2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
34 #include "hw/fw-path-provider.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120 const char *type_ics,
121 int nr_irqs, Error **errp)
123 Error *local_err = NULL;
126 obj = object_new(type_ics);
127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
134 object_property_set_bool(obj, true, "realized", &local_err);
139 return ICS_SIMPLE(obj);
142 error_propagate(errp, local_err);
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156 .name = "icp/server",
158 .minimum_version_id = 1,
159 .needed = pre_2_10_vmstate_dummy_icp_needed,
160 .fields = (VMStateField[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177 (void *)(uintptr_t) i);
180 static int xics_max_server_number(sPAPRMachineState *spapr)
183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
191 if (machine_kernel_irqchip_allowed(machine) &&
192 !xics_kvm_init(spapr, errp)) {
193 spapr->icp_type = TYPE_KVM_ICP;
194 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
196 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
203 xics_spapr_init(spapr);
204 spapr->icp_type = TYPE_ICP;
205 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
216 uint32_t servers_prop[smt_threads];
217 uint32_t gservers_prop[smt_threads * 2];
218 int index = spapr_get_vcpu_id(cpu);
220 if (cpu->compat_pvr) {
221 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
227 /* Build interrupt servers and gservers properties */
228 for (i = 0; i < smt_threads; i++) {
229 servers_prop[i] = cpu_to_be32(index + i);
230 /* Hack, direct the group queues back to cpu 0 */
231 gservers_prop[i*2] = cpu_to_be32(index + i);
232 gservers_prop[i*2 + 1] = 0;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235 servers_prop, sizeof(servers_prop));
239 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240 gservers_prop, sizeof(gservers_prop));
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
247 int index = spapr_get_vcpu_id(cpu);
248 uint32_t associativity[] = {cpu_to_be32(0x5),
252 cpu_to_be32(cpu->node_id),
255 /* Advertise NUMA via ibm,associativity */
256 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257 sizeof(associativity));
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
263 void *fdt, int offset,
266 CPUPPCState *env = &cpu->env;
267 uint8_t pa_features_206[] = { 6, 0,
268 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
269 uint8_t pa_features_207[] = { 24, 0,
270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
274 uint8_t pa_features_300[] = { 66, 0,
275 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
276 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
277 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
279 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
281 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
282 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
283 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
284 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
286 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
287 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
288 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
289 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
290 /* 42: PM, 44: PC RA, 46: SC vec'd */
291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
292 /* 48: SIMD, 50: QP BFP, 52: String */
293 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
294 /* 54: DecFP, 56: DecI, 58: SHA */
295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
296 /* 60: NM atomic, 62: RNG */
297 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
299 uint8_t *pa_features = NULL;
302 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
303 pa_features = pa_features_206;
304 pa_size = sizeof(pa_features_206);
306 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
307 pa_features = pa_features_207;
308 pa_size = sizeof(pa_features_207);
310 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
311 pa_features = pa_features_300;
312 pa_size = sizeof(pa_features_300);
318 if (env->ci_large_pages) {
320 * Note: we keep CI large pages off by default because a 64K capable
321 * guest provisioned with large pages might otherwise try to map a qemu
322 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
323 * even if that qemu runs on a 4k host.
324 * We dd this bit back here if we are confident this is not an issue
326 pa_features[3] |= 0x20;
328 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
329 pa_features[24] |= 0x80; /* Transactional memory support */
331 if (legacy_guest && pa_size > 40) {
332 /* Workaround for broken kernels that attempt (guest) radix
333 * mode when they can't handle it, if they see the radix bit set
334 * in pa-features. So hide it from them. */
335 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
338 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
343 int ret = 0, offset, cpus_offset;
346 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
349 PowerPCCPU *cpu = POWERPC_CPU(cs);
350 DeviceClass *dc = DEVICE_GET_CLASS(cs);
351 int index = spapr_get_vcpu_id(cpu);
352 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
354 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
358 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
360 cpus_offset = fdt_path_offset(fdt, "/cpus");
361 if (cpus_offset < 0) {
362 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
363 if (cpus_offset < 0) {
367 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
369 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
375 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
376 pft_size_prop, sizeof(pft_size_prop));
381 if (nb_numa_nodes > 1) {
382 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
388 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
393 spapr_populate_pa_features(spapr, cpu, fdt, offset,
394 spapr->cas_legacy_guest_workaround);
399 static hwaddr spapr_node0_size(MachineState *machine)
403 for (i = 0; i < nb_numa_nodes; ++i) {
404 if (numa_info[i].node_mem) {
405 return MIN(pow2floor(numa_info[i].node_mem),
410 return machine->ram_size;
413 static void add_str(GString *s, const gchar *s1)
415 g_string_append_len(s, s1, strlen(s1) + 1);
418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
421 uint32_t associativity[] = {
422 cpu_to_be32(0x4), /* length */
423 cpu_to_be32(0x0), cpu_to_be32(0x0),
424 cpu_to_be32(0x0), cpu_to_be32(nodeid)
427 uint64_t mem_reg_property[2];
430 mem_reg_property[0] = cpu_to_be64(start);
431 mem_reg_property[1] = cpu_to_be64(size);
433 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
434 off = fdt_add_subnode(fdt, 0, mem_name);
436 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
437 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
438 sizeof(mem_reg_property))));
439 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
440 sizeof(associativity))));
444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
446 MachineState *machine = MACHINE(spapr);
447 hwaddr mem_start, node_size;
448 int i, nb_nodes = nb_numa_nodes;
449 NodeInfo *nodes = numa_info;
452 /* No NUMA nodes, assume there is just one node with whole RAM */
453 if (!nb_numa_nodes) {
455 ramnode.node_mem = machine->ram_size;
459 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
460 if (!nodes[i].node_mem) {
463 if (mem_start >= machine->ram_size) {
466 node_size = nodes[i].node_mem;
467 if (node_size > machine->ram_size - mem_start) {
468 node_size = machine->ram_size - mem_start;
472 /* spapr_machine_init() checks for rma_size <= node0_size
474 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
475 mem_start += spapr->rma_size;
476 node_size -= spapr->rma_size;
478 for ( ; node_size; ) {
479 hwaddr sizetmp = pow2floor(node_size);
481 /* mem_start != 0 here */
482 if (ctzl(mem_start) < ctzl(sizetmp)) {
483 sizetmp = 1ULL << ctzl(mem_start);
486 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
487 node_size -= sizetmp;
488 mem_start += sizetmp;
495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
496 sPAPRMachineState *spapr)
498 PowerPCCPU *cpu = POWERPC_CPU(cs);
499 CPUPPCState *env = &cpu->env;
500 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
501 int index = spapr_get_vcpu_id(cpu);
502 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
503 0xffffffff, 0xffffffff};
504 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
505 : SPAPR_TIMEBASE_FREQ;
506 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
507 uint32_t page_sizes_prop[64];
508 size_t page_sizes_prop_size;
509 uint32_t vcpus_per_socket = smp_threads * smp_cores;
510 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
511 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
512 sPAPRDRConnector *drc;
514 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
517 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
519 drc_index = spapr_drc_index(drc);
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
523 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
524 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
526 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
527 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
528 env->dcache_line_size)));
529 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
530 env->dcache_line_size)));
531 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
532 env->icache_line_size)));
533 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
534 env->icache_line_size)));
536 if (pcc->l1_dcache_size) {
537 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
538 pcc->l1_dcache_size)));
540 warn_report("Unknown L1 dcache size for cpu");
542 if (pcc->l1_icache_size) {
543 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
544 pcc->l1_icache_size)));
546 warn_report("Unknown L1 icache size for cpu");
549 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
550 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
551 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
552 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
553 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
554 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
556 if (env->spr_cb[SPR_PURR].oea_read) {
557 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
560 if (env->mmu_model & POWERPC_MMU_1TSEG) {
561 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
562 segs, sizeof(segs))));
565 /* Advertise VSX (vector extensions) if available
566 * 1 == VMX / Altivec available
569 * Only CPUs for which we create core types in spapr_cpu_core.c
570 * are possible, and all of those have VMX */
571 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
577 /* Advertise DFP (Decimal Floating Point) if available
578 * 0 / no property == no DFP
579 * 1 == DFP available */
580 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
581 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
584 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
585 sizeof(page_sizes_prop));
586 if (page_sizes_prop_size) {
587 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
588 page_sizes_prop, page_sizes_prop_size)));
591 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
593 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
594 cs->cpu_index / vcpus_per_socket)));
596 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
597 pft_size_prop, sizeof(pft_size_prop))));
599 if (nb_numa_nodes > 1) {
600 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
603 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
605 if (pcc->radix_page_info) {
606 for (i = 0; i < pcc->radix_page_info->count; i++) {
607 radix_AP_encodings[i] =
608 cpu_to_be32(pcc->radix_page_info->entries[i]);
610 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
612 pcc->radix_page_info->count *
613 sizeof(radix_AP_encodings[0]))));
617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
623 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
626 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
629 * We walk the CPUs in reverse order to ensure that CPU DT nodes
630 * created by fdt_add_subnode() end up in the right order in FDT
631 * for the guest kernel the enumerate the CPUs correctly.
633 CPU_FOREACH_REVERSE(cs) {
634 PowerPCCPU *cpu = POWERPC_CPU(cs);
635 int index = spapr_get_vcpu_id(cpu);
636 DeviceClass *dc = DEVICE_GET_CLASS(cs);
639 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
643 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
644 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
647 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
654 MemoryDeviceInfoList *info;
656 for (info = list; info; info = info->next) {
657 MemoryDeviceInfo *value = info->value;
659 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
660 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
662 if (pcdimm_info->addr >= addr &&
663 addr < (pcdimm_info->addr + pcdimm_info->size)) {
664 return pcdimm_info->node;
673 * Adds ibm,dynamic-reconfiguration-memory node.
674 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
675 * of this device tree node.
677 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
679 MachineState *machine = MACHINE(spapr);
681 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
682 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
683 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
684 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
685 memory_region_size(&spapr->hotplug_memory.mr)) /
687 uint32_t *int_buf, *cur_index, buf_len;
688 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
689 MemoryDeviceInfoList *dimms = NULL;
692 * Don't create the node if there is no hotpluggable memory
694 if (machine->ram_size == machine->maxram_size) {
699 * Allocate enough buffer size to fit in ibm,dynamic-memory
700 * or ibm,associativity-lookup-arrays
702 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
704 cur_index = int_buf = g_malloc0(buf_len);
706 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
708 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
709 sizeof(prop_lmb_size));
714 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
719 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
724 if (hotplug_lmb_start) {
725 dimms = qmp_pc_dimm_device_list();
728 /* ibm,dynamic-memory */
729 int_buf[0] = cpu_to_be32(nr_lmbs);
731 for (i = 0; i < nr_lmbs; i++) {
732 uint64_t addr = i * lmb_size;
733 uint32_t *dynamic_memory = cur_index;
735 if (i >= hotplug_lmb_start) {
736 sPAPRDRConnector *drc;
738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
741 dynamic_memory[0] = cpu_to_be32(addr >> 32);
742 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
743 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
744 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
745 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
746 if (memory_region_present(get_system_memory(), addr)) {
747 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
749 dynamic_memory[5] = cpu_to_be32(0);
753 * LMB information for RMA, boot time RAM and gap b/n RAM and
754 * hotplug memory region -- all these are marked as reserved
755 * and as having no valid DRC.
757 dynamic_memory[0] = cpu_to_be32(addr >> 32);
758 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
759 dynamic_memory[2] = cpu_to_be32(0);
760 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
761 dynamic_memory[4] = cpu_to_be32(-1);
762 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
763 SPAPR_LMB_FLAGS_DRC_INVALID);
766 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
768 qapi_free_MemoryDeviceInfoList(dimms);
769 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
774 /* ibm,associativity-lookup-arrays */
776 int_buf[0] = cpu_to_be32(nr_nodes);
777 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
779 for (i = 0; i < nr_nodes; i++) {
780 uint32_t associativity[] = {
786 memcpy(cur_index, associativity, sizeof(associativity));
789 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
790 (cur_index - int_buf) * sizeof(uint32_t));
796 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
797 sPAPROptionVector *ov5_updates)
799 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
802 /* Generate ibm,dynamic-reconfiguration-memory node if required */
803 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
804 g_assert(smc->dr_lmb_enabled);
805 ret = spapr_populate_drconf_memory(spapr, fdt);
811 offset = fdt_path_offset(fdt, "/chosen");
813 offset = fdt_add_subnode(fdt, 0, "chosen");
818 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
819 "ibm,architecture-vec-5");
825 static bool spapr_hotplugged_dev_before_cas(void)
827 Object *drc_container, *obj;
828 ObjectProperty *prop;
829 ObjectPropertyIterator iter;
831 drc_container = container_get(object_get_root(), "/dr-connector");
832 object_property_iter_init(&iter, drc_container);
833 while ((prop = object_property_iter_next(&iter))) {
834 if (!strstart(prop->type, "link<", NULL)) {
837 obj = object_property_get_link(drc_container, prop->name, NULL);
838 if (spapr_drc_needed(obj)) {
845 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
846 target_ulong addr, target_ulong size,
847 sPAPROptionVector *ov5_updates)
849 void *fdt, *fdt_skel;
850 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
852 if (spapr_hotplugged_dev_before_cas()) {
856 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
857 error_report("SLOF provided an unexpected CAS buffer size "
858 TARGET_FMT_lu " (min: %zu, max: %u)",
859 size, sizeof(hdr), FW_MAX_SIZE);
865 /* Create skeleton */
866 fdt_skel = g_malloc0(size);
867 _FDT((fdt_create(fdt_skel, size)));
868 _FDT((fdt_begin_node(fdt_skel, "")));
869 _FDT((fdt_end_node(fdt_skel)));
870 _FDT((fdt_finish(fdt_skel)));
871 fdt = g_malloc0(size);
872 _FDT((fdt_open_into(fdt_skel, fdt, size)));
875 /* Fixup cpu nodes */
876 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
878 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
882 /* Pack resulting tree */
883 _FDT((fdt_pack(fdt)));
885 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
886 trace_spapr_cas_failed(size);
890 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
891 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
892 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
898 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
901 GString *hypertas = g_string_sized_new(256);
902 GString *qemu_hypertas = g_string_sized_new(256);
903 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
904 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
905 memory_region_size(&spapr->hotplug_memory.mr);
906 uint32_t lrdr_capacity[] = {
907 cpu_to_be32(max_hotplug_addr >> 32),
908 cpu_to_be32(max_hotplug_addr & 0xffffffff),
909 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
910 cpu_to_be32(max_cpus / smp_threads),
913 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
916 add_str(hypertas, "hcall-pft");
917 add_str(hypertas, "hcall-term");
918 add_str(hypertas, "hcall-dabr");
919 add_str(hypertas, "hcall-interrupt");
920 add_str(hypertas, "hcall-tce");
921 add_str(hypertas, "hcall-vio");
922 add_str(hypertas, "hcall-splpar");
923 add_str(hypertas, "hcall-bulk");
924 add_str(hypertas, "hcall-set-mode");
925 add_str(hypertas, "hcall-sprg0");
926 add_str(hypertas, "hcall-copy");
927 add_str(hypertas, "hcall-debug");
928 add_str(qemu_hypertas, "hcall-memop1");
930 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
931 add_str(hypertas, "hcall-multi-tce");
934 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
935 add_str(hypertas, "hcall-hpt-resize");
938 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
939 hypertas->str, hypertas->len));
940 g_string_free(hypertas, TRUE);
941 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
942 qemu_hypertas->str, qemu_hypertas->len));
943 g_string_free(qemu_hypertas, TRUE);
945 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
946 refpoints, sizeof(refpoints)));
948 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
949 RTAS_ERROR_LOG_MAX));
950 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
951 RTAS_EVENT_SCAN_RATE));
953 g_assert(msi_nonbroken);
954 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
957 * According to PAPR, rtas ibm,os-term does not guarantee a return
958 * back to the guest cpu.
960 * While an additional ibm,extended-os-term property indicates
961 * that rtas call return will always occur. Set this property.
963 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
965 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
966 lrdr_capacity, sizeof(lrdr_capacity)));
968 spapr_dt_rtas_tokens(fdt, rtas);
971 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
972 * that the guest may request and thus the valid values for bytes 24..26 of
973 * option vector 5: */
974 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
976 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979 23, 0x00, /* Xive mode, filled in below. */
980 24, 0x00, /* Hash/Radix, filled in below. */
981 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
982 26, 0x40, /* Radix options: GTSE == yes. */
985 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
986 first_ppc_cpu->compat_pvr)) {
987 /* If we're in a pre POWER9 compat mode then the guest should do hash */
988 val[3] = 0x00; /* Hash */
989 } else if (kvm_enabled()) {
990 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
991 val[3] = 0x80; /* OV5_MMU_BOTH */
992 } else if (kvmppc_has_cap_mmu_radix()) {
993 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
995 val[3] = 0x00; /* Hash */
998 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1001 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1005 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1007 MachineState *machine = MACHINE(spapr);
1009 const char *boot_device = machine->boot_order;
1010 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1012 char *bootlist = get_boot_devices_list(&cb, true);
1014 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1017 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1018 spapr->initrd_base));
1019 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1020 spapr->initrd_base + spapr->initrd_size));
1022 if (spapr->kernel_size) {
1023 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1024 cpu_to_be64(spapr->kernel_size) };
1026 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1027 &kprop, sizeof(kprop)));
1028 if (spapr->kernel_le) {
1029 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1033 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1035 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1036 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1039 if (cb && bootlist) {
1042 for (i = 0; i < cb; i++) {
1043 if (bootlist[i] == '\n') {
1047 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1050 if (boot_device && strlen(boot_device)) {
1051 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1054 if (!spapr->has_graphics && stdout_path) {
1056 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1057 * kernel. New platforms should only use the "stdout-path" property. Set
1058 * the new property and continue using older property to remain
1059 * compatible with the existing firmware.
1061 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1062 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1065 spapr_dt_ov5_platform_support(fdt, chosen);
1067 g_free(stdout_path);
1071 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1073 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1074 * KVM to work under pHyp with some guest co-operation */
1076 uint8_t hypercall[16];
1078 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1079 /* indicate KVM hypercall interface */
1080 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1081 if (kvmppc_has_cap_fixup_hcalls()) {
1083 * Older KVM versions with older guest kernels were broken
1084 * with the magic page, don't allow the guest to map it.
1086 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1087 sizeof(hypercall))) {
1088 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1089 hypercall, sizeof(hypercall)));
1094 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1098 MachineState *machine = MACHINE(spapr);
1099 MachineClass *mc = MACHINE_GET_CLASS(machine);
1100 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1106 fdt = g_malloc0(FDT_MAX_SIZE);
1107 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1110 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1111 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1112 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1115 * Add info to guest to indentify which host is it being run on
1116 * and what is the uuid of the guest
1118 if (kvmppc_get_host_model(&buf)) {
1119 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1122 if (kvmppc_get_host_serial(&buf)) {
1123 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1127 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1130 if (qemu_uuid_set) {
1131 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1135 if (qemu_get_vm_name()) {
1136 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1137 qemu_get_vm_name()));
1140 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1141 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1143 /* /interrupt controller */
1144 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1146 ret = spapr_populate_memory(spapr, fdt);
1148 error_report("couldn't setup memory nodes in fdt");
1153 spapr_dt_vdevice(spapr->vio_bus, fdt);
1155 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1156 ret = spapr_rng_populate_dt(fdt);
1158 error_report("could not set up rng device in the fdt");
1163 QLIST_FOREACH(phb, &spapr->phbs, list) {
1164 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1166 error_report("couldn't setup PCI devices in fdt");
1172 spapr_populate_cpus_dt_node(fdt, spapr);
1174 if (smc->dr_lmb_enabled) {
1175 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1178 if (mc->has_hotpluggable_cpus) {
1179 int offset = fdt_path_offset(fdt, "/cpus");
1180 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1181 SPAPR_DR_CONNECTOR_TYPE_CPU);
1183 error_report("Couldn't set up CPU DR device tree properties");
1188 /* /event-sources */
1189 spapr_dt_events(spapr, fdt);
1192 spapr_dt_rtas(spapr, fdt);
1195 spapr_dt_chosen(spapr, fdt);
1198 if (kvm_enabled()) {
1199 spapr_dt_hypervisor(spapr, fdt);
1202 /* Build memory reserve map */
1203 if (spapr->kernel_size) {
1204 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1206 if (spapr->initrd_size) {
1207 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1210 /* ibm,client-architecture-support updates */
1211 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1213 error_report("couldn't setup CAS properties fdt");
1220 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1222 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1225 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1228 CPUPPCState *env = &cpu->env;
1230 /* The TCG path should also be holding the BQL at this point */
1231 g_assert(qemu_mutex_iothread_locked());
1234 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1235 env->gpr[3] = H_PRIVILEGE;
1237 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1241 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1243 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 return spapr->patb_entry;
1248 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1249 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1250 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1251 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1252 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1255 * Get the fd to access the kernel htab, re-opening it if necessary
1257 static int get_htab_fd(sPAPRMachineState *spapr)
1259 Error *local_err = NULL;
1261 if (spapr->htab_fd >= 0) {
1262 return spapr->htab_fd;
1265 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1266 if (spapr->htab_fd < 0) {
1267 error_report_err(local_err);
1270 return spapr->htab_fd;
1273 void close_htab_fd(sPAPRMachineState *spapr)
1275 if (spapr->htab_fd >= 0) {
1276 close(spapr->htab_fd);
1278 spapr->htab_fd = -1;
1281 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1283 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1285 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1288 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1290 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292 assert(kvm_enabled());
1298 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1301 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1304 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1305 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1309 * HTAB is controlled by KVM. Fetch into temporary buffer
1311 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1312 kvmppc_read_hptes(hptes, ptex, n);
1317 * HTAB is controlled by QEMU. Just point to the internally
1320 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1323 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1324 const ppc_hash_pte64_t *hptes,
1327 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1330 g_free((void *)hptes);
1333 /* Nothing to do for qemu managed HPT */
1336 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1337 uint64_t pte0, uint64_t pte1)
1339 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1340 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1343 kvmppc_write_hpte(ptex, pte0, pte1);
1345 stq_p(spapr->htab + offset, pte0);
1346 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1350 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1354 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1355 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1356 * that's much more than is needed for Linux guests */
1357 shift = ctz64(pow2ceil(ramsize)) - 7;
1358 shift = MAX(shift, 18); /* Minimum architected size */
1359 shift = MIN(shift, 46); /* Maximum architected size */
1363 void spapr_free_hpt(sPAPRMachineState *spapr)
1365 g_free(spapr->htab);
1367 spapr->htab_shift = 0;
1368 close_htab_fd(spapr);
1371 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1376 /* Clean up any HPT info from a previous boot */
1377 spapr_free_hpt(spapr);
1379 rc = kvmppc_reset_htab(shift);
1381 /* kernel-side HPT needed, but couldn't allocate one */
1382 error_setg_errno(errp, errno,
1383 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1385 /* This is almost certainly fatal, but if the caller really
1386 * wants to carry on with shift == 0, it's welcome to try */
1387 } else if (rc > 0) {
1388 /* kernel-side HPT allocated */
1391 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1395 spapr->htab_shift = shift;
1398 /* kernel-side HPT not needed, allocate in userspace instead */
1399 size_t size = 1ULL << shift;
1402 spapr->htab = qemu_memalign(size, size);
1404 error_setg_errno(errp, errno,
1405 "Could not allocate HPT of order %d", shift);
1409 memset(spapr->htab, 0, size);
1410 spapr->htab_shift = shift;
1412 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1413 DIRTY_HPTE(HPTE(spapr->htab, i));
1416 /* We're setting up a hash table, so that means we're not radix */
1417 spapr->patb_entry = 0;
1420 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1424 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1425 || (spapr->cas_reboot
1426 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1427 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1429 uint64_t current_ram_size;
1431 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1432 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1434 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1436 if (spapr->vrma_adjust) {
1437 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1442 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1444 bool matched = false;
1446 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1451 error_report("Device %s is not supported by this machine yet.",
1452 qdev_fw_name(DEVICE(sbdev)));
1457 static int spapr_reset_drcs(Object *child, void *opaque)
1459 sPAPRDRConnector *drc =
1460 (sPAPRDRConnector *) object_dynamic_cast(child,
1461 TYPE_SPAPR_DR_CONNECTOR);
1464 spapr_drc_reset(drc);
1470 static void spapr_machine_reset(void)
1472 MachineState *machine = MACHINE(qdev_get_machine());
1473 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1474 PowerPCCPU *first_ppc_cpu;
1475 uint32_t rtas_limit;
1476 hwaddr rtas_addr, fdt_addr;
1480 /* Check for unknown sysbus devices */
1481 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1483 spapr_caps_reset(spapr);
1485 first_ppc_cpu = POWERPC_CPU(first_cpu);
1486 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1487 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1488 spapr->max_compat_pvr)) {
1489 /* If using KVM with radix mode available, VCPUs can be started
1490 * without a HPT because KVM will start them in radix mode.
1491 * Set the GR bit in PATB so that we know there is no HPT. */
1492 spapr->patb_entry = PATBE1_GR;
1494 spapr_setup_hpt_and_vrma(spapr);
1497 /* if this reset wasn't generated by CAS, we should reset our
1498 * negotiated options and start from scratch */
1499 if (!spapr->cas_reboot) {
1500 spapr_ovec_cleanup(spapr->ov5_cas);
1501 spapr->ov5_cas = spapr_ovec_new();
1503 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1506 qemu_devices_reset();
1508 /* DRC reset may cause a device to be unplugged. This will cause troubles
1509 * if this device is used by another device (eg, a running vhost backend
1510 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1511 * situations, we reset DRCs after all devices have been reset.
1513 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1515 spapr_clear_pending_events(spapr);
1518 * We place the device tree and RTAS just below either the top of the RMA,
1519 * or just below 2GB, whichever is lowere, so that it can be
1520 * processed with 32-bit real mode code if necessary
1522 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1523 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1524 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1526 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1528 spapr_load_rtas(spapr, fdt, rtas_addr);
1532 /* Should only fail if we've built a corrupted tree */
1535 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1536 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1537 fdt_totalsize(fdt), FDT_MAX_SIZE);
1542 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1543 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1546 /* Set up the entry state */
1547 first_ppc_cpu->env.gpr[3] = fdt_addr;
1548 first_ppc_cpu->env.gpr[5] = 0;
1549 first_cpu->halted = 0;
1550 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1552 spapr->cas_reboot = false;
1555 static void spapr_create_nvram(sPAPRMachineState *spapr)
1557 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1558 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1561 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1565 qdev_init_nofail(dev);
1567 spapr->nvram = (struct sPAPRNVRAM *)dev;
1570 static void spapr_rtc_create(sPAPRMachineState *spapr)
1572 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1573 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1575 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1577 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1578 "date", &error_fatal);
1581 /* Returns whether we want to use VGA or not */
1582 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1584 switch (vga_interface_type) {
1591 return pci_vga_init(pci_bus) != NULL;
1594 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1599 static int spapr_pre_load(void *opaque)
1603 rc = spapr_caps_pre_load(opaque);
1611 static int spapr_post_load(void *opaque, int version_id)
1613 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1616 err = spapr_caps_post_migration(spapr);
1621 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1624 PowerPCCPU *cpu = POWERPC_CPU(cs);
1625 icp_resend(ICP(cpu->intc));
1629 /* In earlier versions, there was no separate qdev for the PAPR
1630 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1631 * So when migrating from those versions, poke the incoming offset
1632 * value into the RTC device */
1633 if (version_id < 3) {
1634 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1637 if (kvm_enabled() && spapr->patb_entry) {
1638 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1639 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1640 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1642 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1644 error_report("Process table config unsupported by the host");
1652 static int spapr_pre_save(void *opaque)
1656 rc = spapr_caps_pre_save(opaque);
1664 static bool version_before_3(void *opaque, int version_id)
1666 return version_id < 3;
1669 static bool spapr_pending_events_needed(void *opaque)
1671 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1672 return !QTAILQ_EMPTY(&spapr->pending_events);
1675 static const VMStateDescription vmstate_spapr_event_entry = {
1676 .name = "spapr_event_log_entry",
1678 .minimum_version_id = 1,
1679 .fields = (VMStateField[]) {
1680 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1681 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1682 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1683 NULL, extended_length),
1684 VMSTATE_END_OF_LIST()
1688 static const VMStateDescription vmstate_spapr_pending_events = {
1689 .name = "spapr_pending_events",
1691 .minimum_version_id = 1,
1692 .needed = spapr_pending_events_needed,
1693 .fields = (VMStateField[]) {
1694 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1695 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1696 VMSTATE_END_OF_LIST()
1700 static bool spapr_ov5_cas_needed(void *opaque)
1702 sPAPRMachineState *spapr = opaque;
1703 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1704 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1705 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1708 /* Prior to the introduction of sPAPROptionVector, we had two option
1709 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1710 * Both of these options encode machine topology into the device-tree
1711 * in such a way that the now-booted OS should still be able to interact
1712 * appropriately with QEMU regardless of what options were actually
1713 * negotiatied on the source side.
1715 * As such, we can avoid migrating the CAS-negotiated options if these
1716 * are the only options available on the current machine/platform.
1717 * Since these are the only options available for pseries-2.7 and
1718 * earlier, this allows us to maintain old->new/new->old migration
1721 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1722 * via default pseries-2.8 machines and explicit command-line parameters.
1723 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1724 * of the actual CAS-negotiated values to continue working properly. For
1725 * example, availability of memory unplug depends on knowing whether
1726 * OV5_HP_EVT was negotiated via CAS.
1728 * Thus, for any cases where the set of available CAS-negotiatable
1729 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1730 * include the CAS-negotiated options in the migration stream.
1732 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1733 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1735 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1736 * the mask itself since in the future it's possible "legacy" bits may be
1737 * removed via machine options, which could generate a false positive
1738 * that breaks migration.
1740 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1741 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1743 spapr_ovec_cleanup(ov5_mask);
1744 spapr_ovec_cleanup(ov5_legacy);
1745 spapr_ovec_cleanup(ov5_removed);
1750 static const VMStateDescription vmstate_spapr_ov5_cas = {
1751 .name = "spapr_option_vector_ov5_cas",
1753 .minimum_version_id = 1,
1754 .needed = spapr_ov5_cas_needed,
1755 .fields = (VMStateField[]) {
1756 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1757 vmstate_spapr_ovec, sPAPROptionVector),
1758 VMSTATE_END_OF_LIST()
1762 static bool spapr_patb_entry_needed(void *opaque)
1764 sPAPRMachineState *spapr = opaque;
1766 return !!spapr->patb_entry;
1769 static const VMStateDescription vmstate_spapr_patb_entry = {
1770 .name = "spapr_patb_entry",
1772 .minimum_version_id = 1,
1773 .needed = spapr_patb_entry_needed,
1774 .fields = (VMStateField[]) {
1775 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1776 VMSTATE_END_OF_LIST()
1780 static const VMStateDescription vmstate_spapr = {
1783 .minimum_version_id = 1,
1784 .pre_load = spapr_pre_load,
1785 .post_load = spapr_post_load,
1786 .pre_save = spapr_pre_save,
1787 .fields = (VMStateField[]) {
1788 /* used to be @next_irq */
1789 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1792 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1794 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1795 VMSTATE_END_OF_LIST()
1797 .subsections = (const VMStateDescription*[]) {
1798 &vmstate_spapr_ov5_cas,
1799 &vmstate_spapr_patb_entry,
1800 &vmstate_spapr_pending_events,
1801 &vmstate_spapr_cap_htm,
1802 &vmstate_spapr_cap_vsx,
1803 &vmstate_spapr_cap_dfp,
1804 &vmstate_spapr_cap_cfpc,
1805 &vmstate_spapr_cap_sbbc,
1806 &vmstate_spapr_cap_ibs,
1811 static int htab_save_setup(QEMUFile *f, void *opaque)
1813 sPAPRMachineState *spapr = opaque;
1815 /* "Iteration" header */
1816 if (!spapr->htab_shift) {
1817 qemu_put_be32(f, -1);
1819 qemu_put_be32(f, spapr->htab_shift);
1823 spapr->htab_save_index = 0;
1824 spapr->htab_first_pass = true;
1826 if (spapr->htab_shift) {
1827 assert(kvm_enabled());
1835 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1836 int chunkstart, int n_valid, int n_invalid)
1838 qemu_put_be32(f, chunkstart);
1839 qemu_put_be16(f, n_valid);
1840 qemu_put_be16(f, n_invalid);
1841 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1842 HASH_PTE_SIZE_64 * n_valid);
1845 static void htab_save_end_marker(QEMUFile *f)
1847 qemu_put_be32(f, 0);
1848 qemu_put_be16(f, 0);
1849 qemu_put_be16(f, 0);
1852 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1855 bool has_timeout = max_ns != -1;
1856 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1857 int index = spapr->htab_save_index;
1858 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1860 assert(spapr->htab_first_pass);
1865 /* Consume invalid HPTEs */
1866 while ((index < htabslots)
1867 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1868 CLEAN_HPTE(HPTE(spapr->htab, index));
1872 /* Consume valid HPTEs */
1874 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1875 && HPTE_VALID(HPTE(spapr->htab, index))) {
1876 CLEAN_HPTE(HPTE(spapr->htab, index));
1880 if (index > chunkstart) {
1881 int n_valid = index - chunkstart;
1883 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1886 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1890 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1892 if (index >= htabslots) {
1893 assert(index == htabslots);
1895 spapr->htab_first_pass = false;
1897 spapr->htab_save_index = index;
1900 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1903 bool final = max_ns < 0;
1904 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1905 int examined = 0, sent = 0;
1906 int index = spapr->htab_save_index;
1907 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1909 assert(!spapr->htab_first_pass);
1912 int chunkstart, invalidstart;
1914 /* Consume non-dirty HPTEs */
1915 while ((index < htabslots)
1916 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1922 /* Consume valid dirty HPTEs */
1923 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1924 && HPTE_DIRTY(HPTE(spapr->htab, index))
1925 && HPTE_VALID(HPTE(spapr->htab, index))) {
1926 CLEAN_HPTE(HPTE(spapr->htab, index));
1931 invalidstart = index;
1932 /* Consume invalid dirty HPTEs */
1933 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1934 && HPTE_DIRTY(HPTE(spapr->htab, index))
1935 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1936 CLEAN_HPTE(HPTE(spapr->htab, index));
1941 if (index > chunkstart) {
1942 int n_valid = invalidstart - chunkstart;
1943 int n_invalid = index - invalidstart;
1945 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1946 sent += index - chunkstart;
1948 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1953 if (examined >= htabslots) {
1957 if (index >= htabslots) {
1958 assert(index == htabslots);
1961 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1963 if (index >= htabslots) {
1964 assert(index == htabslots);
1968 spapr->htab_save_index = index;
1970 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1973 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1974 #define MAX_KVM_BUF_SIZE 2048
1976 static int htab_save_iterate(QEMUFile *f, void *opaque)
1978 sPAPRMachineState *spapr = opaque;
1982 /* Iteration header */
1983 if (!spapr->htab_shift) {
1984 qemu_put_be32(f, -1);
1987 qemu_put_be32(f, 0);
1991 assert(kvm_enabled());
1993 fd = get_htab_fd(spapr);
1998 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2002 } else if (spapr->htab_first_pass) {
2003 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2005 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2008 htab_save_end_marker(f);
2013 static int htab_save_complete(QEMUFile *f, void *opaque)
2015 sPAPRMachineState *spapr = opaque;
2018 /* Iteration header */
2019 if (!spapr->htab_shift) {
2020 qemu_put_be32(f, -1);
2023 qemu_put_be32(f, 0);
2029 assert(kvm_enabled());
2031 fd = get_htab_fd(spapr);
2036 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2041 if (spapr->htab_first_pass) {
2042 htab_save_first_pass(f, spapr, -1);
2044 htab_save_later_pass(f, spapr, -1);
2048 htab_save_end_marker(f);
2053 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2055 sPAPRMachineState *spapr = opaque;
2056 uint32_t section_hdr;
2058 Error *local_err = NULL;
2060 if (version_id < 1 || version_id > 1) {
2061 error_report("htab_load() bad version");
2065 section_hdr = qemu_get_be32(f);
2067 if (section_hdr == -1) {
2068 spapr_free_hpt(spapr);
2073 /* First section gives the htab size */
2074 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2076 error_report_err(local_err);
2083 assert(kvm_enabled());
2085 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2087 error_report_err(local_err);
2094 uint16_t n_valid, n_invalid;
2096 index = qemu_get_be32(f);
2097 n_valid = qemu_get_be16(f);
2098 n_invalid = qemu_get_be16(f);
2100 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2105 if ((index + n_valid + n_invalid) >
2106 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2107 /* Bad index in stream */
2109 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2110 index, n_valid, n_invalid, spapr->htab_shift);
2116 qemu_get_buffer(f, HPTE(spapr->htab, index),
2117 HASH_PTE_SIZE_64 * n_valid);
2120 memset(HPTE(spapr->htab, index + n_valid), 0,
2121 HASH_PTE_SIZE_64 * n_invalid);
2128 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2143 static void htab_save_cleanup(void *opaque)
2145 sPAPRMachineState *spapr = opaque;
2147 close_htab_fd(spapr);
2150 static SaveVMHandlers savevm_htab_handlers = {
2151 .save_setup = htab_save_setup,
2152 .save_live_iterate = htab_save_iterate,
2153 .save_live_complete_precopy = htab_save_complete,
2154 .save_cleanup = htab_save_cleanup,
2155 .load_state = htab_load,
2158 static void spapr_boot_set(void *opaque, const char *boot_device,
2161 MachineState *machine = MACHINE(opaque);
2162 machine->boot_order = g_strdup(boot_device);
2165 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2167 MachineState *machine = MACHINE(spapr);
2168 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2169 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2172 for (i = 0; i < nr_lmbs; i++) {
2175 addr = i * lmb_size + spapr->hotplug_memory.base;
2176 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2182 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2183 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2184 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2186 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2190 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2191 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2192 " is not aligned to %llu MiB",
2194 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2198 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2199 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2200 " is not aligned to %llu MiB",
2202 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2206 for (i = 0; i < nb_numa_nodes; i++) {
2207 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2209 "Node %d memory size 0x%" PRIx64
2210 " is not aligned to %llu MiB",
2211 i, numa_info[i].node_mem,
2212 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2218 /* find cpu slot in machine->possible_cpus by core_id */
2219 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2221 int index = id / smp_threads;
2223 if (index >= ms->possible_cpus->len) {
2229 return &ms->possible_cpus->cpus[index];
2232 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2234 Error *local_err = NULL;
2235 bool vsmt_user = !!spapr->vsmt;
2236 int kvm_smt = kvmppc_smt_threads();
2239 if (!kvm_enabled() && (smp_threads > 1)) {
2240 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2241 "on a pseries machine");
2244 if (!is_power_of_2(smp_threads)) {
2245 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2246 "machine because it must be a power of 2", smp_threads);
2250 /* Detemine the VSMT mode to use: */
2252 if (spapr->vsmt < smp_threads) {
2253 error_setg(&local_err, "Cannot support VSMT mode %d"
2254 " because it must be >= threads/core (%d)",
2255 spapr->vsmt, smp_threads);
2258 /* In this case, spapr->vsmt has been set by the command line */
2261 * Default VSMT value is tricky, because we need it to be as
2262 * consistent as possible (for migration), but this requires
2263 * changing it for at least some existing cases. We pick 8 as
2264 * the value that we'd get with KVM on POWER8, the
2265 * overwhelmingly common case in production systems.
2267 spapr->vsmt = MAX(8, smp_threads);
2270 /* KVM: If necessary, set the SMT mode: */
2271 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2272 ret = kvmppc_set_smt_threads(spapr->vsmt);
2274 /* Looks like KVM isn't able to change VSMT mode */
2275 error_setg(&local_err,
2276 "Failed to set KVM's VSMT mode to %d (errno %d)",
2278 /* We can live with that if the default one is big enough
2279 * for the number of threads, and a submultiple of the one
2280 * we want. In this case we'll waste some vcpu ids, but
2281 * behaviour will be correct */
2282 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2283 warn_report_err(local_err);
2288 error_append_hint(&local_err,
2289 "On PPC, a VM with %d threads/core"
2290 " on a host with %d threads/core"
2291 " requires the use of VSMT mode %d.\n",
2292 smp_threads, kvm_smt, spapr->vsmt);
2294 kvmppc_hint_smt_possible(&local_err);
2299 /* else TCG: nothing to do currently */
2301 error_propagate(errp, local_err);
2304 static void spapr_init_cpus(sPAPRMachineState *spapr)
2306 MachineState *machine = MACHINE(spapr);
2307 MachineClass *mc = MACHINE_GET_CLASS(machine);
2308 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2309 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2310 const CPUArchIdList *possible_cpus;
2311 int boot_cores_nr = smp_cpus / smp_threads;
2314 possible_cpus = mc->possible_cpu_arch_ids(machine);
2315 if (mc->has_hotpluggable_cpus) {
2316 if (smp_cpus % smp_threads) {
2317 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2318 smp_cpus, smp_threads);
2321 if (max_cpus % smp_threads) {
2322 error_report("max_cpus (%u) must be multiple of threads (%u)",
2323 max_cpus, smp_threads);
2327 if (max_cpus != smp_cpus) {
2328 error_report("This machine version does not support CPU hotplug");
2331 boot_cores_nr = possible_cpus->len;
2334 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2335 * call xics_max_server_number() or spapr_vcpu_id().
2337 spapr_set_vsmt_mode(spapr, &error_fatal);
2339 if (smc->pre_2_10_has_unused_icps) {
2342 for (i = 0; i < xics_max_server_number(spapr); i++) {
2343 /* Dummy entries get deregistered when real ICPState objects
2344 * are registered during CPU core hotplug.
2346 pre_2_10_vmstate_register_dummy_icp(i);
2350 for (i = 0; i < possible_cpus->len; i++) {
2351 int core_id = i * smp_threads;
2353 if (mc->has_hotpluggable_cpus) {
2354 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2355 spapr_vcpu_id(spapr, core_id));
2358 if (i < boot_cores_nr) {
2359 Object *core = object_new(type);
2360 int nr_threads = smp_threads;
2362 /* Handle the partially filled core for older machine types */
2363 if ((i + 1) * smp_threads >= smp_cpus) {
2364 nr_threads = smp_cpus - i * smp_threads;
2367 object_property_set_int(core, nr_threads, "nr-threads",
2369 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2371 object_property_set_bool(core, true, "realized", &error_fatal);
2376 /* pSeries LPAR / sPAPR hardware init */
2377 static void spapr_machine_init(MachineState *machine)
2379 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2380 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2381 const char *kernel_filename = machine->kernel_filename;
2382 const char *initrd_filename = machine->initrd_filename;
2385 MemoryRegion *sysmem = get_system_memory();
2386 MemoryRegion *ram = g_new(MemoryRegion, 1);
2387 MemoryRegion *rma_region;
2389 hwaddr rma_alloc_size;
2390 hwaddr node0_size = spapr_node0_size(machine);
2391 long load_limit, fw_size;
2393 Error *resize_hpt_err = NULL;
2395 msi_nonbroken = true;
2397 QLIST_INIT(&spapr->phbs);
2398 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2400 /* Check HPT resizing availability */
2401 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2402 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2404 * If the user explicitly requested a mode we should either
2405 * supply it, or fail completely (which we do below). But if
2406 * it's not set explicitly, we reset our mode to something
2409 if (resize_hpt_err) {
2410 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2411 error_free(resize_hpt_err);
2412 resize_hpt_err = NULL;
2414 spapr->resize_hpt = smc->resize_hpt_default;
2418 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2420 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2422 * User requested HPT resize, but this host can't supply it. Bail out
2424 error_report_err(resize_hpt_err);
2428 /* Allocate RMA if necessary */
2429 rma_alloc_size = kvmppc_alloc_rma(&rma);
2431 if (rma_alloc_size == -1) {
2432 error_report("Unable to create RMA");
2436 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2437 spapr->rma_size = rma_alloc_size;
2439 spapr->rma_size = node0_size;
2441 /* With KVM, we don't actually know whether KVM supports an
2442 * unbounded RMA (PR KVM) or is limited by the hash table size
2443 * (HV KVM using VRMA), so we always assume the latter
2445 * In that case, we also limit the initial allocations for RTAS
2446 * etc... to 256M since we have no way to know what the VRMA size
2447 * is going to be as it depends on the size of the hash table
2448 * isn't determined yet.
2450 if (kvm_enabled()) {
2451 spapr->vrma_adjust = 1;
2452 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2455 /* Actually we don't support unbounded RMA anymore since we
2456 * added proper emulation of HV mode. The max we can get is
2457 * 16G which also happens to be what we configure for PAPR
2458 * mode so make sure we don't do anything bigger than that
2460 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2463 if (spapr->rma_size > node0_size) {
2464 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2469 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2470 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2472 /* Set up Interrupt Controller before we create the VCPUs */
2473 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2475 /* Set up containers for ibm,client-architecture-support negotiated options
2477 spapr->ov5 = spapr_ovec_new();
2478 spapr->ov5_cas = spapr_ovec_new();
2480 if (smc->dr_lmb_enabled) {
2481 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2482 spapr_validate_node_memory(machine, &error_fatal);
2485 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2486 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2487 /* KVM and TCG always allow GTSE with radix... */
2488 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2490 /* ... but not with hash (currently). */
2492 /* advertise support for dedicated HP event source to guests */
2493 if (spapr->use_hotplug_event_source) {
2494 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2497 /* advertise support for HPT resizing */
2498 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2499 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2503 spapr_init_cpus(spapr);
2505 if (kvm_enabled()) {
2506 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2507 kvmppc_enable_logical_ci_hcalls();
2508 kvmppc_enable_set_mode_hcall();
2510 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2511 kvmppc_enable_clear_ref_mod_hcalls();
2515 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2517 memory_region_add_subregion(sysmem, 0, ram);
2519 if (rma_alloc_size && rma) {
2520 rma_region = g_new(MemoryRegion, 1);
2521 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2522 rma_alloc_size, rma);
2523 vmstate_register_ram_global(rma_region);
2524 memory_region_add_subregion(sysmem, 0, rma_region);
2527 /* initialize hotplug memory address space */
2528 if (machine->ram_size < machine->maxram_size) {
2529 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2531 * Limit the number of hotpluggable memory slots to half the number
2532 * slots that KVM supports, leaving the other half for PCI and other
2533 * devices. However ensure that number of slots doesn't drop below 32.
2535 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2536 SPAPR_MAX_RAM_SLOTS;
2538 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2539 max_memslots = SPAPR_MAX_RAM_SLOTS;
2541 if (machine->ram_slots > max_memslots) {
2542 error_report("Specified number of memory slots %"
2543 PRIu64" exceeds max supported %d",
2544 machine->ram_slots, max_memslots);
2548 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2549 SPAPR_HOTPLUG_MEM_ALIGN);
2550 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2551 "hotplug-memory", hotplug_mem_size);
2552 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2553 &spapr->hotplug_memory.mr);
2556 if (smc->dr_lmb_enabled) {
2557 spapr_create_lmb_dr_connectors(spapr);
2560 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2562 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2565 spapr->rtas_size = get_image_size(filename);
2566 if (spapr->rtas_size < 0) {
2567 error_report("Could not get size of LPAR rtas '%s'", filename);
2570 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2571 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2572 error_report("Could not load LPAR rtas '%s'", filename);
2575 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2576 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2577 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2582 /* Set up RTAS event infrastructure */
2583 spapr_events_init(spapr);
2585 /* Set up the RTC RTAS interfaces */
2586 spapr_rtc_create(spapr);
2588 /* Set up VIO bus */
2589 spapr->vio_bus = spapr_vio_bus_init();
2591 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2592 if (serial_hds[i]) {
2593 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2597 /* We always have at least the nvram device on VIO */
2598 spapr_create_nvram(spapr);
2601 spapr_pci_rtas_init();
2603 phb = spapr_create_phb(spapr, 0);
2605 for (i = 0; i < nb_nics; i++) {
2606 NICInfo *nd = &nd_table[i];
2609 nd->model = g_strdup("spapr-vlan");
2612 if (g_str_equal(nd->model, "spapr-vlan") ||
2613 g_str_equal(nd->model, "ibmveth")) {
2614 spapr_vlan_create(spapr->vio_bus, nd);
2616 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2620 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2621 spapr_vscsi_create(spapr->vio_bus);
2625 if (spapr_vga_init(phb->bus, &error_fatal)) {
2626 spapr->has_graphics = true;
2627 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2631 if (smc->use_ohci_by_default) {
2632 pci_create_simple(phb->bus, -1, "pci-ohci");
2634 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2637 if (spapr->has_graphics) {
2638 USBBus *usb_bus = usb_bus_find(-1);
2640 usb_create_simple(usb_bus, "usb-kbd");
2641 usb_create_simple(usb_bus, "usb-mouse");
2645 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2647 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2652 if (kernel_filename) {
2653 uint64_t lowaddr = 0;
2655 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2656 NULL, NULL, &lowaddr, NULL, 1,
2657 PPC_ELF_MACHINE, 0, 0);
2658 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2659 spapr->kernel_size = load_elf(kernel_filename,
2660 translate_kernel_address, NULL, NULL,
2661 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2663 spapr->kernel_le = spapr->kernel_size > 0;
2665 if (spapr->kernel_size < 0) {
2666 error_report("error loading %s: %s", kernel_filename,
2667 load_elf_strerror(spapr->kernel_size));
2672 if (initrd_filename) {
2673 /* Try to locate the initrd in the gap between the kernel
2674 * and the firmware. Add a bit of space just in case
2676 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2677 + 0x1ffff) & ~0xffff;
2678 spapr->initrd_size = load_image_targphys(initrd_filename,
2681 - spapr->initrd_base);
2682 if (spapr->initrd_size < 0) {
2683 error_report("could not load initial ram disk '%s'",
2690 if (bios_name == NULL) {
2691 bios_name = FW_FILE_NAME;
2693 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2695 error_report("Could not find LPAR firmware '%s'", bios_name);
2698 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2700 error_report("Could not load LPAR firmware '%s'", filename);
2705 /* FIXME: Should register things through the MachineState's qdev
2706 * interface, this is a legacy from the sPAPREnvironment structure
2707 * which predated MachineState but had a similar function */
2708 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2709 register_savevm_live(NULL, "spapr/htab", -1, 1,
2710 &savevm_htab_handlers, spapr);
2712 qemu_register_boot_set(spapr_boot_set, spapr);
2714 if (kvm_enabled()) {
2715 /* to stop and start vmclock */
2716 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2719 kvmppc_spapr_enable_inkernel_multitce();
2723 static int spapr_kvm_type(const char *vm_type)
2729 if (!strcmp(vm_type, "HV")) {
2733 if (!strcmp(vm_type, "PR")) {
2737 error_report("Unknown kvm-type specified '%s'", vm_type);
2742 * Implementation of an interface to adjust firmware path
2743 * for the bootindex property handling.
2745 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2748 #define CAST(type, obj, name) \
2749 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2750 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2751 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2752 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2755 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2756 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2757 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2761 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2762 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2763 * in the top 16 bits of the 64-bit LUN
2765 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2766 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2767 (uint64_t)id << 48);
2768 } else if (virtio) {
2770 * We use SRP luns of the form 01000000 | (target << 8) | lun
2771 * in the top 32 bits of the 64-bit LUN
2772 * Note: the quote above is from SLOF and it is wrong,
2773 * the actual binding is:
2774 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2776 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2777 if (d->lun >= 256) {
2778 /* Use the LUN "flat space addressing method" */
2781 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2782 (uint64_t)id << 32);
2785 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2786 * in the top 32 bits of the 64-bit LUN
2788 unsigned usb_port = atoi(usb->port->path);
2789 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2790 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2791 (uint64_t)id << 32);
2796 * SLOF probes the USB devices, and if it recognizes that the device is a
2797 * storage device, it changes its name to "storage" instead of "usb-host",
2798 * and additionally adds a child node for the SCSI LUN, so the correct
2799 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2801 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2802 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2803 if (usb_host_dev_is_scsi_storage(usbdev)) {
2804 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2809 /* Replace "pci" with "pci@800000020000000" */
2810 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2814 /* Same logic as virtio above */
2815 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2816 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2819 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2820 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2821 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2822 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2828 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2830 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2832 return g_strdup(spapr->kvm_type);
2835 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2837 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2839 g_free(spapr->kvm_type);
2840 spapr->kvm_type = g_strdup(value);
2843 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2845 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2847 return spapr->use_hotplug_event_source;
2850 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2853 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2855 spapr->use_hotplug_event_source = value;
2858 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2863 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2865 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2867 switch (spapr->resize_hpt) {
2868 case SPAPR_RESIZE_HPT_DEFAULT:
2869 return g_strdup("default");
2870 case SPAPR_RESIZE_HPT_DISABLED:
2871 return g_strdup("disabled");
2872 case SPAPR_RESIZE_HPT_ENABLED:
2873 return g_strdup("enabled");
2874 case SPAPR_RESIZE_HPT_REQUIRED:
2875 return g_strdup("required");
2877 g_assert_not_reached();
2880 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2882 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2884 if (strcmp(value, "default") == 0) {
2885 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2886 } else if (strcmp(value, "disabled") == 0) {
2887 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2888 } else if (strcmp(value, "enabled") == 0) {
2889 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2890 } else if (strcmp(value, "required") == 0) {
2891 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2893 error_setg(errp, "Bad value for \"resize-hpt\" property");
2897 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2898 void *opaque, Error **errp)
2900 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2903 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2904 void *opaque, Error **errp)
2906 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2909 static void spapr_instance_init(Object *obj)
2911 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2913 spapr->htab_fd = -1;
2914 spapr->use_hotplug_event_source = true;
2915 object_property_add_str(obj, "kvm-type",
2916 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2917 object_property_set_description(obj, "kvm-type",
2918 "Specifies the KVM virtualization mode (HV, PR)",
2920 object_property_add_bool(obj, "modern-hotplug-events",
2921 spapr_get_modern_hotplug_events,
2922 spapr_set_modern_hotplug_events,
2924 object_property_set_description(obj, "modern-hotplug-events",
2925 "Use dedicated hotplug event mechanism in"
2926 " place of standard EPOW events when possible"
2927 " (required for memory hot-unplug support)",
2930 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2931 "Maximum permitted CPU compatibility mode",
2934 object_property_add_str(obj, "resize-hpt",
2935 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2936 object_property_set_description(obj, "resize-hpt",
2937 "Resizing of the Hash Page Table (enabled, disabled, required)",
2939 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2940 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2941 object_property_set_description(obj, "vsmt",
2942 "Virtual SMT: KVM behaves as if this were"
2943 " the host's SMT mode", &error_abort);
2944 object_property_add_bool(obj, "vfio-no-msix-emulation",
2945 spapr_get_msix_emulation, NULL, NULL);
2948 static void spapr_machine_finalizefn(Object *obj)
2950 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2952 g_free(spapr->kvm_type);
2955 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2957 cpu_synchronize_state(cs);
2958 ppc_cpu_do_system_reset(cs);
2961 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2966 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2970 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2971 uint32_t node, bool dedicated_hp_event_source,
2974 sPAPRDRConnector *drc;
2975 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2976 int i, fdt_offset, fdt_size;
2978 uint64_t addr = addr_start;
2979 bool hotplugged = spapr_drc_hotplugged(dev);
2980 Error *local_err = NULL;
2982 for (i = 0; i < nr_lmbs; i++) {
2983 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2984 addr / SPAPR_MEMORY_BLOCK_SIZE);
2987 fdt = create_device_tree(&fdt_size);
2988 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2989 SPAPR_MEMORY_BLOCK_SIZE);
2991 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2993 while (addr > addr_start) {
2994 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2995 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2996 addr / SPAPR_MEMORY_BLOCK_SIZE);
2997 spapr_drc_detach(drc);
3000 error_propagate(errp, local_err);
3004 spapr_drc_reset(drc);
3006 addr += SPAPR_MEMORY_BLOCK_SIZE;
3008 /* send hotplug notification to the
3009 * guest only in case of hotplugged memory
3012 if (dedicated_hp_event_source) {
3013 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3014 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3015 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3017 spapr_drc_index(drc));
3019 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3025 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3026 uint32_t node, Error **errp)
3028 Error *local_err = NULL;
3029 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3030 PCDIMMDevice *dimm = PC_DIMM(dev);
3031 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3033 uint64_t align, size, addr;
3035 mr = ddc->get_memory_region(dimm, &local_err);
3039 align = memory_region_get_alignment(mr);
3040 size = memory_region_size(mr);
3042 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3047 addr = object_property_get_uint(OBJECT(dimm),
3048 PC_DIMM_ADDR_PROP, &local_err);
3053 spapr_add_lmbs(dev, addr, size, node,
3054 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3063 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3065 error_propagate(errp, local_err);
3068 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3071 PCDIMMDevice *dimm = PC_DIMM(dev);
3072 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3077 mr = ddc->get_memory_region(dimm, errp);
3081 size = memory_region_size(mr);
3083 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3084 error_setg(errp, "Hotplugged memory size must be a multiple of "
3085 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3089 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3090 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3091 error_setg(errp, "Memory backend has bad page size. "
3092 "Use 'memory-backend-file' with correct mem-path.");
3100 struct sPAPRDIMMState {
3103 QTAILQ_ENTRY(sPAPRDIMMState) next;
3106 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3109 sPAPRDIMMState *dimm_state = NULL;
3111 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3112 if (dimm_state->dimm == dimm) {
3119 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3123 sPAPRDIMMState *ds = NULL;
3126 * If this request is for a DIMM whose removal had failed earlier
3127 * (due to guest's refusal to remove the LMBs), we would have this
3128 * dimm already in the pending_dimm_unplugs list. In that
3129 * case don't add again.
3131 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3133 ds = g_malloc0(sizeof(sPAPRDIMMState));
3134 ds->nr_lmbs = nr_lmbs;
3136 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3141 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3142 sPAPRDIMMState *dimm_state)
3144 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3148 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3151 sPAPRDRConnector *drc;
3152 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3153 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3154 uint64_t size = memory_region_size(mr);
3155 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3156 uint32_t avail_lmbs = 0;
3157 uint64_t addr_start, addr;
3160 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3164 for (i = 0; i < nr_lmbs; i++) {
3165 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3166 addr / SPAPR_MEMORY_BLOCK_SIZE);
3171 addr += SPAPR_MEMORY_BLOCK_SIZE;
3174 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3177 /* Callback to be called during DRC release. */
3178 void spapr_lmb_release(DeviceState *dev)
3180 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3181 PCDIMMDevice *dimm = PC_DIMM(dev);
3182 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3183 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3184 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3186 /* This information will get lost if a migration occurs
3187 * during the unplug process. In this case recover it. */
3189 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3191 /* The DRC being examined by the caller at least must be counted */
3192 g_assert(ds->nr_lmbs);
3195 if (--ds->nr_lmbs) {
3200 * Now that all the LMBs have been removed by the guest, call the
3201 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3203 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3204 object_unparent(OBJECT(dev));
3205 spapr_pending_dimm_unplugs_remove(spapr, ds);
3208 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3209 DeviceState *dev, Error **errp)
3211 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3212 Error *local_err = NULL;
3213 PCDIMMDevice *dimm = PC_DIMM(dev);
3214 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3217 uint64_t size, addr_start, addr;
3219 sPAPRDRConnector *drc;
3221 mr = ddc->get_memory_region(dimm, &local_err);
3225 size = memory_region_size(mr);
3226 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3228 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3235 * An existing pending dimm state for this DIMM means that there is an
3236 * unplug operation in progress, waiting for the spapr_lmb_release
3237 * callback to complete the job (BQL can't cover that far). In this case,
3238 * bail out to avoid detaching DRCs that were already released.
3240 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3241 error_setg(&local_err,
3242 "Memory unplug already in progress for device %s",
3247 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3250 for (i = 0; i < nr_lmbs; i++) {
3251 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3252 addr / SPAPR_MEMORY_BLOCK_SIZE);
3255 spapr_drc_detach(drc);
3256 addr += SPAPR_MEMORY_BLOCK_SIZE;
3259 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3260 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3261 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3262 nr_lmbs, spapr_drc_index(drc));
3264 error_propagate(errp, local_err);
3267 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3268 sPAPRMachineState *spapr)
3270 PowerPCCPU *cpu = POWERPC_CPU(cs);
3271 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3272 int id = spapr_get_vcpu_id(cpu);
3274 int offset, fdt_size;
3277 fdt = create_device_tree(&fdt_size);
3278 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3279 offset = fdt_add_subnode(fdt, 0, nodename);
3281 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3284 *fdt_offset = offset;
3288 /* Callback to be called during DRC release. */
3289 void spapr_core_release(DeviceState *dev)
3291 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3292 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3293 CPUCore *cc = CPU_CORE(dev);
3294 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3296 if (smc->pre_2_10_has_unused_icps) {
3297 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3300 for (i = 0; i < cc->nr_threads; i++) {
3301 CPUState *cs = CPU(sc->threads[i]);
3303 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3308 core_slot->cpu = NULL;
3309 object_unparent(OBJECT(dev));
3313 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3316 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3318 sPAPRDRConnector *drc;
3319 CPUCore *cc = CPU_CORE(dev);
3321 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3322 error_setg(errp, "Unable to find CPU core with core-id: %d",
3327 error_setg(errp, "Boot CPU core may not be unplugged");
3331 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3332 spapr_vcpu_id(spapr, cc->core_id));
3335 spapr_drc_detach(drc);
3337 spapr_hotplug_req_remove_by_index(drc);
3340 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3343 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3344 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3345 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3346 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3347 CPUCore *cc = CPU_CORE(dev);
3348 CPUState *cs = CPU(core->threads[0]);
3349 sPAPRDRConnector *drc;
3350 Error *local_err = NULL;
3351 CPUArchId *core_slot;
3353 bool hotplugged = spapr_drc_hotplugged(dev);
3355 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3357 error_setg(errp, "Unable to find CPU core with core-id: %d",
3361 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3362 spapr_vcpu_id(spapr, cc->core_id));
3364 g_assert(drc || !mc->has_hotpluggable_cpus);
3370 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3372 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3375 error_propagate(errp, local_err);
3381 * Send hotplug notification interrupt to the guest only
3382 * in case of hotplugged CPUs.
3384 spapr_hotplug_req_add_by_index(drc);
3386 spapr_drc_reset(drc);
3390 core_slot->cpu = OBJECT(dev);
3392 if (smc->pre_2_10_has_unused_icps) {
3395 for (i = 0; i < cc->nr_threads; i++) {
3396 cs = CPU(core->threads[i]);
3397 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3402 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3405 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3406 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3407 Error *local_err = NULL;
3408 CPUCore *cc = CPU_CORE(dev);
3409 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3410 const char *type = object_get_typename(OBJECT(dev));
3411 CPUArchId *core_slot;
3414 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3415 error_setg(&local_err, "CPU hotplug not supported for this machine");
3419 if (strcmp(base_core_type, type)) {
3420 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3424 if (cc->core_id % smp_threads) {
3425 error_setg(&local_err, "invalid core id %d", cc->core_id);
3430 * In general we should have homogeneous threads-per-core, but old
3431 * (pre hotplug support) machine types allow the last core to have
3432 * reduced threads as a compatibility hack for when we allowed
3433 * total vcpus not a multiple of threads-per-core.
3435 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3436 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3437 cc->nr_threads, smp_threads);
3441 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3443 error_setg(&local_err, "core id %d out of range", cc->core_id);
3447 if (core_slot->cpu) {
3448 error_setg(&local_err, "core %d already populated", cc->core_id);
3452 numa_cpu_pre_plug(core_slot, dev, &local_err);
3455 error_propagate(errp, local_err);
3458 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3459 DeviceState *dev, Error **errp)
3461 MachineState *ms = MACHINE(hotplug_dev);
3462 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3464 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3467 if (!smc->dr_lmb_enabled) {
3468 error_setg(errp, "Memory hotplug not supported for this machine");
3471 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3475 if (node < 0 || node >= MAX_NODES) {
3476 error_setg(errp, "Invaild node %d", node);
3481 * Currently PowerPC kernel doesn't allow hot-adding memory to
3482 * memory-less node, but instead will silently add the memory
3483 * to the first node that has some memory. This causes two
3484 * unexpected behaviours for the user.
3486 * - Memory gets hotplugged to a different node than what the user
3488 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3489 * to memory-less node, a reboot will set things accordingly
3490 * and the previously hotplugged memory now ends in the right node.
3491 * This appears as if some memory moved from one node to another.
3493 * So until kernel starts supporting memory hotplug to memory-less
3494 * nodes, just prevent such attempts upfront in QEMU.
3496 if (nb_numa_nodes && !numa_info[node].node_mem) {
3497 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3502 spapr_memory_plug(hotplug_dev, dev, node, errp);
3503 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3504 spapr_core_plug(hotplug_dev, dev, errp);
3508 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3509 DeviceState *dev, Error **errp)
3511 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3512 MachineClass *mc = MACHINE_GET_CLASS(sms);
3514 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3515 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3516 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3518 /* NOTE: this means there is a window after guest reset, prior to
3519 * CAS negotiation, where unplug requests will fail due to the
3520 * capability not being detected yet. This is a bit different than
3521 * the case with PCI unplug, where the events will be queued and
3522 * eventually handled by the guest after boot
3524 error_setg(errp, "Memory hot unplug not supported for this guest");
3526 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3527 if (!mc->has_hotpluggable_cpus) {
3528 error_setg(errp, "CPU hot unplug not supported on this machine");
3531 spapr_core_unplug_request(hotplug_dev, dev, errp);
3535 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3536 DeviceState *dev, Error **errp)
3538 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3539 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3540 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3541 spapr_core_pre_plug(hotplug_dev, dev, errp);
3545 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3548 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3549 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3550 return HOTPLUG_HANDLER(machine);
3555 static CpuInstanceProperties
3556 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3558 CPUArchId *core_slot;
3559 MachineClass *mc = MACHINE_GET_CLASS(machine);
3561 /* make sure possible_cpu are intialized */
3562 mc->possible_cpu_arch_ids(machine);
3563 /* get CPU core slot containing thread that matches cpu_index */
3564 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3566 return core_slot->props;
3569 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3571 return idx / smp_cores % nb_numa_nodes;
3574 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3577 const char *core_type;
3578 int spapr_max_cores = max_cpus / smp_threads;
3579 MachineClass *mc = MACHINE_GET_CLASS(machine);
3581 if (!mc->has_hotpluggable_cpus) {
3582 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3584 if (machine->possible_cpus) {
3585 assert(machine->possible_cpus->len == spapr_max_cores);
3586 return machine->possible_cpus;
3589 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3591 error_report("Unable to find sPAPR CPU Core definition");
3595 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3596 sizeof(CPUArchId) * spapr_max_cores);
3597 machine->possible_cpus->len = spapr_max_cores;
3598 for (i = 0; i < machine->possible_cpus->len; i++) {
3599 int core_id = i * smp_threads;
3601 machine->possible_cpus->cpus[i].type = core_type;
3602 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3603 machine->possible_cpus->cpus[i].arch_id = core_id;
3604 machine->possible_cpus->cpus[i].props.has_core_id = true;
3605 machine->possible_cpus->cpus[i].props.core_id = core_id;
3607 return machine->possible_cpus;
3610 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3611 uint64_t *buid, hwaddr *pio,
3612 hwaddr *mmio32, hwaddr *mmio64,
3613 unsigned n_dma, uint32_t *liobns, Error **errp)
3616 * New-style PHB window placement.
3618 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3619 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3622 * Some guest kernels can't work with MMIO windows above 1<<46
3623 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3625 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3626 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3627 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3628 * 1TiB 64-bit MMIO windows for each PHB.
3630 const uint64_t base_buid = 0x800000020000000ULL;
3631 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3632 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3635 /* Sanity check natural alignments */
3636 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3637 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3638 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3639 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3640 /* Sanity check bounds */
3641 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3642 SPAPR_PCI_MEM32_WIN_SIZE);
3643 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3644 SPAPR_PCI_MEM64_WIN_SIZE);
3646 if (index >= SPAPR_MAX_PHBS) {
3647 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3648 SPAPR_MAX_PHBS - 1);
3652 *buid = base_buid + index;
3653 for (i = 0; i < n_dma; ++i) {
3654 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3657 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3658 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3659 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3662 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3664 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3666 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3669 static void spapr_ics_resend(XICSFabric *dev)
3671 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3673 ics_resend(spapr->ics);
3676 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3678 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3680 return cpu ? ICP(cpu->intc) : NULL;
3683 #define ICS_IRQ_FREE(ics, srcno) \
3684 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3686 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3690 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3691 if (num > (ics->nr_irqs - first)) {
3694 for (i = first; i < first + num; ++i) {
3695 if (!ICS_IRQ_FREE(ics, i)) {
3699 if (i == (first + num)) {
3708 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3710 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3712 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3715 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3718 ICSState *ics = spapr->ics;
3725 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3726 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3731 irq = ics_find_free_block(ics, 1, 1);
3733 error_setg(errp, "can't allocate IRQ: no IRQ left");
3739 spapr_irq_set_lsi(spapr, irq, lsi);
3740 trace_spapr_irq_alloc(irq);
3746 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3747 * the block. If align==true, aligns the first IRQ number to num.
3749 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3750 bool align, Error **errp)
3752 ICSState *ics = spapr->ics;
3760 * MSIMesage::data is used for storing VIRQ so
3761 * it has to be aligned to num to support multiple
3762 * MSI vectors. MSI-X is not affected by this.
3763 * The hint is used for the first IRQ, the rest should
3764 * be allocated continuously.
3767 assert((num == 1) || (num == 2) || (num == 4) ||
3768 (num == 8) || (num == 16) || (num == 32));
3769 first = ics_find_free_block(ics, num, num);
3771 first = ics_find_free_block(ics, num, 1);
3774 error_setg(errp, "can't find a free %d-IRQ block", num);
3778 first += ics->offset;
3779 for (i = first; i < first + num; ++i) {
3780 spapr_irq_set_lsi(spapr, i, lsi);
3783 trace_spapr_irq_alloc_block(first, num, lsi, align);
3788 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3790 ICSState *ics = spapr->ics;
3791 int srcno = irq - ics->offset;
3794 if (ics_valid_irq(ics, irq)) {
3795 trace_spapr_irq_free(0, irq, num);
3796 for (i = srcno; i < srcno + num; ++i) {
3797 if (ICS_IRQ_FREE(ics, i)) {
3798 trace_spapr_irq_free_warn(0, i + ics->offset);
3800 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3805 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3807 ICSState *ics = spapr->ics;
3809 if (ics_valid_irq(ics, irq)) {
3810 return ics->qirqs[irq - ics->offset];
3816 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3819 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3823 PowerPCCPU *cpu = POWERPC_CPU(cs);
3825 icp_pic_print_info(ICP(cpu->intc), mon);
3828 ics_pic_print_info(spapr->ics, mon);
3831 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3833 return cpu->vcpu_id;
3836 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3838 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3841 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3843 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3844 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3845 error_append_hint(errp, "Adjust the number of cpus to %d "
3846 "or try to raise the number of threads per core\n",
3847 vcpu_id * smp_threads / spapr->vsmt);
3851 cpu->vcpu_id = vcpu_id;
3854 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3859 PowerPCCPU *cpu = POWERPC_CPU(cs);
3861 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3869 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3871 MachineClass *mc = MACHINE_CLASS(oc);
3872 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3873 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3874 NMIClass *nc = NMI_CLASS(oc);
3875 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3876 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3877 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3878 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3880 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3883 * We set up the default / latest behaviour here. The class_init
3884 * functions for the specific versioned machine types can override
3885 * these details for backwards compatibility
3887 mc->init = spapr_machine_init;
3888 mc->reset = spapr_machine_reset;
3889 mc->block_default_type = IF_SCSI;
3890 mc->max_cpus = 1024;
3891 mc->no_parallel = 1;
3892 mc->default_boot_order = "";
3893 mc->default_ram_size = 512 * M_BYTE;
3894 mc->kvm_type = spapr_kvm_type;
3895 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3896 mc->pci_allow_0_address = true;
3897 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3898 hc->pre_plug = spapr_machine_device_pre_plug;
3899 hc->plug = spapr_machine_device_plug;
3900 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3901 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3902 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3903 hc->unplug_request = spapr_machine_device_unplug_request;
3905 smc->dr_lmb_enabled = true;
3906 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3907 mc->has_hotpluggable_cpus = true;
3908 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3909 fwc->get_dev_path = spapr_get_fw_dev_path;
3910 nc->nmi_monitor_handler = spapr_nmi;
3911 smc->phb_placement = spapr_phb_placement;
3912 vhc->hypercall = emulate_spapr_hypercall;
3913 vhc->hpt_mask = spapr_hpt_mask;
3914 vhc->map_hptes = spapr_map_hptes;
3915 vhc->unmap_hptes = spapr_unmap_hptes;
3916 vhc->store_hpte = spapr_store_hpte;
3917 vhc->get_patbe = spapr_get_patbe;
3918 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3919 xic->ics_get = spapr_ics_get;
3920 xic->ics_resend = spapr_ics_resend;
3921 xic->icp_get = spapr_icp_get;
3922 ispc->print_info = spapr_pic_print_info;
3923 /* Force NUMA node memory size to be a multiple of
3924 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3925 * in which LMBs are represented and hot-added
3927 mc->numa_mem_align_shift = 28;
3929 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3930 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3931 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3932 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3933 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3934 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3935 spapr_caps_add_properties(smc, &error_abort);
3938 static const TypeInfo spapr_machine_info = {
3939 .name = TYPE_SPAPR_MACHINE,
3940 .parent = TYPE_MACHINE,
3942 .instance_size = sizeof(sPAPRMachineState),
3943 .instance_init = spapr_instance_init,
3944 .instance_finalize = spapr_machine_finalizefn,
3945 .class_size = sizeof(sPAPRMachineClass),
3946 .class_init = spapr_machine_class_init,
3947 .interfaces = (InterfaceInfo[]) {
3948 { TYPE_FW_PATH_PROVIDER },
3950 { TYPE_HOTPLUG_HANDLER },
3951 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3952 { TYPE_XICS_FABRIC },
3953 { TYPE_INTERRUPT_STATS_PROVIDER },
3958 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3959 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3962 MachineClass *mc = MACHINE_CLASS(oc); \
3963 spapr_machine_##suffix##_class_options(mc); \
3965 mc->alias = "pseries"; \
3966 mc->is_default = 1; \
3969 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3971 MachineState *machine = MACHINE(obj); \
3972 spapr_machine_##suffix##_instance_options(machine); \
3974 static const TypeInfo spapr_machine_##suffix##_info = { \
3975 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3976 .parent = TYPE_SPAPR_MACHINE, \
3977 .class_init = spapr_machine_##suffix##_class_init, \
3978 .instance_init = spapr_machine_##suffix##_instance_init, \
3980 static void spapr_machine_register_##suffix(void) \
3982 type_register(&spapr_machine_##suffix##_info); \
3984 type_init(spapr_machine_register_##suffix)
3989 static void spapr_machine_2_12_instance_options(MachineState *machine)
3993 static void spapr_machine_2_12_class_options(MachineClass *mc)
3995 /* Defaults for the latest behaviour inherited from the base class */
3998 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
4000 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4002 spapr_machine_2_12_instance_options(machine);
4005 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4007 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4009 spapr_machine_2_12_class_options(mc);
4010 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4011 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4012 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4015 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4020 #define SPAPR_COMPAT_2_11 \
4023 static void spapr_machine_2_11_instance_options(MachineState *machine)
4025 spapr_machine_2_12_instance_options(machine);
4028 static void spapr_machine_2_11_class_options(MachineClass *mc)
4030 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4032 spapr_machine_2_12_class_options(mc);
4033 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4034 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4037 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4042 #define SPAPR_COMPAT_2_10 \
4045 static void spapr_machine_2_10_instance_options(MachineState *machine)
4047 spapr_machine_2_11_instance_options(machine);
4050 static void spapr_machine_2_10_class_options(MachineClass *mc)
4052 spapr_machine_2_11_class_options(mc);
4053 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4056 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4061 #define SPAPR_COMPAT_2_9 \
4064 .driver = TYPE_POWERPC_CPU, \
4065 .property = "pre-2.10-migration", \
4069 static void spapr_machine_2_9_instance_options(MachineState *machine)
4071 spapr_machine_2_10_instance_options(machine);
4074 static void spapr_machine_2_9_class_options(MachineClass *mc)
4076 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4078 spapr_machine_2_10_class_options(mc);
4079 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4080 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4081 smc->pre_2_10_has_unused_icps = true;
4082 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4085 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4090 #define SPAPR_COMPAT_2_8 \
4093 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4094 .property = "pcie-extended-configuration-space", \
4098 static void spapr_machine_2_8_instance_options(MachineState *machine)
4100 spapr_machine_2_9_instance_options(machine);
4103 static void spapr_machine_2_8_class_options(MachineClass *mc)
4105 spapr_machine_2_9_class_options(mc);
4106 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4107 mc->numa_mem_align_shift = 23;
4110 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4115 #define SPAPR_COMPAT_2_7 \
4118 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4119 .property = "mem_win_size", \
4120 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4123 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4124 .property = "mem64_win_size", \
4128 .driver = TYPE_POWERPC_CPU, \
4129 .property = "pre-2.8-migration", \
4133 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4134 .property = "pre-2.8-migration", \
4138 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4139 uint64_t *buid, hwaddr *pio,
4140 hwaddr *mmio32, hwaddr *mmio64,
4141 unsigned n_dma, uint32_t *liobns, Error **errp)
4143 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4144 const uint64_t base_buid = 0x800000020000000ULL;
4145 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4146 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4147 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4148 const uint32_t max_index = 255;
4149 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4151 uint64_t ram_top = MACHINE(spapr)->ram_size;
4152 hwaddr phb0_base, phb_base;
4155 /* Do we have hotpluggable memory? */
4156 if (MACHINE(spapr)->maxram_size > ram_top) {
4157 /* Can't just use maxram_size, because there may be an
4158 * alignment gap between normal and hotpluggable memory
4160 ram_top = spapr->hotplug_memory.base +
4161 memory_region_size(&spapr->hotplug_memory.mr);
4164 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4166 if (index > max_index) {
4167 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4172 *buid = base_buid + index;
4173 for (i = 0; i < n_dma; ++i) {
4174 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4177 phb_base = phb0_base + index * phb_spacing;
4178 *pio = phb_base + pio_offset;
4179 *mmio32 = phb_base + mmio_offset;
4181 * We don't set the 64-bit MMIO window, relying on the PHB's
4182 * fallback behaviour of automatically splitting a large "32-bit"
4183 * window into contiguous 32-bit and 64-bit windows
4187 static void spapr_machine_2_7_instance_options(MachineState *machine)
4189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4191 spapr_machine_2_8_instance_options(machine);
4192 spapr->use_hotplug_event_source = false;
4195 static void spapr_machine_2_7_class_options(MachineClass *mc)
4197 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4199 spapr_machine_2_8_class_options(mc);
4200 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4201 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4202 smc->phb_placement = phb_placement_2_7;
4205 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4210 #define SPAPR_COMPAT_2_6 \
4213 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4215 .value = stringify(off),\
4218 static void spapr_machine_2_6_instance_options(MachineState *machine)
4220 spapr_machine_2_7_instance_options(machine);
4223 static void spapr_machine_2_6_class_options(MachineClass *mc)
4225 spapr_machine_2_7_class_options(mc);
4226 mc->has_hotpluggable_cpus = false;
4227 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4230 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4235 #define SPAPR_COMPAT_2_5 \
4238 .driver = "spapr-vlan", \
4239 .property = "use-rx-buffer-pools", \
4243 static void spapr_machine_2_5_instance_options(MachineState *machine)
4245 spapr_machine_2_6_instance_options(machine);
4248 static void spapr_machine_2_5_class_options(MachineClass *mc)
4250 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4252 spapr_machine_2_6_class_options(mc);
4253 smc->use_ohci_by_default = true;
4254 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4257 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4262 #define SPAPR_COMPAT_2_4 \
4265 static void spapr_machine_2_4_instance_options(MachineState *machine)
4267 spapr_machine_2_5_instance_options(machine);
4270 static void spapr_machine_2_4_class_options(MachineClass *mc)
4272 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4274 spapr_machine_2_5_class_options(mc);
4275 smc->dr_lmb_enabled = false;
4276 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4279 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4284 #define SPAPR_COMPAT_2_3 \
4287 .driver = "spapr-pci-host-bridge",\
4288 .property = "dynamic-reconfiguration",\
4292 static void spapr_machine_2_3_instance_options(MachineState *machine)
4294 spapr_machine_2_4_instance_options(machine);
4297 static void spapr_machine_2_3_class_options(MachineClass *mc)
4299 spapr_machine_2_4_class_options(mc);
4300 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4302 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4308 #define SPAPR_COMPAT_2_2 \
4311 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4312 .property = "mem_win_size",\
4313 .value = "0x20000000",\
4316 static void spapr_machine_2_2_instance_options(MachineState *machine)
4318 spapr_machine_2_3_instance_options(machine);
4319 machine->suppress_vmdesc = true;
4322 static void spapr_machine_2_2_class_options(MachineClass *mc)
4324 spapr_machine_2_3_class_options(mc);
4325 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4327 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4332 #define SPAPR_COMPAT_2_1 \
4335 static void spapr_machine_2_1_instance_options(MachineState *machine)
4337 spapr_machine_2_2_instance_options(machine);
4340 static void spapr_machine_2_1_class_options(MachineClass *mc)
4342 spapr_machine_2_2_class_options(mc);
4343 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4345 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4347 static void spapr_machine_register_types(void)
4349 type_register_static(&spapr_machine_info);
4352 type_init(spapr_machine_register_types)