4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "config-host.h"
26 #include "qemu-common.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
41 #include "qemu/bitops.h"
43 #include "block/snapshot.h"
44 #include "block/qapi.h"
46 #define SELF_ANNOUNCE_ROUNDS 5
49 #define ETH_P_RARP 0x8035
51 #define ARP_HTYPE_ETH 0x0001
52 #define ARP_PTYPE_IP 0x0800
53 #define ARP_OP_REQUEST_REV 0x3
55 static int announce_self_create(uint8_t *buf,
58 /* Ethernet header. */
59 memset(buf, 0xff, 6); /* destination MAC addr */
60 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
61 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
64 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
65 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
66 *(buf + 18) = 6; /* hardware addr length (ethernet) */
67 *(buf + 19) = 4; /* protocol addr length (IPv4) */
68 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
69 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
70 memset(buf + 28, 0x00, 4); /* source protocol addr */
71 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
72 memset(buf + 38, 0x00, 4); /* target protocol addr */
74 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
75 memset(buf + 42, 0x00, 18);
77 return 60; /* len (FCS will be added by hardware) */
80 static void qemu_announce_self_iter(NICState *nic, void *opaque)
85 len = announce_self_create(buf, nic->conf->macaddr.a);
87 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
91 static void qemu_announce_self_once(void *opaque)
93 static int count = SELF_ANNOUNCE_ROUNDS;
94 QEMUTimer *timer = *(QEMUTimer **)opaque;
96 qemu_foreach_nic(qemu_announce_self_iter, NULL);
99 /* delay 50ms, 150ms, 250ms, ... */
100 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
101 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
103 qemu_del_timer(timer);
104 qemu_free_timer(timer);
108 void qemu_announce_self(void)
110 static QEMUTimer *timer;
111 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
112 qemu_announce_self_once(&timer);
115 /***********************************************************/
116 /* savevm/loadvm support */
118 #define IO_BUF_SIZE 32768
119 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
122 const QEMUFileOps *ops;
128 int64_t pos; /* start of buffer when writing, end of buffer
131 int buf_size; /* 0 when writing */
132 uint8_t buf[IO_BUF_SIZE];
134 struct iovec iov[MAX_IOV_SIZE];
140 typedef struct QEMUFileStdio
146 typedef struct QEMUFileSocket
157 static void fd_coroutine_enter(void *opaque)
159 FDYieldUntilData *data = opaque;
160 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
161 qemu_coroutine_enter(data->co, NULL);
165 * Yield until a file descriptor becomes readable
167 * Note that this function clobbers the handlers for the file descriptor.
169 static void coroutine_fn yield_until_fd_readable(int fd)
171 FDYieldUntilData data;
173 assert(qemu_in_coroutine());
174 data.co = qemu_coroutine_self();
176 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
177 qemu_coroutine_yield();
180 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
183 QEMUFileSocket *s = opaque;
185 ssize_t size = iov_size(iov, iovcnt);
187 len = iov_send(s->fd, iov, iovcnt, 0, size);
189 len = -socket_error();
194 static int socket_get_fd(void *opaque)
196 QEMUFileSocket *s = opaque;
201 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
203 QEMUFileSocket *s = opaque;
207 len = qemu_recv(s->fd, buf, size, 0);
211 if (socket_error() == EAGAIN) {
212 yield_until_fd_readable(s->fd);
213 } else if (socket_error() != EINTR) {
219 len = -socket_error();
224 static int socket_close(void *opaque)
226 QEMUFileSocket *s = opaque;
232 static int stdio_get_fd(void *opaque)
234 QEMUFileStdio *s = opaque;
236 return fileno(s->stdio_file);
239 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
241 QEMUFileStdio *s = opaque;
242 return fwrite(buf, 1, size, s->stdio_file);
245 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
247 QEMUFileStdio *s = opaque;
248 FILE *fp = s->stdio_file;
253 bytes = fread(buf, 1, size, fp);
254 if (bytes != 0 || !ferror(fp)) {
257 if (errno == EAGAIN) {
258 yield_until_fd_readable(fileno(fp));
259 } else if (errno != EINTR) {
266 static int stdio_pclose(void *opaque)
268 QEMUFileStdio *s = opaque;
270 ret = pclose(s->stdio_file);
273 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
274 /* close succeeded, but non-zero exit code: */
275 ret = -EIO; /* fake errno value */
281 static int stdio_fclose(void *opaque)
283 QEMUFileStdio *s = opaque;
286 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
287 int fd = fileno(s->stdio_file);
290 ret = fstat(fd, &st);
291 if (ret == 0 && S_ISREG(st.st_mode)) {
293 * If the file handle is a regular file make sure the
294 * data is flushed to disk before signaling success.
303 if (fclose(s->stdio_file) == EOF) {
310 static const QEMUFileOps stdio_pipe_read_ops = {
311 .get_fd = stdio_get_fd,
312 .get_buffer = stdio_get_buffer,
313 .close = stdio_pclose
316 static const QEMUFileOps stdio_pipe_write_ops = {
317 .get_fd = stdio_get_fd,
318 .put_buffer = stdio_put_buffer,
319 .close = stdio_pclose
322 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
327 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
328 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
332 stdio_file = popen(command, mode);
333 if (stdio_file == NULL) {
337 s = g_malloc0(sizeof(QEMUFileStdio));
339 s->stdio_file = stdio_file;
342 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
344 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
349 static const QEMUFileOps stdio_file_read_ops = {
350 .get_fd = stdio_get_fd,
351 .get_buffer = stdio_get_buffer,
352 .close = stdio_fclose
355 static const QEMUFileOps stdio_file_write_ops = {
356 .get_fd = stdio_get_fd,
357 .put_buffer = stdio_put_buffer,
358 .close = stdio_fclose
361 static ssize_t unix_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
364 QEMUFileSocket *s = opaque;
366 ssize_t size = iov_size(iov, iovcnt);
372 /* Find the next start position; skip all full-sized vector elements */
373 while (offset >= iov[0].iov_len) {
374 offset -= iov[0].iov_len;
378 /* skip `offset' bytes from the (now) first element, undo it on exit */
380 iov[0].iov_base += offset;
381 iov[0].iov_len -= offset;
384 len = writev(s->fd, iov, iovcnt);
385 } while (len == -1 && errno == EINTR);
390 /* Undo the changes above */
391 iov[0].iov_base -= offset;
392 iov[0].iov_len += offset;
394 /* Prepare for the next iteration */
403 static int unix_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
405 QEMUFileSocket *s = opaque;
409 len = read(s->fd, buf, size);
413 if (errno == EAGAIN) {
414 yield_until_fd_readable(s->fd);
415 } else if (errno != EINTR) {
426 static int unix_close(void *opaque)
428 QEMUFileSocket *s = opaque;
434 static const QEMUFileOps unix_read_ops = {
435 .get_fd = socket_get_fd,
436 .get_buffer = unix_get_buffer,
440 static const QEMUFileOps unix_write_ops = {
441 .get_fd = socket_get_fd,
442 .writev_buffer = unix_writev_buffer,
446 QEMUFile *qemu_fdopen(int fd, const char *mode)
451 (mode[0] != 'r' && mode[0] != 'w') ||
452 mode[1] != 'b' || mode[2] != 0) {
453 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
457 s = g_malloc0(sizeof(QEMUFileSocket));
461 s->file = qemu_fopen_ops(s, &unix_read_ops);
463 s->file = qemu_fopen_ops(s, &unix_write_ops);
468 static const QEMUFileOps socket_read_ops = {
469 .get_fd = socket_get_fd,
470 .get_buffer = socket_get_buffer,
471 .close = socket_close
474 static const QEMUFileOps socket_write_ops = {
475 .get_fd = socket_get_fd,
476 .writev_buffer = socket_writev_buffer,
477 .close = socket_close
480 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
482 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
485 (mode[0] != 'r' && mode[0] != 'w') ||
486 mode[1] != 'b' || mode[2] != 0) {
487 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
492 if (mode[0] == 'w') {
493 qemu_set_block(s->fd);
494 s->file = qemu_fopen_ops(s, &socket_write_ops);
496 s->file = qemu_fopen_ops(s, &socket_read_ops);
501 QEMUFile *qemu_fopen(const char *filename, const char *mode)
506 (mode[0] != 'r' && mode[0] != 'w') ||
507 mode[1] != 'b' || mode[2] != 0) {
508 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
512 s = g_malloc0(sizeof(QEMUFileStdio));
514 s->stdio_file = fopen(filename, mode);
519 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
521 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
529 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
535 qemu_iovec_init_external(&qiov, iov, iovcnt);
536 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
544 static int block_put_buffer(void *opaque, const uint8_t *buf,
545 int64_t pos, int size)
547 bdrv_save_vmstate(opaque, buf, pos, size);
551 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
553 return bdrv_load_vmstate(opaque, buf, pos, size);
556 static int bdrv_fclose(void *opaque)
558 return bdrv_flush(opaque);
561 static const QEMUFileOps bdrv_read_ops = {
562 .get_buffer = block_get_buffer,
566 static const QEMUFileOps bdrv_write_ops = {
567 .put_buffer = block_put_buffer,
568 .writev_buffer = block_writev_buffer,
572 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
575 return qemu_fopen_ops(bs, &bdrv_write_ops);
576 return qemu_fopen_ops(bs, &bdrv_read_ops);
579 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
583 f = g_malloc0(sizeof(QEMUFile));
590 int qemu_file_get_error(QEMUFile *f)
592 return f->last_error;
595 static void qemu_file_set_error(QEMUFile *f, int ret)
597 if (f->last_error == 0) {
602 static inline bool qemu_file_is_writable(QEMUFile *f)
604 return f->ops->writev_buffer || f->ops->put_buffer;
608 * Flushes QEMUFile buffer
610 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
613 static void qemu_fflush(QEMUFile *f)
617 if (!qemu_file_is_writable(f)) {
621 if (f->ops->writev_buffer) {
623 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
626 if (f->buf_index > 0) {
627 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
636 qemu_file_set_error(f, ret);
640 static void qemu_fill_buffer(QEMUFile *f)
645 assert(!qemu_file_is_writable(f));
647 pending = f->buf_size - f->buf_index;
649 memmove(f->buf, f->buf + f->buf_index, pending);
652 f->buf_size = pending;
654 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
655 IO_BUF_SIZE - pending);
659 } else if (len == 0) {
660 qemu_file_set_error(f, -EIO);
661 } else if (len != -EAGAIN)
662 qemu_file_set_error(f, len);
665 int qemu_get_fd(QEMUFile *f)
667 if (f->ops->get_fd) {
668 return f->ops->get_fd(f->opaque);
675 * Returns negative error value if any error happened on previous operations or
676 * while closing the file. Returns 0 or positive number on success.
678 * The meaning of return value on success depends on the specific backend
681 int qemu_fclose(QEMUFile *f)
685 ret = qemu_file_get_error(f);
688 int ret2 = f->ops->close(f->opaque);
693 /* If any error was spotted before closing, we should report it
694 * instead of the close() return value.
703 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
705 /* check for adjacent buffer and coalesce them */
706 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
707 f->iov[f->iovcnt - 1].iov_len) {
708 f->iov[f->iovcnt - 1].iov_len += size;
710 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
711 f->iov[f->iovcnt++].iov_len = size;
714 if (f->iovcnt >= MAX_IOV_SIZE) {
719 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
721 if (!f->ops->writev_buffer) {
722 qemu_put_buffer(f, buf, size);
730 f->bytes_xfer += size;
731 add_to_iovec(f, buf, size);
734 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
743 l = IO_BUF_SIZE - f->buf_index;
746 memcpy(f->buf + f->buf_index, buf, l);
747 f->bytes_xfer += size;
748 if (f->ops->writev_buffer) {
749 add_to_iovec(f, f->buf + f->buf_index, l);
752 if (f->buf_index == IO_BUF_SIZE) {
755 if (qemu_file_get_error(f)) {
763 void qemu_put_byte(QEMUFile *f, int v)
769 f->buf[f->buf_index] = v;
771 if (f->ops->writev_buffer) {
772 add_to_iovec(f, f->buf + f->buf_index, 1);
775 if (f->buf_index == IO_BUF_SIZE) {
780 static void qemu_file_skip(QEMUFile *f, int size)
782 if (f->buf_index + size <= f->buf_size) {
783 f->buf_index += size;
787 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
792 assert(!qemu_file_is_writable(f));
794 index = f->buf_index + offset;
795 pending = f->buf_size - index;
796 if (pending < size) {
798 index = f->buf_index + offset;
799 pending = f->buf_size - index;
805 if (size > pending) {
809 memcpy(buf, f->buf + index, size);
813 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
818 while (pending > 0) {
821 res = qemu_peek_buffer(f, buf, pending, 0);
825 qemu_file_skip(f, res);
833 static int qemu_peek_byte(QEMUFile *f, int offset)
835 int index = f->buf_index + offset;
837 assert(!qemu_file_is_writable(f));
839 if (index >= f->buf_size) {
841 index = f->buf_index + offset;
842 if (index >= f->buf_size) {
846 return f->buf[index];
849 int qemu_get_byte(QEMUFile *f)
853 result = qemu_peek_byte(f, 0);
854 qemu_file_skip(f, 1);
858 int64_t qemu_ftell(QEMUFile *f)
864 int qemu_file_rate_limit(QEMUFile *f)
866 if (qemu_file_get_error(f)) {
869 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
875 int64_t qemu_file_get_rate_limit(QEMUFile *f)
877 return f->xfer_limit;
880 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
882 f->xfer_limit = limit;
885 void qemu_file_reset_rate_limit(QEMUFile *f)
890 void qemu_put_be16(QEMUFile *f, unsigned int v)
892 qemu_put_byte(f, v >> 8);
896 void qemu_put_be32(QEMUFile *f, unsigned int v)
898 qemu_put_byte(f, v >> 24);
899 qemu_put_byte(f, v >> 16);
900 qemu_put_byte(f, v >> 8);
904 void qemu_put_be64(QEMUFile *f, uint64_t v)
906 qemu_put_be32(f, v >> 32);
910 unsigned int qemu_get_be16(QEMUFile *f)
913 v = qemu_get_byte(f) << 8;
914 v |= qemu_get_byte(f);
918 unsigned int qemu_get_be32(QEMUFile *f)
921 v = qemu_get_byte(f) << 24;
922 v |= qemu_get_byte(f) << 16;
923 v |= qemu_get_byte(f) << 8;
924 v |= qemu_get_byte(f);
928 uint64_t qemu_get_be64(QEMUFile *f)
931 v = (uint64_t)qemu_get_be32(f) << 32;
932 v |= qemu_get_be32(f);
939 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
941 uint64_t expire_time;
943 expire_time = qemu_timer_expire_time_ns(ts);
944 qemu_put_be64(f, expire_time);
947 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
949 uint64_t expire_time;
951 expire_time = qemu_get_be64(f);
952 if (expire_time != -1) {
953 qemu_mod_timer_ns(ts, expire_time);
962 static int get_bool(QEMUFile *f, void *pv, size_t size)
965 *v = qemu_get_byte(f);
969 static void put_bool(QEMUFile *f, void *pv, size_t size)
972 qemu_put_byte(f, *v);
975 const VMStateInfo vmstate_info_bool = {
983 static int get_int8(QEMUFile *f, void *pv, size_t size)
990 static void put_int8(QEMUFile *f, void *pv, size_t size)
996 const VMStateInfo vmstate_info_int8 = {
1004 static int get_int16(QEMUFile *f, void *pv, size_t size)
1007 qemu_get_sbe16s(f, v);
1011 static void put_int16(QEMUFile *f, void *pv, size_t size)
1014 qemu_put_sbe16s(f, v);
1017 const VMStateInfo vmstate_info_int16 = {
1025 static int get_int32(QEMUFile *f, void *pv, size_t size)
1028 qemu_get_sbe32s(f, v);
1032 static void put_int32(QEMUFile *f, void *pv, size_t size)
1035 qemu_put_sbe32s(f, v);
1038 const VMStateInfo vmstate_info_int32 = {
1044 /* 32 bit int. See that the received value is the same than the one
1047 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
1051 qemu_get_sbe32s(f, &v2);
1058 const VMStateInfo vmstate_info_int32_equal = {
1059 .name = "int32 equal",
1060 .get = get_int32_equal,
1064 /* 32 bit int. See that the received value is the less or the same
1065 than the one in the field */
1067 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
1071 qemu_get_sbe32s(f, &new);
1078 const VMStateInfo vmstate_info_int32_le = {
1079 .name = "int32 equal",
1080 .get = get_int32_le,
1086 static int get_int64(QEMUFile *f, void *pv, size_t size)
1089 qemu_get_sbe64s(f, v);
1093 static void put_int64(QEMUFile *f, void *pv, size_t size)
1096 qemu_put_sbe64s(f, v);
1099 const VMStateInfo vmstate_info_int64 = {
1105 /* 8 bit unsigned int */
1107 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1114 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1120 const VMStateInfo vmstate_info_uint8 = {
1126 /* 16 bit unsigned int */
1128 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1131 qemu_get_be16s(f, v);
1135 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1138 qemu_put_be16s(f, v);
1141 const VMStateInfo vmstate_info_uint16 = {
1147 /* 32 bit unsigned int */
1149 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1152 qemu_get_be32s(f, v);
1156 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1159 qemu_put_be32s(f, v);
1162 const VMStateInfo vmstate_info_uint32 = {
1168 /* 32 bit uint. See that the received value is the same than the one
1171 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1175 qemu_get_be32s(f, &v2);
1183 const VMStateInfo vmstate_info_uint32_equal = {
1184 .name = "uint32 equal",
1185 .get = get_uint32_equal,
1189 /* 64 bit unsigned int */
1191 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1194 qemu_get_be64s(f, v);
1198 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1201 qemu_put_be64s(f, v);
1204 const VMStateInfo vmstate_info_uint64 = {
1210 /* 64 bit unsigned int. See that the received value is the same than the one
1213 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1217 qemu_get_be64s(f, &v2);
1225 const VMStateInfo vmstate_info_uint64_equal = {
1226 .name = "int64 equal",
1227 .get = get_uint64_equal,
1231 /* 8 bit int. See that the received value is the same than the one
1234 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1238 qemu_get_8s(f, &v2);
1245 const VMStateInfo vmstate_info_uint8_equal = {
1246 .name = "uint8 equal",
1247 .get = get_uint8_equal,
1251 /* 16 bit unsigned int int. See that the received value is the same than the one
1254 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1258 qemu_get_be16s(f, &v2);
1265 const VMStateInfo vmstate_info_uint16_equal = {
1266 .name = "uint16 equal",
1267 .get = get_uint16_equal,
1271 /* floating point */
1273 static int get_float64(QEMUFile *f, void *pv, size_t size)
1277 *v = make_float64(qemu_get_be64(f));
1281 static void put_float64(QEMUFile *f, void *pv, size_t size)
1285 qemu_put_be64(f, float64_val(*v));
1288 const VMStateInfo vmstate_info_float64 = {
1296 static int get_timer(QEMUFile *f, void *pv, size_t size)
1299 qemu_get_timer(f, v);
1303 static void put_timer(QEMUFile *f, void *pv, size_t size)
1306 qemu_put_timer(f, v);
1309 const VMStateInfo vmstate_info_timer = {
1315 /* uint8_t buffers */
1317 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1320 qemu_get_buffer(f, v, size);
1324 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1327 qemu_put_buffer(f, v, size);
1330 const VMStateInfo vmstate_info_buffer = {
1336 /* unused buffers: space that was used for some fields that are
1337 not useful anymore */
1339 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1345 block_len = MIN(sizeof(buf), size);
1347 qemu_get_buffer(f, buf, block_len);
1352 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1354 static const uint8_t buf[1024];
1358 block_len = MIN(sizeof(buf), size);
1360 qemu_put_buffer(f, buf, block_len);
1364 const VMStateInfo vmstate_info_unused_buffer = {
1365 .name = "unused_buffer",
1366 .get = get_unused_buffer,
1367 .put = put_unused_buffer,
1370 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1371 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1372 * bit words with the bits in big endian order. The in-memory format
1373 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1375 /* This is the number of 64 bit words sent over the wire */
1376 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1377 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1379 unsigned long *bmp = pv;
1381 for (i = 0; i < BITS_TO_U64S(size); i++) {
1382 uint64_t w = qemu_get_be64(f);
1384 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1385 bmp[idx++] = w >> 32;
1391 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1393 unsigned long *bmp = pv;
1395 for (i = 0; i < BITS_TO_U64S(size); i++) {
1396 uint64_t w = bmp[idx++];
1397 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1398 w |= ((uint64_t)bmp[idx++]) << 32;
1400 qemu_put_be64(f, w);
1404 const VMStateInfo vmstate_info_bitmap = {
1410 typedef struct CompatEntry {
1415 typedef struct SaveStateEntry {
1416 QTAILQ_ENTRY(SaveStateEntry) entry;
1422 SaveVMHandlers *ops;
1423 const VMStateDescription *vmsd;
1425 CompatEntry *compat;
1431 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1432 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1433 static int global_section_id;
1435 static int calculate_new_instance_id(const char *idstr)
1438 int instance_id = 0;
1440 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1441 if (strcmp(idstr, se->idstr) == 0
1442 && instance_id <= se->instance_id) {
1443 instance_id = se->instance_id + 1;
1449 static int calculate_compat_instance_id(const char *idstr)
1452 int instance_id = 0;
1454 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1458 if (strcmp(idstr, se->compat->idstr) == 0
1459 && instance_id <= se->compat->instance_id) {
1460 instance_id = se->compat->instance_id + 1;
1466 /* TODO: Individual devices generally have very little idea about the rest
1467 of the system, so instance_id should be removed/replaced.
1468 Meanwhile pass -1 as instance_id if you do not already have a clearly
1469 distinguishing id for all instances of your device class. */
1470 int register_savevm_live(DeviceState *dev,
1474 SaveVMHandlers *ops,
1479 se = g_malloc0(sizeof(SaveStateEntry));
1480 se->version_id = version_id;
1481 se->section_id = global_section_id++;
1483 se->opaque = opaque;
1486 /* if this is a live_savem then set is_ram */
1487 if (ops->save_live_setup != NULL) {
1492 char *id = qdev_get_dev_path(dev);
1494 pstrcpy(se->idstr, sizeof(se->idstr), id);
1495 pstrcat(se->idstr, sizeof(se->idstr), "/");
1498 se->compat = g_malloc0(sizeof(CompatEntry));
1499 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1500 se->compat->instance_id = instance_id == -1 ?
1501 calculate_compat_instance_id(idstr) : instance_id;
1505 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1507 if (instance_id == -1) {
1508 se->instance_id = calculate_new_instance_id(se->idstr);
1510 se->instance_id = instance_id;
1512 assert(!se->compat || se->instance_id == 0);
1513 /* add at the end of list */
1514 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1518 int register_savevm(DeviceState *dev,
1522 SaveStateHandler *save_state,
1523 LoadStateHandler *load_state,
1526 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1527 ops->save_state = save_state;
1528 ops->load_state = load_state;
1529 return register_savevm_live(dev, idstr, instance_id, version_id,
1533 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1535 SaveStateEntry *se, *new_se;
1539 char *path = qdev_get_dev_path(dev);
1541 pstrcpy(id, sizeof(id), path);
1542 pstrcat(id, sizeof(id), "/");
1546 pstrcat(id, sizeof(id), idstr);
1548 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1549 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1550 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1560 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1561 const VMStateDescription *vmsd,
1562 void *opaque, int alias_id,
1563 int required_for_version)
1567 /* If this triggers, alias support can be dropped for the vmsd. */
1568 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1570 se = g_malloc0(sizeof(SaveStateEntry));
1571 se->version_id = vmsd->version_id;
1572 se->section_id = global_section_id++;
1573 se->opaque = opaque;
1575 se->alias_id = alias_id;
1576 se->no_migrate = vmsd->unmigratable;
1579 char *id = qdev_get_dev_path(dev);
1581 pstrcpy(se->idstr, sizeof(se->idstr), id);
1582 pstrcat(se->idstr, sizeof(se->idstr), "/");
1585 se->compat = g_malloc0(sizeof(CompatEntry));
1586 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1587 se->compat->instance_id = instance_id == -1 ?
1588 calculate_compat_instance_id(vmsd->name) : instance_id;
1592 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1594 if (instance_id == -1) {
1595 se->instance_id = calculate_new_instance_id(se->idstr);
1597 se->instance_id = instance_id;
1599 assert(!se->compat || se->instance_id == 0);
1600 /* add at the end of list */
1601 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1605 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1608 SaveStateEntry *se, *new_se;
1610 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1611 if (se->vmsd == vmsd && se->opaque == opaque) {
1612 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1621 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1623 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1626 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1627 void *opaque, int version_id)
1629 VMStateField *field = vmsd->fields;
1632 if (version_id > vmsd->version_id) {
1635 if (version_id < vmsd->minimum_version_id_old) {
1638 if (version_id < vmsd->minimum_version_id) {
1639 return vmsd->load_state_old(f, opaque, version_id);
1641 if (vmsd->pre_load) {
1642 int ret = vmsd->pre_load(opaque);
1646 while(field->name) {
1647 if ((field->field_exists &&
1648 field->field_exists(opaque, version_id)) ||
1649 (!field->field_exists &&
1650 field->version_id <= version_id)) {
1651 void *base_addr = opaque + field->offset;
1653 int size = field->size;
1655 if (field->flags & VMS_VBUFFER) {
1656 size = *(int32_t *)(opaque+field->size_offset);
1657 if (field->flags & VMS_MULTIPLY) {
1658 size *= field->size;
1661 if (field->flags & VMS_ARRAY) {
1662 n_elems = field->num;
1663 } else if (field->flags & VMS_VARRAY_INT32) {
1664 n_elems = *(int32_t *)(opaque+field->num_offset);
1665 } else if (field->flags & VMS_VARRAY_UINT32) {
1666 n_elems = *(uint32_t *)(opaque+field->num_offset);
1667 } else if (field->flags & VMS_VARRAY_UINT16) {
1668 n_elems = *(uint16_t *)(opaque+field->num_offset);
1669 } else if (field->flags & VMS_VARRAY_UINT8) {
1670 n_elems = *(uint8_t *)(opaque+field->num_offset);
1672 if (field->flags & VMS_POINTER) {
1673 base_addr = *(void **)base_addr + field->start;
1675 for (i = 0; i < n_elems; i++) {
1676 void *addr = base_addr + size * i;
1678 if (field->flags & VMS_ARRAY_OF_POINTER) {
1679 addr = *(void **)addr;
1681 if (field->flags & VMS_STRUCT) {
1682 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1684 ret = field->info->get(f, addr, size);
1694 ret = vmstate_subsection_load(f, vmsd, opaque);
1698 if (vmsd->post_load) {
1699 return vmsd->post_load(opaque, version_id);
1704 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1707 VMStateField *field = vmsd->fields;
1709 if (vmsd->pre_save) {
1710 vmsd->pre_save(opaque);
1712 while(field->name) {
1713 if (!field->field_exists ||
1714 field->field_exists(opaque, vmsd->version_id)) {
1715 void *base_addr = opaque + field->offset;
1717 int size = field->size;
1719 if (field->flags & VMS_VBUFFER) {
1720 size = *(int32_t *)(opaque+field->size_offset);
1721 if (field->flags & VMS_MULTIPLY) {
1722 size *= field->size;
1725 if (field->flags & VMS_ARRAY) {
1726 n_elems = field->num;
1727 } else if (field->flags & VMS_VARRAY_INT32) {
1728 n_elems = *(int32_t *)(opaque+field->num_offset);
1729 } else if (field->flags & VMS_VARRAY_UINT32) {
1730 n_elems = *(uint32_t *)(opaque+field->num_offset);
1731 } else if (field->flags & VMS_VARRAY_UINT16) {
1732 n_elems = *(uint16_t *)(opaque+field->num_offset);
1733 } else if (field->flags & VMS_VARRAY_UINT8) {
1734 n_elems = *(uint8_t *)(opaque+field->num_offset);
1736 if (field->flags & VMS_POINTER) {
1737 base_addr = *(void **)base_addr + field->start;
1739 for (i = 0; i < n_elems; i++) {
1740 void *addr = base_addr + size * i;
1742 if (field->flags & VMS_ARRAY_OF_POINTER) {
1743 addr = *(void **)addr;
1745 if (field->flags & VMS_STRUCT) {
1746 vmstate_save_state(f, field->vmsd, addr);
1748 field->info->put(f, addr, size);
1754 vmstate_subsection_save(f, vmsd, opaque);
1757 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1759 if (!se->vmsd) { /* Old style */
1760 return se->ops->load_state(f, se->opaque, version_id);
1762 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1765 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1767 if (!se->vmsd) { /* Old style */
1768 se->ops->save_state(f, se->opaque);
1771 vmstate_save_state(f,se->vmsd, se->opaque);
1774 #define QEMU_VM_FILE_MAGIC 0x5145564d
1775 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1776 #define QEMU_VM_FILE_VERSION 0x00000003
1778 #define QEMU_VM_EOF 0x00
1779 #define QEMU_VM_SECTION_START 0x01
1780 #define QEMU_VM_SECTION_PART 0x02
1781 #define QEMU_VM_SECTION_END 0x03
1782 #define QEMU_VM_SECTION_FULL 0x04
1783 #define QEMU_VM_SUBSECTION 0x05
1785 bool qemu_savevm_state_blocked(Error **errp)
1789 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1790 if (se->no_migrate) {
1791 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1798 void qemu_savevm_state_begin(QEMUFile *f,
1799 const MigrationParams *params)
1804 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1805 if (!se->ops || !se->ops->set_params) {
1808 se->ops->set_params(params, se->opaque);
1811 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1812 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1814 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1817 if (!se->ops || !se->ops->save_live_setup) {
1820 if (se->ops && se->ops->is_active) {
1821 if (!se->ops->is_active(se->opaque)) {
1826 qemu_put_byte(f, QEMU_VM_SECTION_START);
1827 qemu_put_be32(f, se->section_id);
1830 len = strlen(se->idstr);
1831 qemu_put_byte(f, len);
1832 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1834 qemu_put_be32(f, se->instance_id);
1835 qemu_put_be32(f, se->version_id);
1837 ret = se->ops->save_live_setup(f, se->opaque);
1839 qemu_file_set_error(f, ret);
1846 * this function has three return values:
1847 * negative: there was one error, and we have -errno.
1848 * 0 : We haven't finished, caller have to go again
1849 * 1 : We have finished, we can go to complete phase
1851 int qemu_savevm_state_iterate(QEMUFile *f)
1856 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1857 if (!se->ops || !se->ops->save_live_iterate) {
1860 if (se->ops && se->ops->is_active) {
1861 if (!se->ops->is_active(se->opaque)) {
1865 if (qemu_file_rate_limit(f)) {
1868 trace_savevm_section_start();
1870 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1871 qemu_put_be32(f, se->section_id);
1873 ret = se->ops->save_live_iterate(f, se->opaque);
1874 trace_savevm_section_end(se->section_id);
1877 qemu_file_set_error(f, ret);
1880 /* Do not proceed to the next vmstate before this one reported
1881 completion of the current stage. This serializes the migration
1882 and reduces the probability that a faster changing state is
1883 synchronized over and over again. */
1890 void qemu_savevm_state_complete(QEMUFile *f)
1895 cpu_synchronize_all_states();
1897 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1898 if (!se->ops || !se->ops->save_live_complete) {
1901 if (se->ops && se->ops->is_active) {
1902 if (!se->ops->is_active(se->opaque)) {
1906 trace_savevm_section_start();
1908 qemu_put_byte(f, QEMU_VM_SECTION_END);
1909 qemu_put_be32(f, se->section_id);
1911 ret = se->ops->save_live_complete(f, se->opaque);
1912 trace_savevm_section_end(se->section_id);
1914 qemu_file_set_error(f, ret);
1919 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1922 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1925 trace_savevm_section_start();
1927 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1928 qemu_put_be32(f, se->section_id);
1931 len = strlen(se->idstr);
1932 qemu_put_byte(f, len);
1933 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1935 qemu_put_be32(f, se->instance_id);
1936 qemu_put_be32(f, se->version_id);
1938 vmstate_save(f, se);
1939 trace_savevm_section_end(se->section_id);
1942 qemu_put_byte(f, QEMU_VM_EOF);
1946 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1951 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1952 if (!se->ops || !se->ops->save_live_pending) {
1955 if (se->ops && se->ops->is_active) {
1956 if (!se->ops->is_active(se->opaque)) {
1960 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1965 void qemu_savevm_state_cancel(void)
1969 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1970 if (se->ops && se->ops->cancel) {
1971 se->ops->cancel(se->opaque);
1976 static int qemu_savevm_state(QEMUFile *f)
1979 MigrationParams params = {
1984 if (qemu_savevm_state_blocked(NULL)) {
1988 qemu_mutex_unlock_iothread();
1989 qemu_savevm_state_begin(f, ¶ms);
1990 qemu_mutex_lock_iothread();
1992 while (qemu_file_get_error(f) == 0) {
1993 if (qemu_savevm_state_iterate(f) > 0) {
1998 ret = qemu_file_get_error(f);
2000 qemu_savevm_state_complete(f);
2001 ret = qemu_file_get_error(f);
2004 qemu_savevm_state_cancel();
2009 static int qemu_save_device_state(QEMUFile *f)
2013 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
2014 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
2016 cpu_synchronize_all_states();
2018 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2024 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
2029 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
2030 qemu_put_be32(f, se->section_id);
2033 len = strlen(se->idstr);
2034 qemu_put_byte(f, len);
2035 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
2037 qemu_put_be32(f, se->instance_id);
2038 qemu_put_be32(f, se->version_id);
2040 vmstate_save(f, se);
2043 qemu_put_byte(f, QEMU_VM_EOF);
2045 return qemu_file_get_error(f);
2048 static SaveStateEntry *find_se(const char *idstr, int instance_id)
2052 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2053 if (!strcmp(se->idstr, idstr) &&
2054 (instance_id == se->instance_id ||
2055 instance_id == se->alias_id))
2057 /* Migrating from an older version? */
2058 if (strstr(se->idstr, idstr) && se->compat) {
2059 if (!strcmp(se->compat->idstr, idstr) &&
2060 (instance_id == se->compat->instance_id ||
2061 instance_id == se->alias_id))
2068 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
2070 while(sub && sub->needed) {
2071 if (strcmp(idstr, sub->vmsd->name) == 0) {
2079 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
2082 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2085 uint8_t version_id, len, size;
2086 const VMStateDescription *sub_vmsd;
2088 len = qemu_peek_byte(f, 1);
2089 if (len < strlen(vmsd->name) + 1) {
2090 /* subsection name has be be "section_name/a" */
2093 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2099 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2100 /* it don't have a valid subsection name */
2103 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2104 if (sub_vmsd == NULL) {
2107 qemu_file_skip(f, 1); /* subsection */
2108 qemu_file_skip(f, 1); /* len */
2109 qemu_file_skip(f, len); /* idstr */
2110 version_id = qemu_get_be32(f);
2112 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2120 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2123 const VMStateSubsection *sub = vmsd->subsections;
2125 while (sub && sub->needed) {
2126 if (sub->needed(opaque)) {
2127 const VMStateDescription *vmsd = sub->vmsd;
2130 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2131 len = strlen(vmsd->name);
2132 qemu_put_byte(f, len);
2133 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2134 qemu_put_be32(f, vmsd->version_id);
2135 vmstate_save_state(f, vmsd, opaque);
2141 typedef struct LoadStateEntry {
2142 QLIST_ENTRY(LoadStateEntry) entry;
2148 int qemu_loadvm_state(QEMUFile *f)
2150 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2151 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2152 LoadStateEntry *le, *new_le;
2153 uint8_t section_type;
2157 if (qemu_savevm_state_blocked(NULL)) {
2161 v = qemu_get_be32(f);
2162 if (v != QEMU_VM_FILE_MAGIC)
2165 v = qemu_get_be32(f);
2166 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2167 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2170 if (v != QEMU_VM_FILE_VERSION)
2173 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2174 uint32_t instance_id, version_id, section_id;
2179 switch (section_type) {
2180 case QEMU_VM_SECTION_START:
2181 case QEMU_VM_SECTION_FULL:
2182 /* Read section start */
2183 section_id = qemu_get_be32(f);
2184 len = qemu_get_byte(f);
2185 qemu_get_buffer(f, (uint8_t *)idstr, len);
2187 instance_id = qemu_get_be32(f);
2188 version_id = qemu_get_be32(f);
2190 /* Find savevm section */
2191 se = find_se(idstr, instance_id);
2193 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2198 /* Validate version */
2199 if (version_id > se->version_id) {
2200 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2201 version_id, idstr, se->version_id);
2207 le = g_malloc0(sizeof(*le));
2210 le->section_id = section_id;
2211 le->version_id = version_id;
2212 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2214 ret = vmstate_load(f, le->se, le->version_id);
2216 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2217 instance_id, idstr);
2221 case QEMU_VM_SECTION_PART:
2222 case QEMU_VM_SECTION_END:
2223 section_id = qemu_get_be32(f);
2225 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2226 if (le->section_id == section_id) {
2231 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2236 ret = vmstate_load(f, le->se, le->version_id);
2238 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2244 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2250 cpu_synchronize_all_post_init();
2255 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2256 QLIST_REMOVE(le, entry);
2261 ret = qemu_file_get_error(f);
2267 static BlockDriverState *find_vmstate_bs(void)
2269 BlockDriverState *bs = NULL;
2270 while ((bs = bdrv_next(bs))) {
2271 if (bdrv_can_snapshot(bs)) {
2279 * Deletes snapshots of a given name in all opened images.
2281 static int del_existing_snapshots(Monitor *mon, const char *name)
2283 BlockDriverState *bs;
2284 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2288 while ((bs = bdrv_next(bs))) {
2289 if (bdrv_can_snapshot(bs) &&
2290 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2292 ret = bdrv_snapshot_delete(bs, name);
2295 "Error while deleting snapshot on '%s'\n",
2296 bdrv_get_device_name(bs));
2305 void do_savevm(Monitor *mon, const QDict *qdict)
2307 BlockDriverState *bs, *bs1;
2308 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2311 int saved_vm_running;
2312 uint64_t vm_state_size;
2315 const char *name = qdict_get_try_str(qdict, "name");
2317 /* Verify if there is a device that doesn't support snapshots and is writable */
2319 while ((bs = bdrv_next(bs))) {
2321 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2325 if (!bdrv_can_snapshot(bs)) {
2326 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2327 bdrv_get_device_name(bs));
2332 bs = find_vmstate_bs();
2334 monitor_printf(mon, "No block device can accept snapshots\n");
2338 saved_vm_running = runstate_is_running();
2339 vm_stop(RUN_STATE_SAVE_VM);
2341 memset(sn, 0, sizeof(*sn));
2343 /* fill auxiliary fields */
2344 qemu_gettimeofday(&tv);
2345 sn->date_sec = tv.tv_sec;
2346 sn->date_nsec = tv.tv_usec * 1000;
2347 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2350 ret = bdrv_snapshot_find(bs, old_sn, name);
2352 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2353 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2355 pstrcpy(sn->name, sizeof(sn->name), name);
2358 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2359 localtime_r((const time_t *)&tv.tv_sec, &tm);
2360 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2363 /* Delete old snapshots of the same name */
2364 if (name && del_existing_snapshots(mon, name) < 0) {
2368 /* save the VM state */
2369 f = qemu_fopen_bdrv(bs, 1);
2371 monitor_printf(mon, "Could not open VM state file\n");
2374 ret = qemu_savevm_state(f);
2375 vm_state_size = qemu_ftell(f);
2378 monitor_printf(mon, "Error %d while writing VM\n", ret);
2382 /* create the snapshots */
2385 while ((bs1 = bdrv_next(bs1))) {
2386 if (bdrv_can_snapshot(bs1)) {
2387 /* Write VM state size only to the image that contains the state */
2388 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2389 ret = bdrv_snapshot_create(bs1, sn);
2391 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2392 bdrv_get_device_name(bs1));
2398 if (saved_vm_running)
2402 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2405 int saved_vm_running;
2408 saved_vm_running = runstate_is_running();
2409 vm_stop(RUN_STATE_SAVE_VM);
2411 f = qemu_fopen(filename, "wb");
2413 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2416 ret = qemu_save_device_state(f);
2419 error_set(errp, QERR_IO_ERROR);
2423 if (saved_vm_running)
2427 int load_vmstate(const char *name)
2429 BlockDriverState *bs, *bs_vm_state;
2430 QEMUSnapshotInfo sn;
2434 bs_vm_state = find_vmstate_bs();
2436 error_report("No block device supports snapshots");
2440 /* Don't even try to load empty VM states */
2441 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2444 } else if (sn.vm_state_size == 0) {
2445 error_report("This is a disk-only snapshot. Revert to it offline "
2450 /* Verify if there is any device that doesn't support snapshots and is
2451 writable and check if the requested snapshot is available too. */
2453 while ((bs = bdrv_next(bs))) {
2455 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2459 if (!bdrv_can_snapshot(bs)) {
2460 error_report("Device '%s' is writable but does not support snapshots.",
2461 bdrv_get_device_name(bs));
2465 ret = bdrv_snapshot_find(bs, &sn, name);
2467 error_report("Device '%s' does not have the requested snapshot '%s'",
2468 bdrv_get_device_name(bs), name);
2473 /* Flush all IO requests so they don't interfere with the new state. */
2477 while ((bs = bdrv_next(bs))) {
2478 if (bdrv_can_snapshot(bs)) {
2479 ret = bdrv_snapshot_goto(bs, name);
2481 error_report("Error %d while activating snapshot '%s' on '%s'",
2482 ret, name, bdrv_get_device_name(bs));
2488 /* restore the VM state */
2489 f = qemu_fopen_bdrv(bs_vm_state, 0);
2491 error_report("Could not open VM state file");
2495 qemu_system_reset(VMRESET_SILENT);
2496 ret = qemu_loadvm_state(f);
2500 error_report("Error %d while loading VM state", ret);
2507 void do_delvm(Monitor *mon, const QDict *qdict)
2509 BlockDriverState *bs, *bs1;
2511 const char *name = qdict_get_str(qdict, "name");
2513 bs = find_vmstate_bs();
2515 monitor_printf(mon, "No block device supports snapshots\n");
2520 while ((bs1 = bdrv_next(bs1))) {
2521 if (bdrv_can_snapshot(bs1)) {
2522 ret = bdrv_snapshot_delete(bs1, name);
2524 if (ret == -ENOTSUP)
2526 "Snapshots not supported on device '%s'\n",
2527 bdrv_get_device_name(bs1));
2529 monitor_printf(mon, "Error %d while deleting snapshot on "
2530 "'%s'\n", ret, bdrv_get_device_name(bs1));
2536 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2538 BlockDriverState *bs, *bs1;
2539 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2540 int nb_sns, i, ret, available;
2542 int *available_snapshots;
2544 bs = find_vmstate_bs();
2546 monitor_printf(mon, "No available block device supports snapshots\n");
2550 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2552 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2557 monitor_printf(mon, "There is no snapshot available.\n");
2561 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2563 for (i = 0; i < nb_sns; i++) {
2568 while ((bs1 = bdrv_next(bs1))) {
2569 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2570 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2579 available_snapshots[total] = i;
2585 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL);
2586 monitor_printf(mon, "\n");
2587 for (i = 0; i < total; i++) {
2588 sn = &sn_tab[available_snapshots[i]];
2589 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn);
2590 monitor_printf(mon, "\n");
2593 monitor_printf(mon, "There is no suitable snapshot available\n");
2597 g_free(available_snapshots);
2601 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2603 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2604 memory_region_name(mr), dev);
2607 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2609 /* Nothing do to while the implementation is in RAMBlock */
2612 void vmstate_register_ram_global(MemoryRegion *mr)
2614 vmstate_register_ram(mr, NULL);