronize_post_init(CPUState *env)
886 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
887 env->kvm_vcpu_dirty = 0;
890 int kvm_cpu_exec(CPUState *env)
892 struct kvm_run *run = env->kvm_run;
895 DPRINTF("kvm_cpu_exec()\n");
897 if (kvm_arch_process_async_events(env)) {
898 env->exit_request = 0;
902 cpu_single_env = env;
905 if (env->kvm_vcpu_dirty) {
906 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
907 env->kvm_vcpu_dirty = 0;
910 kvm_arch_pre_run(env, run);
911 if (env->exit_request) {
912 DPRINTF("interrupt exit requested\n");
914 * KVM requires us to reenter the kernel after IO exits to complete
915 * instruction emulation. This self-signal will ensure that we
918 qemu_cpu_kick_self();
920 cpu_single_env = NULL;
921 qemu_mutex_unlock_iothread();
923 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
925 qemu_mutex_lock_iothread();
926 cpu_single_env = env;
927 kvm_arch_post_run(env, run);
929 kvm_flush_coalesced_mmio_buffer();
932 if (run_ret == -EINTR || run_ret == -EAGAIN) {
933 DPRINTF("io window exit\n");
934 ret = EXCP_INTERRUPT;
937 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
941 switch (run->exit_reason) {
943 DPRINTF("handle_io\n");
944 kvm_handle_io(run->io.port,
945 (uint8_t *)run + run->io.data_offset,
952 DPRINTF("handle_mmio\n");
953 cpu_physical_memory_rw(run->mmio.phys_addr,
959 case KVM_EXIT_IRQ_WINDOW_OPEN:
960 DPRINTF("irq_window_open\n");
961 ret = EXCP_INTERRUPT;
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
966 ret = EXCP_INTERRUPT;
968 case KVM_EXIT_UNKNOWN:
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
973 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
975 ret = kvm_handle_internal_error(env, run);
979 DPRINTF("kvm_arch_handle_exit\n");
980 ret = kvm_arch_handle_exit(env, run);
986 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
987 vm_stop(VMSTOP_PANIC);
990 env->exit_request = 0;
991 cpu_single_env = NULL;
995 int kvm_ioctl(KVMState *s, int type, ...)
1002 arg = va_arg(ap, void *);
1005 ret = ioctl(s->fd, type, arg);
1012 int kvm_vm_ioctl(KVMState *s, int type, ...)
1019 arg = va_arg(ap, void *);
1022 ret = ioctl(s->vmfd, type, arg);
1029 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1036 arg = va_arg(ap, void *);
1039 ret = ioctl(env->kvm_fd, type, arg);
1046 int kvm_has_sync_mmu(void)
1048 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1051 int kvm_has_vcpu_events(void)
1053 return kvm_state->vcpu_events;
1056 int kvm_has_robust_singlestep(void)
1058 return kvm_state->robust_singlestep;
1061 int kvm_has_debugregs(void)
1063 return kvm_state->debugregs;
1066 int kvm_has_xsave(void)
1068 return kvm_state->xsave;
1071 int kvm_has_xcrs(void)
1073 return kvm_state->xcrs;
1076 int kvm_has_many_ioeventfds(void)
1078 if (!kvm_enabled()) {
1081 return kvm_state->many_ioeventfds;
1084 void kvm_setup_guest_memory(void *start, size_t size)
1086 if (!kvm_has_sync_mmu()) {
1087 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1090 perror("qemu_madvise");
1092 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1098 #ifdef KVM_CAP_SET_GUEST_DEBUG
1099 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1102 struct kvm_sw_breakpoint *bp;
1104 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1112 int kvm_sw_breakpoints_active(CPUState *env)
1114 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1117 struct kvm_set_guest_debug_data {
1118 struct kvm_guest_debug dbg;
1123 static void kvm_invoke_set_guest_debug(void *data)
1125 struct kvm_set_guest_debug_data *dbg_data = data;
1126 CPUState *env = dbg_data->env;
1128 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1131 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1133 struct kvm_set_guest_debug_data data;
1135 data.dbg.control = reinject_trap;
1137 if (env->singlestep_enabled) {
1138 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1140 kvm_arch_update_guest_debug(env, &data.dbg);
1143 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1147 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1148 target_ulong len, int type)
1150 struct kvm_sw_breakpoint *bp;
1154 if (type == GDB_BREAKPOINT_SW) {
1155 bp = kvm_find_sw_breakpoint(current_env, addr);
1161 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1168 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1174 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1177 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1183 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1184 err = kvm_update_guest_debug(env, 0);
1192 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1193 target_ulong len, int type)
1195 struct kvm_sw_breakpoint *bp;
1199 if (type == GDB_BREAKPOINT_SW) {
1200 bp = kvm_find_sw_breakpoint(current_env, addr);
1205 if (bp->use_count > 1) {
1210 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1215 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1218 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1224 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1225 err = kvm_update_guest_debug(env, 0);
1233 void kvm_remove_all_breakpoints(CPUState *current_env)
1235 struct kvm_sw_breakpoint *bp, *next;
1236 KVMState *s = current_env->kvm_state;
1239 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1240 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1241 /* Try harder to find a CPU that currently sees the breakpoint. */
1242 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1243 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1249 kvm_arch_remove_all_hw_breakpoints();
1251 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1252 kvm_update_guest_debug(env, 0);
1256 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1258 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1263 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1264 target_ulong len, int type)
1269 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1270 target_ulong len, int type)
1275 void kvm_remove_all_breakpoints(CPUState *current_env)
1278 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1280 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1282 struct kvm_signal_mask *sigmask;
1286 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1289 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1292 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1293 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1299 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1301 #ifdef KVM_IOEVENTFD
1303 struct kvm_ioeventfd iofd;
1305 iofd.datamatch = val;
1308 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1311 if (!kvm_enabled()) {
1316 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1319 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1331 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1333 #ifdef KVM_IOEVENTFD
1334 struct kvm_ioeventfd kick = {
1338 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1342 if (!kvm_enabled()) {
1346 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1348 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1358 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1360 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1363 int kvm_on_sigbus(int code, void *addr)
1365 return kvm_arch_on_sigbus(code, addr);