]> Git Repo - qemu.git/blob - hw/spapr.c
PPC: spapr: Rework VGA select logic
[qemu.git] / hw / spapr.c
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
48 #include "vga-pci.h"
49
50 #include "exec-memory.h"
51
52 #include <libfdt.h>
53
54 /* SLOF memory layout:
55  *
56  * SLOF raw image loaded at 0, copies its romfs right below the flat
57  * device-tree, then position SLOF itself 31M below that
58  *
59  * So we set FW_OVERHEAD to 40MB which should account for all of that
60  * and more
61  *
62  * We load our kernel at 4M, leaving space for SLOF initial image
63  */
64 #define FDT_MAX_SIZE            0x10000
65 #define RTAS_MAX_SIZE           0x10000
66 #define FW_MAX_SIZE             0x400000
67 #define FW_FILE_NAME            "slof.bin"
68 #define FW_OVERHEAD             0x2800000
69 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
70
71 #define MIN_RMA_SLOF            128UL
72
73 #define TIMEBASE_FREQ           512000000ULL
74
75 #define MAX_CPUS                256
76 #define XICS_IRQS               1024
77
78 #define SPAPR_PCI_BUID          0x800000020000001ULL
79 #define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
80 #define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
81 #define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
82
83 #define PHANDLE_XICP            0x00001111
84
85 sPAPREnvironment *spapr;
86 bool spapr_has_graphics;
87
88 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
89                             enum xics_irq_type type)
90 {
91     uint32_t irq;
92     qemu_irq qirq;
93
94     if (hint) {
95         irq = hint;
96         /* FIXME: we should probably check for collisions somehow */
97     } else {
98         irq = spapr->next_irq++;
99     }
100
101     qirq = xics_assign_irq(spapr->icp, irq, type);
102     if (!qirq) {
103         return NULL;
104     }
105
106     if (irq_num) {
107         *irq_num = irq;
108     }
109
110     return qirq;
111 }
112
113 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
114 {
115     int ret = 0, offset;
116     CPUPPCState *env;
117     char cpu_model[32];
118     int smt = kvmppc_smt_threads();
119
120     assert(spapr->cpu_model);
121
122     for (env = first_cpu; env != NULL; env = env->next_cpu) {
123         uint32_t associativity[] = {cpu_to_be32(0x5),
124                                     cpu_to_be32(0x0),
125                                     cpu_to_be32(0x0),
126                                     cpu_to_be32(0x0),
127                                     cpu_to_be32(env->numa_node),
128                                     cpu_to_be32(env->cpu_index)};
129
130         if ((env->cpu_index % smt) != 0) {
131             continue;
132         }
133
134         snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
135                  env->cpu_index);
136
137         offset = fdt_path_offset(fdt, cpu_model);
138         if (offset < 0) {
139             return offset;
140         }
141
142         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
143                           sizeof(associativity));
144         if (ret < 0) {
145             return ret;
146         }
147     }
148     return ret;
149 }
150
151
152 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
153                                      size_t maxsize)
154 {
155     size_t maxcells = maxsize / sizeof(uint32_t);
156     int i, j, count;
157     uint32_t *p = prop;
158
159     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
160         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
161
162         if (!sps->page_shift) {
163             break;
164         }
165         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
166             if (sps->enc[count].page_shift == 0) {
167                 break;
168             }
169         }
170         if ((p - prop) >= (maxcells - 3 - count * 2)) {
171             break;
172         }
173         *(p++) = cpu_to_be32(sps->page_shift);
174         *(p++) = cpu_to_be32(sps->slb_enc);
175         *(p++) = cpu_to_be32(count);
176         for (j = 0; j < count; j++) {
177             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
178             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
179         }
180     }
181
182     return (p - prop) * sizeof(uint32_t);
183 }
184
185 static void *spapr_create_fdt_skel(const char *cpu_model,
186                                    target_phys_addr_t rma_size,
187                                    target_phys_addr_t initrd_base,
188                                    target_phys_addr_t initrd_size,
189                                    target_phys_addr_t kernel_size,
190                                    const char *boot_device,
191                                    const char *kernel_cmdline,
192                                    long hash_shift)
193 {
194     void *fdt;
195     CPUPPCState *env;
196     uint64_t mem_reg_property[2];
197     uint32_t start_prop = cpu_to_be32(initrd_base);
198     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
199     uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
200     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
201         "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
202     char qemu_hypertas_prop[] = "hcall-memop1";
203     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
204     int i;
205     char *modelname;
206     int smt = kvmppc_smt_threads();
207     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
208     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
209     uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0), cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0)};
212     char mem_name[32];
213     target_phys_addr_t node0_size, mem_start;
214
215 #define _FDT(exp) \
216     do { \
217         int ret = (exp);                                           \
218         if (ret < 0) {                                             \
219             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
220                     #exp, fdt_strerror(ret));                      \
221             exit(1);                                               \
222         }                                                          \
223     } while (0)
224
225     fdt = g_malloc0(FDT_MAX_SIZE);
226     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
227
228     if (kernel_size) {
229         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
230     }
231     if (initrd_size) {
232         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
233     }
234     _FDT((fdt_finish_reservemap(fdt)));
235
236     /* Root node */
237     _FDT((fdt_begin_node(fdt, "")));
238     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
239     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
240
241     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
242     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
243
244     /* /chosen */
245     _FDT((fdt_begin_node(fdt, "chosen")));
246
247     /* Set Form1_affinity */
248     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
249
250     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
251     _FDT((fdt_property(fdt, "linux,initrd-start",
252                        &start_prop, sizeof(start_prop))));
253     _FDT((fdt_property(fdt, "linux,initrd-end",
254                        &end_prop, sizeof(end_prop))));
255     if (kernel_size) {
256         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
257                               cpu_to_be64(kernel_size) };
258
259         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
260     }
261     _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
262     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
263     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
264     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
265
266     _FDT((fdt_end_node(fdt)));
267
268     /* memory node(s) */
269     node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
270     if (rma_size > node0_size) {
271         rma_size = node0_size;
272     }
273
274     /* RMA */
275     mem_reg_property[0] = 0;
276     mem_reg_property[1] = cpu_to_be64(rma_size);
277     _FDT((fdt_begin_node(fdt, "memory@0")));
278     _FDT((fdt_property_string(fdt, "device_type", "memory")));
279     _FDT((fdt_property(fdt, "reg", mem_reg_property,
280         sizeof(mem_reg_property))));
281     _FDT((fdt_property(fdt, "ibm,associativity", associativity,
282         sizeof(associativity))));
283     _FDT((fdt_end_node(fdt)));
284
285     /* RAM: Node 0 */
286     if (node0_size > rma_size) {
287         mem_reg_property[0] = cpu_to_be64(rma_size);
288         mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
289
290         sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
291         _FDT((fdt_begin_node(fdt, mem_name)));
292         _FDT((fdt_property_string(fdt, "device_type", "memory")));
293         _FDT((fdt_property(fdt, "reg", mem_reg_property,
294                            sizeof(mem_reg_property))));
295         _FDT((fdt_property(fdt, "ibm,associativity", associativity,
296                            sizeof(associativity))));
297         _FDT((fdt_end_node(fdt)));
298     }
299
300     /* RAM: Node 1 and beyond */
301     mem_start = node0_size;
302     for (i = 1; i < nb_numa_nodes; i++) {
303         mem_reg_property[0] = cpu_to_be64(mem_start);
304         mem_reg_property[1] = cpu_to_be64(node_mem[i]);
305         associativity[3] = associativity[4] = cpu_to_be32(i);
306         sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
307         _FDT((fdt_begin_node(fdt, mem_name)));
308         _FDT((fdt_property_string(fdt, "device_type", "memory")));
309         _FDT((fdt_property(fdt, "reg", mem_reg_property,
310             sizeof(mem_reg_property))));
311         _FDT((fdt_property(fdt, "ibm,associativity", associativity,
312             sizeof(associativity))));
313         _FDT((fdt_end_node(fdt)));
314         mem_start += node_mem[i];
315     }
316
317     /* cpus */
318     _FDT((fdt_begin_node(fdt, "cpus")));
319
320     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
321     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
322
323     modelname = g_strdup(cpu_model);
324
325     for (i = 0; i < strlen(modelname); i++) {
326         modelname[i] = toupper(modelname[i]);
327     }
328
329     /* This is needed during FDT finalization */
330     spapr->cpu_model = g_strdup(modelname);
331
332     for (env = first_cpu; env != NULL; env = env->next_cpu) {
333         int index = env->cpu_index;
334         uint32_t servers_prop[smp_threads];
335         uint32_t gservers_prop[smp_threads * 2];
336         char *nodename;
337         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
338                            0xffffffff, 0xffffffff};
339         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
340         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
341         uint32_t page_sizes_prop[64];
342         size_t page_sizes_prop_size;
343
344         if ((index % smt) != 0) {
345             continue;
346         }
347
348         if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
349             fprintf(stderr, "Allocation failure\n");
350             exit(1);
351         }
352
353         _FDT((fdt_begin_node(fdt, nodename)));
354
355         free(nodename);
356
357         _FDT((fdt_property_cell(fdt, "reg", index)));
358         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
359
360         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
361         _FDT((fdt_property_cell(fdt, "dcache-block-size",
362                                 env->dcache_line_size)));
363         _FDT((fdt_property_cell(fdt, "icache-block-size",
364                                 env->icache_line_size)));
365         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
366         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
367         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
368         _FDT((fdt_property(fdt, "ibm,pft-size",
369                            pft_size_prop, sizeof(pft_size_prop))));
370         _FDT((fdt_property_string(fdt, "status", "okay")));
371         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
372
373         /* Build interrupt servers and gservers properties */
374         for (i = 0; i < smp_threads; i++) {
375             servers_prop[i] = cpu_to_be32(index + i);
376             /* Hack, direct the group queues back to cpu 0 */
377             gservers_prop[i*2] = cpu_to_be32(index + i);
378             gservers_prop[i*2 + 1] = 0;
379         }
380         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
381                            servers_prop, sizeof(servers_prop))));
382         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
383                            gservers_prop, sizeof(gservers_prop))));
384
385         if (env->mmu_model & POWERPC_MMU_1TSEG) {
386             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
387                                segs, sizeof(segs))));
388         }
389
390         /* Advertise VMX/VSX (vector extensions) if available
391          *   0 / no property == no vector extensions
392          *   1               == VMX / Altivec available
393          *   2               == VSX available */
394         if (env->insns_flags & PPC_ALTIVEC) {
395             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
396
397             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
398         }
399
400         /* Advertise DFP (Decimal Floating Point) if available
401          *   0 / no property == no DFP
402          *   1               == DFP available */
403         if (env->insns_flags2 & PPC2_DFP) {
404             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
405         }
406
407         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
408                                                       sizeof(page_sizes_prop));
409         if (page_sizes_prop_size) {
410             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
411                                page_sizes_prop, page_sizes_prop_size)));
412         }
413
414         _FDT((fdt_end_node(fdt)));
415     }
416
417     g_free(modelname);
418
419     _FDT((fdt_end_node(fdt)));
420
421     /* RTAS */
422     _FDT((fdt_begin_node(fdt, "rtas")));
423
424     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
425                        sizeof(hypertas_prop))));
426     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
427                        sizeof(qemu_hypertas_prop))));
428
429     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430         refpoints, sizeof(refpoints))));
431
432     _FDT((fdt_end_node(fdt)));
433
434     /* interrupt controller */
435     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
436
437     _FDT((fdt_property_string(fdt, "device_type",
438                               "PowerPC-External-Interrupt-Presentation")));
439     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
440     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
441     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
442                        interrupt_server_ranges_prop,
443                        sizeof(interrupt_server_ranges_prop))));
444     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
445     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
446     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
447
448     _FDT((fdt_end_node(fdt)));
449
450     /* vdevice */
451     _FDT((fdt_begin_node(fdt, "vdevice")));
452
453     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
454     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
455     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
456     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
457     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
458     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
459
460     _FDT((fdt_end_node(fdt)));
461
462     _FDT((fdt_end_node(fdt))); /* close root node */
463     _FDT((fdt_finish(fdt)));
464
465     return fdt;
466 }
467
468 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
469                                target_phys_addr_t fdt_addr,
470                                target_phys_addr_t rtas_addr,
471                                target_phys_addr_t rtas_size)
472 {
473     int ret;
474     void *fdt;
475     sPAPRPHBState *phb;
476
477     fdt = g_malloc(FDT_MAX_SIZE);
478
479     /* open out the base tree into a temp buffer for the final tweaks */
480     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
481
482     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
483     if (ret < 0) {
484         fprintf(stderr, "couldn't setup vio devices in fdt\n");
485         exit(1);
486     }
487
488     QLIST_FOREACH(phb, &spapr->phbs, list) {
489         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
490     }
491
492     if (ret < 0) {
493         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
494         exit(1);
495     }
496
497     /* RTAS */
498     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
499     if (ret < 0) {
500         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
501     }
502
503     /* Advertise NUMA via ibm,associativity */
504     if (nb_numa_nodes > 1) {
505         ret = spapr_set_associativity(fdt, spapr);
506         if (ret < 0) {
507             fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
508         }
509     }
510
511     if (!spapr_has_graphics) {
512         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
513     }
514
515     _FDT((fdt_pack(fdt)));
516
517     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
518         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
519                  fdt_totalsize(fdt), FDT_MAX_SIZE);
520         exit(1);
521     }
522
523     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
524
525     g_free(fdt);
526 }
527
528 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
529 {
530     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
531 }
532
533 static void emulate_spapr_hypercall(CPUPPCState *env)
534 {
535     env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
536 }
537
538 static void spapr_reset(void *opaque)
539 {
540     sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
541
542     fprintf(stderr, "sPAPR reset\n");
543
544     /* flush out the hash table */
545     memset(spapr->htab, 0, spapr->htab_size);
546
547     /* Load the fdt */
548     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
549                        spapr->rtas_size);
550
551     /* Set up the entry state */
552     first_cpu->gpr[3] = spapr->fdt_addr;
553     first_cpu->gpr[5] = 0;
554     first_cpu->halted = 0;
555     first_cpu->nip = spapr->entry_point;
556
557 }
558
559 static void spapr_cpu_reset(void *opaque)
560 {
561     PowerPCCPU *cpu = opaque;
562
563     cpu_reset(CPU(cpu));
564 }
565
566 /* Returns whether we want to use VGA or not */
567 static int spapr_vga_init(PCIBus *pci_bus)
568 {
569     switch (vga_interface_type) {
570     case VGA_STD:
571         pci_vga_init(pci_bus);
572         return 1;
573     case VGA_NONE:
574         return 0;
575     default:
576         fprintf(stderr, "This vga model is not supported,"
577                 "currently it only supports -vga std\n");
578         exit(0);
579         break;
580     }
581 }
582
583 /* pSeries LPAR / sPAPR hardware init */
584 static void ppc_spapr_init(ram_addr_t ram_size,
585                            const char *boot_device,
586                            const char *kernel_filename,
587                            const char *kernel_cmdline,
588                            const char *initrd_filename,
589                            const char *cpu_model)
590 {
591     PowerPCCPU *cpu;
592     CPUPPCState *env;
593     int i;
594     MemoryRegion *sysmem = get_system_memory();
595     MemoryRegion *ram = g_new(MemoryRegion, 1);
596     target_phys_addr_t rma_alloc_size, rma_size;
597     uint32_t initrd_base = 0;
598     long kernel_size = 0, initrd_size = 0;
599     long load_limit, rtas_limit, fw_size;
600     long pteg_shift = 17;
601     char *filename;
602
603     spapr = g_malloc0(sizeof(*spapr));
604     QLIST_INIT(&spapr->phbs);
605
606     cpu_ppc_hypercall = emulate_spapr_hypercall;
607
608     /* Allocate RMA if necessary */
609     rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
610
611     if (rma_alloc_size == -1) {
612         hw_error("qemu: Unable to create RMA\n");
613         exit(1);
614     }
615     if (rma_alloc_size && (rma_alloc_size < ram_size)) {
616         rma_size = rma_alloc_size;
617     } else {
618         rma_size = ram_size;
619     }
620
621     /* We place the device tree and RTAS just below either the top of the RMA,
622      * or just below 2GB, whichever is lowere, so that it can be
623      * processed with 32-bit real mode code if necessary */
624     rtas_limit = MIN(rma_size, 0x80000000);
625     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
626     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
627     load_limit = spapr->fdt_addr - FW_OVERHEAD;
628
629     /* init CPUs */
630     if (cpu_model == NULL) {
631         cpu_model = kvm_enabled() ? "host" : "POWER7";
632     }
633     for (i = 0; i < smp_cpus; i++) {
634         cpu = cpu_ppc_init(cpu_model);
635         if (cpu == NULL) {
636             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
637             exit(1);
638         }
639         env = &cpu->env;
640
641         /* Set time-base frequency to 512 MHz */
642         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
643         qemu_register_reset(spapr_cpu_reset, cpu);
644
645         env->hreset_vector = 0x60;
646         env->hreset_excp_prefix = 0;
647         env->gpr[3] = env->cpu_index;
648     }
649
650     /* allocate RAM */
651     spapr->ram_limit = ram_size;
652     if (spapr->ram_limit > rma_alloc_size) {
653         ram_addr_t nonrma_base = rma_alloc_size;
654         ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
655
656         memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
657         vmstate_register_ram_global(ram);
658         memory_region_add_subregion(sysmem, nonrma_base, ram);
659     }
660
661     /* allocate hash page table.  For now we always make this 16mb,
662      * later we should probably make it scale to the size of guest
663      * RAM */
664     spapr->htab_size = 1ULL << (pteg_shift + 7);
665     spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
666
667     for (env = first_cpu; env != NULL; env = env->next_cpu) {
668         env->external_htab = spapr->htab;
669         env->htab_base = -1;
670         env->htab_mask = spapr->htab_size - 1;
671
672         /* Tell KVM that we're in PAPR mode */
673         env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
674                              ((pteg_shift + 7) - 18);
675         env->spr[SPR_HIOR] = 0;
676
677         if (kvm_enabled()) {
678             kvmppc_set_papr(env);
679         }
680     }
681
682     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
683     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
684                                            rtas_limit - spapr->rtas_addr);
685     if (spapr->rtas_size < 0) {
686         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
687         exit(1);
688     }
689     if (spapr->rtas_size > RTAS_MAX_SIZE) {
690         hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
691                  spapr->rtas_size, RTAS_MAX_SIZE);
692         exit(1);
693     }
694     g_free(filename);
695
696
697     /* Set up Interrupt Controller */
698     spapr->icp = xics_system_init(XICS_IRQS);
699     spapr->next_irq = 16;
700
701     /* Set up IOMMU */
702     spapr_iommu_init();
703
704     /* Set up VIO bus */
705     spapr->vio_bus = spapr_vio_bus_init();
706
707     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
708         if (serial_hds[i]) {
709             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
710         }
711     }
712
713     /* Set up PCI */
714     spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
715                      SPAPR_PCI_MEM_WIN_ADDR,
716                      SPAPR_PCI_MEM_WIN_SIZE,
717                      SPAPR_PCI_IO_WIN_ADDR);
718
719     for (i = 0; i < nb_nics; i++) {
720         NICInfo *nd = &nd_table[i];
721
722         if (!nd->model) {
723             nd->model = g_strdup("ibmveth");
724         }
725
726         if (strcmp(nd->model, "ibmveth") == 0) {
727             spapr_vlan_create(spapr->vio_bus, nd);
728         } else {
729             pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
730         }
731     }
732
733     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
734         spapr_vscsi_create(spapr->vio_bus);
735     }
736
737     /* Graphics */
738     if (spapr_vga_init(QLIST_FIRST(&spapr->phbs)->host_state.bus)) {
739         spapr_has_graphics = true;
740     }
741
742     if (rma_size < (MIN_RMA_SLOF << 20)) {
743         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
744                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
745         exit(1);
746     }
747
748     fprintf(stderr, "sPAPR memory map:\n");
749     fprintf(stderr, "RTAS                 : 0x%08lx..%08lx\n",
750             (unsigned long)spapr->rtas_addr,
751             (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
752     fprintf(stderr, "FDT                  : 0x%08lx..%08lx\n",
753             (unsigned long)spapr->fdt_addr,
754             (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
755
756     if (kernel_filename) {
757         uint64_t lowaddr = 0;
758
759         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
760                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
761         if (kernel_size < 0) {
762             kernel_size = load_image_targphys(kernel_filename,
763                                               KERNEL_LOAD_ADDR,
764                                               load_limit - KERNEL_LOAD_ADDR);
765         }
766         if (kernel_size < 0) {
767             fprintf(stderr, "qemu: could not load kernel '%s'\n",
768                     kernel_filename);
769             exit(1);
770         }
771         fprintf(stderr, "Kernel               : 0x%08x..%08lx\n",
772                 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
773
774         /* load initrd */
775         if (initrd_filename) {
776             /* Try to locate the initrd in the gap between the kernel
777              * and the firmware. Add a bit of space just in case
778              */
779             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
780             initrd_size = load_image_targphys(initrd_filename, initrd_base,
781                                               load_limit - initrd_base);
782             if (initrd_size < 0) {
783                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
784                         initrd_filename);
785                 exit(1);
786             }
787             fprintf(stderr, "Ramdisk              : 0x%08lx..%08lx\n",
788                     (long)initrd_base, (long)(initrd_base + initrd_size - 1));
789         } else {
790             initrd_base = 0;
791             initrd_size = 0;
792         }
793     }
794
795     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
796     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
797     if (fw_size < 0) {
798         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
799         exit(1);
800     }
801     g_free(filename);
802     fprintf(stderr, "Firmware load        : 0x%08x..%08lx\n",
803             0, fw_size);
804     fprintf(stderr, "Firmware runtime     : 0x%08lx..%08lx\n",
805             load_limit, (unsigned long)spapr->fdt_addr);
806
807     spapr->entry_point = 0x100;
808
809     /* SLOF will startup the secondary CPUs using RTAS */
810     for (env = first_cpu; env != NULL; env = env->next_cpu) {
811         env->halted = 1;
812     }
813
814     /* Prepare the device tree */
815     spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
816                                             initrd_base, initrd_size,
817                                             kernel_size,
818                                             boot_device, kernel_cmdline,
819                                             pteg_shift + 7);
820     assert(spapr->fdt_skel != NULL);
821
822     qemu_register_reset(spapr_reset, spapr);
823 }
824
825 static QEMUMachine spapr_machine = {
826     .name = "pseries",
827     .desc = "pSeries Logical Partition (PAPR compliant)",
828     .init = ppc_spapr_init,
829     .max_cpus = MAX_CPUS,
830     .no_parallel = 1,
831     .use_scsi = 1,
832 };
833
834 static void spapr_machine_init(void)
835 {
836     qemu_register_machine(&spapr_machine);
837 }
838
839 machine_init(spapr_machine_init);
This page took 0.072443 seconds and 4 git commands to generate.