4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
31 #include "disas/disas.h"
33 #if defined(CONFIG_USER_ONLY)
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
41 #include <machine/profile.h>
50 #include "exec/address-spaces.h"
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
60 //#define DEBUG_TB_INVALIDATE
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
70 #define SMC_BITMAP_USE_THRESHOLD 10
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
96 /* Size of the L2 (and L3, etc) page tables. */
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
107 #define V_L1_BITS V_L1_BITS_REM
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
120 /* code generation context */
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
146 void tb_lock_reset(void)
148 #ifdef CONFIG_USER_ONLY
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
156 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
158 void cpu_gen_init(void)
160 tcg_context_init(&tcg_ctx);
163 /* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
183 /* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185 static target_long decode_sleb128(uint8_t **pp)
193 val |= (target_ulong)(byte & 0x7f) << shift;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
204 /* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
216 static int encode_search(TranslationBlock *tb, uint8_t *block)
218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
222 tb->tc_search = block;
224 for (i = 0, n = tb->icount; i < n; ++i) {
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
229 prev = (j == 0 ? tb->pc : 0);
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
250 /* The cpu state corresponding to 'searched_pc' is restored. */
251 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
252 uintptr_t searched_pc)
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
256 CPUArchState *env = cpu->env_ptr;
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
259 #ifdef CONFIG_PROFILER
260 int64_t ti = profile_getclock();
263 if (searched_pc < host_pc) {
267 /* Reconstruct the stored insn data while looking for the point at
268 which the end of the insn exceeds the searched_pc. */
269 for (i = 0; i < num_insns; ++i) {
270 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
271 data[j] += decode_sleb128(&p);
273 host_pc += decode_sleb128(&p);
274 if (host_pc > searched_pc) {
281 if (tb->cflags & CF_USE_ICOUNT) {
283 /* Reset the cycle counter to the start of the block. */
284 cpu->icount_decr.u16.low += num_insns;
285 /* Clear the IO flag. */
288 cpu->icount_decr.u16.low -= i;
289 restore_state_to_opc(env, tb, data);
291 #ifdef CONFIG_PROFILER
292 tcg_ctx.restore_time += profile_getclock() - ti;
293 tcg_ctx.restore_count++;
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
300 TranslationBlock *tb;
302 tb = tb_find_pc(retaddr);
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 cpu->current_tb = NULL;
308 tb_phys_invalidate(tb, -1);
316 void page_size_init(void)
318 /* NOTE: we can always suppose that qemu_host_page_size >=
320 qemu_real_host_page_size = getpagesize();
321 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
322 if (qemu_host_page_size == 0) {
323 qemu_host_page_size = qemu_real_host_page_size;
325 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
326 qemu_host_page_size = TARGET_PAGE_SIZE;
328 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
331 static void page_init(void)
334 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
336 #ifdef HAVE_KINFO_GETVMMAP
337 struct kinfo_vmentry *freep;
340 freep = kinfo_getvmmap(getpid(), &cnt);
343 for (i = 0; i < cnt; i++) {
344 unsigned long startaddr, endaddr;
346 startaddr = freep[i].kve_start;
347 endaddr = freep[i].kve_end;
348 if (h2g_valid(startaddr)) {
349 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
351 if (h2g_valid(endaddr)) {
352 endaddr = h2g(endaddr);
353 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
355 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
357 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
368 last_brk = (unsigned long)sbrk(0);
370 f = fopen("/compat/linux/proc/self/maps", "r");
375 unsigned long startaddr, endaddr;
378 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
380 if (n == 2 && h2g_valid(startaddr)) {
381 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
383 if (h2g_valid(endaddr)) {
384 endaddr = h2g(endaddr);
388 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
401 * Called with mmap_lock held for user-mode emulation.
403 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
409 /* Level 1. Always allocated. */
410 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
414 void **p = atomic_rcu_read(lp);
420 p = g_new0(void *, V_L2_SIZE);
421 atomic_rcu_set(lp, p);
424 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
427 pd = atomic_rcu_read(lp);
432 pd = g_new0(PageDesc, V_L2_SIZE);
433 atomic_rcu_set(lp, pd);
436 return pd + (index & (V_L2_SIZE - 1));
439 static inline PageDesc *page_find(tb_page_addr_t index)
441 return page_find_alloc(index, 0);
444 #if defined(CONFIG_USER_ONLY)
445 /* Currently it is not recommended to allocate big chunks of data in
446 user mode. It will change when a dedicated libc will be used. */
447 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
448 region in which the guest needs to run. Revisit this. */
449 #define USE_STATIC_CODE_GEN_BUFFER
452 /* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459 #if defined(__x86_64__)
460 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461 #elif defined(__sparc__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__powerpc64__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
467 #elif defined(__aarch64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
469 #elif defined(__arm__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471 #elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
474 #elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
479 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488 static inline size_t size_code_gen_buffer(size_t tb_size)
490 /* Size the buffer. */
492 #ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
512 /* In order to use J and JAL within the code_gen_buffer, we require
513 that the buffer not cross a 256MB boundary. */
514 static inline bool cross_256mb(void *addr, size_t size)
516 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
519 /* We weren't able to allocate a buffer without crossing that boundary,
520 so make do with the larger portion of the buffer that doesn't cross.
521 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
522 static inline void *split_cross_256mb(void *buf1, size_t size1)
524 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
525 size_t size2 = buf1 + size1 - buf2;
533 tcg_ctx.code_gen_buffer_size = size1;
538 #ifdef USE_STATIC_CODE_GEN_BUFFER
539 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
540 __attribute__((aligned(CODE_GEN_ALIGN)));
543 static inline void do_protect(void *addr, long size, int prot)
546 VirtualProtect(addr, size, prot, &old_protect);
549 static inline void map_exec(void *addr, long size)
551 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
554 static inline void map_none(void *addr, long size)
556 do_protect(addr, size, PAGE_NOACCESS);
559 static inline void do_protect(void *addr, long size, int prot)
561 uintptr_t start, end;
563 start = (uintptr_t)addr;
564 start &= qemu_real_host_page_mask;
566 end = (uintptr_t)addr + size;
567 end = ROUND_UP(end, qemu_real_host_page_size);
569 mprotect((void *)start, end - start, prot);
572 static inline void map_exec(void *addr, long size)
574 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
577 static inline void map_none(void *addr, long size)
579 do_protect(addr, size, PROT_NONE);
583 static inline void *alloc_code_gen_buffer(void)
585 void *buf = static_code_gen_buffer;
586 size_t full_size, size;
588 /* The size of the buffer, rounded down to end on a page boundary. */
589 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
590 & qemu_real_host_page_mask) - (uintptr_t)buf;
592 /* Reserve a guard page. */
593 size = full_size - qemu_real_host_page_size;
595 /* Honor a command-line option limiting the size of the buffer. */
596 if (size > tcg_ctx.code_gen_buffer_size) {
597 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
598 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 tcg_ctx.code_gen_buffer_size = size;
603 if (cross_256mb(buf, size)) {
604 buf = split_cross_256mb(buf, size);
605 size = tcg_ctx.code_gen_buffer_size;
610 map_none(buf + size, qemu_real_host_page_size);
611 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
615 #elif defined(_WIN32)
616 static inline void *alloc_code_gen_buffer(void)
618 size_t size = tcg_ctx.code_gen_buffer_size;
621 /* Perform the allocation in two steps, so that the guard page
622 is reserved but uncommitted. */
623 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
624 MEM_RESERVE, PAGE_NOACCESS);
626 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
627 assert(buf1 == buf2);
633 static inline void *alloc_code_gen_buffer(void)
635 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 size_t size = tcg_ctx.code_gen_buffer_size;
640 /* Constrain the position of the buffer based on the host cpu.
641 Note that these addresses are chosen in concert with the
642 addresses assigned in the relevant linker script file. */
643 # if defined(__PIE__) || defined(__PIC__)
644 /* Don't bother setting a preferred location if we're building
645 a position-independent executable. We're more likely to get
646 an address near the main executable if we let the kernel
647 choose the address. */
648 # elif defined(__x86_64__) && defined(MAP_32BIT)
649 /* Force the memory down into low memory with the executable.
650 Leave the choice of exact location with the kernel. */
652 /* Cannot expect to map more than 800MB in low memory. */
653 if (size > 800u * 1024 * 1024) {
654 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
656 # elif defined(__sparc__)
657 start = 0x40000000ul;
658 # elif defined(__s390x__)
659 start = 0x90000000ul;
660 # elif defined(__mips__)
661 # if _MIPS_SIM == _ABI64
662 start = 0x128000000ul;
664 start = 0x08000000ul;
668 buf = mmap((void *)start, size + qemu_real_host_page_size,
669 PROT_NONE, flags, -1, 0);
670 if (buf == MAP_FAILED) {
675 if (cross_256mb(buf, size)) {
676 /* Try again, with the original still mapped, to avoid re-acquiring
677 that 256mb crossing. This time don't specify an address. */
679 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
680 PROT_NONE, flags, -1, 0);
681 switch (buf2 != MAP_FAILED) {
683 if (!cross_256mb(buf2, size)) {
684 /* Success! Use the new buffer. */
685 munmap(buf, size + qemu_real_host_page_size);
688 /* Failure. Work with what we had. */
689 munmap(buf2, size + qemu_real_host_page_size);
692 /* Split the original buffer. Free the smaller half. */
693 buf2 = split_cross_256mb(buf, size);
694 size2 = tcg_ctx.code_gen_buffer_size;
696 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 munmap(buf, size - size2);
707 /* Make the final buffer accessible. The guard page at the end
708 will remain inaccessible with PROT_NONE. */
709 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
711 /* Request large pages for the buffer. */
712 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
716 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
718 static inline void code_gen_alloc(size_t tb_size)
720 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
721 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
722 if (tcg_ctx.code_gen_buffer == NULL) {
723 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
727 /* Estimate a good size for the number of TBs we can support. We
728 still haven't deducted the prologue from the buffer size here,
729 but that's minimal and won't affect the estimate much. */
730 tcg_ctx.code_gen_max_blocks
731 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
732 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
737 /* Must be called before using the QEMU cpus. 'tb_size' is the size
738 (in bytes) allocated to the translation buffer. Zero means default
740 void tcg_exec_init(unsigned long tb_size)
744 code_gen_alloc(tb_size);
745 #if defined(CONFIG_SOFTMMU)
746 /* There's no guest base to take into account, so go ahead and
747 initialize the prologue now. */
748 tcg_prologue_init(&tcg_ctx);
752 bool tcg_enabled(void)
754 return tcg_ctx.code_gen_buffer != NULL;
757 /* Allocate a new translation block. Flush the translation buffer if
758 too many translation blocks or too much generated code. */
759 static TranslationBlock *tb_alloc(target_ulong pc)
761 TranslationBlock *tb;
763 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
766 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
772 void tb_free(TranslationBlock *tb)
774 /* In practice this is mostly used for single use temporary TB
775 Ignore the hard cases and just back up if this TB happens to
776 be the last one generated. */
777 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
778 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
779 tcg_ctx.code_gen_ptr = tb->tc_ptr;
780 tcg_ctx.tb_ctx.nb_tbs--;
784 static inline void invalidate_page_bitmap(PageDesc *p)
786 g_free(p->code_bitmap);
787 p->code_bitmap = NULL;
788 p->code_write_count = 0;
791 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
792 static void page_flush_tb_1(int level, void **lp)
802 for (i = 0; i < V_L2_SIZE; ++i) {
803 pd[i].first_tb = NULL;
804 invalidate_page_bitmap(pd + i);
809 for (i = 0; i < V_L2_SIZE; ++i) {
810 page_flush_tb_1(level - 1, pp + i);
815 static void page_flush_tb(void)
819 for (i = 0; i < V_L1_SIZE; i++) {
820 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
824 /* flush all the translation blocks */
825 /* XXX: tb_flush is currently not thread safe */
826 void tb_flush(CPUState *cpu)
828 #if defined(DEBUG_FLUSH)
829 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
830 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
831 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
832 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
833 tcg_ctx.tb_ctx.nb_tbs : 0);
835 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
836 > tcg_ctx.code_gen_buffer_size) {
837 cpu_abort(cpu, "Internal error: code buffer overflow\n");
839 tcg_ctx.tb_ctx.nb_tbs = 0;
842 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
845 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
848 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
849 /* XXX: flush processor icache at this point if cache flush is
851 tcg_ctx.tb_ctx.tb_flush_count++;
854 #ifdef DEBUG_TB_CHECK
856 static void tb_invalidate_check(target_ulong address)
858 TranslationBlock *tb;
861 address &= TARGET_PAGE_MASK;
862 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
863 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
864 tb = tb->phys_hash_next) {
865 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
866 address >= tb->pc + tb->size)) {
867 printf("ERROR invalidate: address=" TARGET_FMT_lx
868 " PC=%08lx size=%04x\n",
869 address, (long)tb->pc, tb->size);
875 /* verify that all the pages have correct rights for code */
876 static void tb_page_check(void)
878 TranslationBlock *tb;
879 int i, flags1, flags2;
881 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
882 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
883 tb = tb->phys_hash_next) {
884 flags1 = page_get_flags(tb->pc);
885 flags2 = page_get_flags(tb->pc + tb->size - 1);
886 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
887 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
888 (long)tb->pc, tb->size, flags1, flags2);
896 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
898 TranslationBlock *tb1;
903 *ptb = tb1->phys_hash_next;
906 ptb = &tb1->phys_hash_next;
910 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
912 TranslationBlock *tb1;
917 n1 = (uintptr_t)tb1 & 3;
918 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
920 *ptb = tb1->page_next[n1];
923 ptb = &tb1->page_next[n1];
927 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
928 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
930 TranslationBlock *tb1;
934 ptb = &tb->jmp_list_next[n];
936 /* find tb(n) in circular list */
940 tb1 = (TranslationBlock *)(ntb & ~3);
941 if (n1 == n && tb1 == tb) {
945 ptb = &tb1->jmp_list_first;
947 ptb = &tb1->jmp_list_next[n1];
950 /* now we can suppress tb(n) from the list */
951 *ptb = tb->jmp_list_next[n];
953 tb->jmp_list_next[n] = (uintptr_t)NULL;
957 /* reset the jump entry 'n' of a TB so that it is not chained to
959 static inline void tb_reset_jump(TranslationBlock *tb, int n)
961 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
962 tb_set_jmp_target(tb, n, addr);
965 /* remove any jumps to the TB */
966 static inline void tb_jmp_unlink(TranslationBlock *tb)
971 tb1 = tb->jmp_list_first;
973 TranslationBlock *tmp_tb;
978 tmp_tb = (TranslationBlock *)(tb1 & ~3);
979 tb2 = tmp_tb->jmp_list_next[n1];
980 tb_reset_jump(tmp_tb, n1);
981 tmp_tb->jmp_list_next[n1] = (uintptr_t)NULL;
985 assert(((uintptr_t)tb & 3) == 0);
986 tb->jmp_list_first = (uintptr_t)tb | 2; /* fail safe */
989 /* invalidate one TB */
990 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
995 tb_page_addr_t phys_pc;
997 /* remove the TB from the hash list */
998 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
999 h = tb_phys_hash_func(phys_pc);
1000 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
1002 /* remove the TB from the page list */
1003 if (tb->page_addr[0] != page_addr) {
1004 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1005 tb_page_remove(&p->first_tb, tb);
1006 invalidate_page_bitmap(p);
1008 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1009 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1010 tb_page_remove(&p->first_tb, tb);
1011 invalidate_page_bitmap(p);
1014 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1016 /* remove the TB from the hash list */
1017 h = tb_jmp_cache_hash_func(tb->pc);
1019 if (cpu->tb_jmp_cache[h] == tb) {
1020 cpu->tb_jmp_cache[h] = NULL;
1024 /* suppress this TB from the two jump lists */
1025 tb_remove_from_jmp_list(tb, 0);
1026 tb_remove_from_jmp_list(tb, 1);
1028 /* suppress any remaining jumps to this TB */
1031 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1034 static void build_page_bitmap(PageDesc *p)
1036 int n, tb_start, tb_end;
1037 TranslationBlock *tb;
1039 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1042 while (tb != NULL) {
1043 n = (uintptr_t)tb & 3;
1044 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1045 /* NOTE: this is subtle as a TB may span two physical pages */
1047 /* NOTE: tb_end may be after the end of the page, but
1048 it is not a problem */
1049 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1050 tb_end = tb_start + tb->size;
1051 if (tb_end > TARGET_PAGE_SIZE) {
1052 tb_end = TARGET_PAGE_SIZE;
1056 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1058 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1059 tb = tb->page_next[n];
1063 /* add the tb in the target page and protect it if necessary
1065 * Called with mmap_lock held for user-mode emulation.
1067 static inline void tb_alloc_page(TranslationBlock *tb,
1068 unsigned int n, tb_page_addr_t page_addr)
1071 #ifndef CONFIG_USER_ONLY
1072 bool page_already_protected;
1075 tb->page_addr[n] = page_addr;
1076 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1077 tb->page_next[n] = p->first_tb;
1078 #ifndef CONFIG_USER_ONLY
1079 page_already_protected = p->first_tb != NULL;
1081 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1082 invalidate_page_bitmap(p);
1084 #if defined(CONFIG_USER_ONLY)
1085 if (p->flags & PAGE_WRITE) {
1090 /* force the host page as non writable (writes will have a
1091 page fault + mprotect overhead) */
1092 page_addr &= qemu_host_page_mask;
1094 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1095 addr += TARGET_PAGE_SIZE) {
1097 p2 = page_find(addr >> TARGET_PAGE_BITS);
1102 p2->flags &= ~PAGE_WRITE;
1104 mprotect(g2h(page_addr), qemu_host_page_size,
1105 (prot & PAGE_BITS) & ~PAGE_WRITE);
1106 #ifdef DEBUG_TB_INVALIDATE
1107 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1112 /* if some code is already present, then the pages are already
1113 protected. So we handle the case where only the first TB is
1114 allocated in a physical page */
1115 if (!page_already_protected) {
1116 tlb_protect_code(page_addr);
1121 /* add a new TB and link it to the physical page tables. phys_page2 is
1122 * (-1) to indicate that only one page contains the TB.
1124 * Called with mmap_lock held for user-mode emulation.
1126 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1127 tb_page_addr_t phys_page2)
1130 TranslationBlock **ptb;
1132 /* add in the physical hash table */
1133 h = tb_phys_hash_func(phys_pc);
1134 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1135 tb->phys_hash_next = *ptb;
1138 /* add in the page list */
1139 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1140 if (phys_page2 != -1) {
1141 tb_alloc_page(tb, 1, phys_page2);
1143 tb->page_addr[1] = -1;
1146 #ifdef DEBUG_TB_CHECK
1151 /* Called with mmap_lock held for user mode emulation. */
1152 TranslationBlock *tb_gen_code(CPUState *cpu,
1153 target_ulong pc, target_ulong cs_base,
1154 uint32_t flags, int cflags)
1156 CPUArchState *env = cpu->env_ptr;
1157 TranslationBlock *tb;
1158 tb_page_addr_t phys_pc, phys_page2;
1159 target_ulong virt_page2;
1160 tcg_insn_unit *gen_code_buf;
1161 int gen_code_size, search_size;
1162 #ifdef CONFIG_PROFILER
1166 phys_pc = get_page_addr_code(env, pc);
1167 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1168 cflags |= CF_USE_ICOUNT;
1172 if (unlikely(!tb)) {
1174 /* flush must be done */
1176 /* cannot fail at this point */
1179 /* Don't forget to invalidate previous TB info. */
1180 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1183 gen_code_buf = tcg_ctx.code_gen_ptr;
1184 tb->tc_ptr = gen_code_buf;
1185 tb->cs_base = cs_base;
1187 tb->cflags = cflags;
1189 #ifdef CONFIG_PROFILER
1190 tcg_ctx.tb_count1++; /* includes aborted translations because of
1192 ti = profile_getclock();
1195 tcg_func_start(&tcg_ctx);
1197 gen_intermediate_code(env, tb);
1199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1201 /* generate machine code */
1202 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1203 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1204 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1205 #ifdef USE_DIRECT_JUMP
1206 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1207 tcg_ctx.tb_jmp_target_addr = NULL;
1209 tcg_ctx.tb_jmp_insn_offset = NULL;
1210 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1213 #ifdef CONFIG_PROFILER
1215 tcg_ctx.interm_time += profile_getclock() - ti;
1216 tcg_ctx.code_time -= profile_getclock();
1219 /* ??? Overflow could be handled better here. In particular, we
1220 don't need to re-do gen_intermediate_code, nor should we re-do
1221 the tcg optimization currently hidden inside tcg_gen_code. All
1222 that should be required is to flush the TBs, allocate a new TB,
1223 re-initialize it per above, and re-do the actual code generation. */
1224 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1225 if (unlikely(gen_code_size < 0)) {
1226 goto buffer_overflow;
1228 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1229 if (unlikely(search_size < 0)) {
1230 goto buffer_overflow;
1233 #ifdef CONFIG_PROFILER
1234 tcg_ctx.code_time += profile_getclock();
1235 tcg_ctx.code_in_len += tb->size;
1236 tcg_ctx.code_out_len += gen_code_size;
1237 tcg_ctx.search_out_len += search_size;
1241 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1242 qemu_log_in_addr_range(tb->pc)) {
1243 qemu_log("OUT: [size=%d]\n", gen_code_size);
1244 log_disas(tb->tc_ptr, gen_code_size);
1250 tcg_ctx.code_gen_ptr = (void *)
1251 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1254 /* init jump list */
1255 assert(((uintptr_t)tb & 3) == 0);
1256 tb->jmp_list_first = (uintptr_t)tb | 2;
1257 tb->jmp_list_next[0] = (uintptr_t)NULL;
1258 tb->jmp_list_next[1] = (uintptr_t)NULL;
1260 /* init original jump addresses wich has been set during tcg_gen_code() */
1261 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1262 tb_reset_jump(tb, 0);
1264 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1265 tb_reset_jump(tb, 1);
1268 /* check next page if needed */
1269 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1271 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1272 phys_page2 = get_page_addr_code(env, virt_page2);
1274 /* As long as consistency of the TB stuff is provided by tb_lock in user
1275 * mode and is implicit in single-threaded softmmu emulation, no explicit
1276 * memory barrier is required before tb_link_page() makes the TB visible
1277 * through the physical hash table and physical page list.
1279 tb_link_page(tb, phys_pc, phys_page2);
1284 * Invalidate all TBs which intersect with the target physical address range
1285 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1286 * 'is_cpu_write_access' should be true if called from a real cpu write
1287 * access: the virtual CPU will exit the current TB if code is modified inside
1290 * Called with mmap_lock held for user-mode emulation
1292 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1294 while (start < end) {
1295 tb_invalidate_phys_page_range(start, end, 0);
1296 start &= TARGET_PAGE_MASK;
1297 start += TARGET_PAGE_SIZE;
1302 * Invalidate all TBs which intersect with the target physical address range
1303 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1304 * 'is_cpu_write_access' should be true if called from a real cpu write
1305 * access: the virtual CPU will exit the current TB if code is modified inside
1308 * Called with mmap_lock held for user-mode emulation
1310 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1311 int is_cpu_write_access)
1313 TranslationBlock *tb, *tb_next, *saved_tb;
1314 CPUState *cpu = current_cpu;
1315 #if defined(TARGET_HAS_PRECISE_SMC)
1316 CPUArchState *env = NULL;
1318 tb_page_addr_t tb_start, tb_end;
1321 #ifdef TARGET_HAS_PRECISE_SMC
1322 int current_tb_not_found = is_cpu_write_access;
1323 TranslationBlock *current_tb = NULL;
1324 int current_tb_modified = 0;
1325 target_ulong current_pc = 0;
1326 target_ulong current_cs_base = 0;
1327 uint32_t current_flags = 0;
1328 #endif /* TARGET_HAS_PRECISE_SMC */
1330 p = page_find(start >> TARGET_PAGE_BITS);
1334 #if defined(TARGET_HAS_PRECISE_SMC)
1340 /* we remove all the TBs in the range [start, end[ */
1341 /* XXX: see if in some cases it could be faster to invalidate all
1344 while (tb != NULL) {
1345 n = (uintptr_t)tb & 3;
1346 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1347 tb_next = tb->page_next[n];
1348 /* NOTE: this is subtle as a TB may span two physical pages */
1350 /* NOTE: tb_end may be after the end of the page, but
1351 it is not a problem */
1352 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1353 tb_end = tb_start + tb->size;
1355 tb_start = tb->page_addr[1];
1356 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1358 if (!(tb_end <= start || tb_start >= end)) {
1359 #ifdef TARGET_HAS_PRECISE_SMC
1360 if (current_tb_not_found) {
1361 current_tb_not_found = 0;
1363 if (cpu->mem_io_pc) {
1364 /* now we have a real cpu fault */
1365 current_tb = tb_find_pc(cpu->mem_io_pc);
1368 if (current_tb == tb &&
1369 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1370 /* If we are modifying the current TB, we must stop
1371 its execution. We could be more precise by checking
1372 that the modification is after the current PC, but it
1373 would require a specialized function to partially
1374 restore the CPU state */
1376 current_tb_modified = 1;
1377 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1378 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1381 #endif /* TARGET_HAS_PRECISE_SMC */
1382 /* we need to do that to handle the case where a signal
1383 occurs while doing tb_phys_invalidate() */
1386 saved_tb = cpu->current_tb;
1387 cpu->current_tb = NULL;
1389 tb_phys_invalidate(tb, -1);
1391 cpu->current_tb = saved_tb;
1392 if (cpu->interrupt_request && cpu->current_tb) {
1393 cpu_interrupt(cpu, cpu->interrupt_request);
1399 #if !defined(CONFIG_USER_ONLY)
1400 /* if no code remaining, no need to continue to use slow writes */
1402 invalidate_page_bitmap(p);
1403 tlb_unprotect_code(start);
1406 #ifdef TARGET_HAS_PRECISE_SMC
1407 if (current_tb_modified) {
1408 /* we generate a block containing just the instruction
1409 modifying the memory. It will ensure that it cannot modify
1411 cpu->current_tb = NULL;
1412 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1413 cpu_resume_from_signal(cpu, NULL);
1418 /* len must be <= 8 and start must be a multiple of len */
1419 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1425 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1426 cpu_single_env->mem_io_vaddr, len,
1427 cpu_single_env->eip,
1428 cpu_single_env->eip +
1429 (intptr_t)cpu_single_env->segs[R_CS].base);
1432 p = page_find(start >> TARGET_PAGE_BITS);
1436 if (!p->code_bitmap &&
1437 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1438 /* build code bitmap */
1439 build_page_bitmap(p);
1441 if (p->code_bitmap) {
1445 nr = start & ~TARGET_PAGE_MASK;
1446 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1447 if (b & ((1 << len) - 1)) {
1452 tb_invalidate_phys_page_range(start, start + len, 1);
1456 #if !defined(CONFIG_SOFTMMU)
1457 /* Called with mmap_lock held. */
1458 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1459 uintptr_t pc, void *puc,
1462 TranslationBlock *tb;
1465 #ifdef TARGET_HAS_PRECISE_SMC
1466 TranslationBlock *current_tb = NULL;
1467 CPUState *cpu = current_cpu;
1468 CPUArchState *env = NULL;
1469 int current_tb_modified = 0;
1470 target_ulong current_pc = 0;
1471 target_ulong current_cs_base = 0;
1472 uint32_t current_flags = 0;
1475 addr &= TARGET_PAGE_MASK;
1476 p = page_find(addr >> TARGET_PAGE_BITS);
1481 #ifdef TARGET_HAS_PRECISE_SMC
1482 if (tb && pc != 0) {
1483 current_tb = tb_find_pc(pc);
1489 while (tb != NULL) {
1490 n = (uintptr_t)tb & 3;
1491 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1492 #ifdef TARGET_HAS_PRECISE_SMC
1493 if (current_tb == tb &&
1494 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1495 /* If we are modifying the current TB, we must stop
1496 its execution. We could be more precise by checking
1497 that the modification is after the current PC, but it
1498 would require a specialized function to partially
1499 restore the CPU state */
1501 current_tb_modified = 1;
1502 cpu_restore_state_from_tb(cpu, current_tb, pc);
1503 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1506 #endif /* TARGET_HAS_PRECISE_SMC */
1507 tb_phys_invalidate(tb, addr);
1508 tb = tb->page_next[n];
1511 #ifdef TARGET_HAS_PRECISE_SMC
1512 if (current_tb_modified) {
1513 /* we generate a block containing just the instruction
1514 modifying the memory. It will ensure that it cannot modify
1516 cpu->current_tb = NULL;
1517 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1521 cpu_resume_from_signal(cpu, puc);
1527 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1528 tb[1].tc_ptr. Return NULL if not found */
1529 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1531 int m_min, m_max, m;
1533 TranslationBlock *tb;
1535 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1538 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1539 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1542 /* binary search (cf Knuth) */
1544 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1545 while (m_min <= m_max) {
1546 m = (m_min + m_max) >> 1;
1547 tb = &tcg_ctx.tb_ctx.tbs[m];
1548 v = (uintptr_t)tb->tc_ptr;
1551 } else if (tc_ptr < v) {
1557 return &tcg_ctx.tb_ctx.tbs[m_max];
1560 #if !defined(CONFIG_USER_ONLY)
1561 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1563 ram_addr_t ram_addr;
1568 mr = address_space_translate(as, addr, &addr, &l, false);
1569 if (!(memory_region_is_ram(mr)
1570 || memory_region_is_romd(mr))) {
1574 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1576 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1579 #endif /* !defined(CONFIG_USER_ONLY) */
1581 void tb_check_watchpoint(CPUState *cpu)
1583 TranslationBlock *tb;
1585 tb = tb_find_pc(cpu->mem_io_pc);
1587 /* We can use retranslation to find the PC. */
1588 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1589 tb_phys_invalidate(tb, -1);
1591 /* The exception probably happened in a helper. The CPU state should
1592 have been saved before calling it. Fetch the PC from there. */
1593 CPUArchState *env = cpu->env_ptr;
1594 target_ulong pc, cs_base;
1595 tb_page_addr_t addr;
1598 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1599 addr = get_page_addr_code(env, pc);
1600 tb_invalidate_phys_range(addr, addr + 1);
1604 #ifndef CONFIG_USER_ONLY
1605 /* in deterministic execution mode, instructions doing device I/Os
1606 must be at the end of the TB */
1607 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1609 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1610 CPUArchState *env = cpu->env_ptr;
1612 TranslationBlock *tb;
1614 target_ulong pc, cs_base;
1617 tb = tb_find_pc(retaddr);
1619 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1622 n = cpu->icount_decr.u16.low + tb->icount;
1623 cpu_restore_state_from_tb(cpu, tb, retaddr);
1624 /* Calculate how many instructions had been executed before the fault
1626 n = n - cpu->icount_decr.u16.low;
1627 /* Generate a new TB ending on the I/O insn. */
1629 /* On MIPS and SH, delay slot instructions can only be restarted if
1630 they were already the first instruction in the TB. If this is not
1631 the first instruction in a TB then re-execute the preceding
1633 #if defined(TARGET_MIPS)
1634 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1635 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1636 cpu->icount_decr.u16.low++;
1637 env->hflags &= ~MIPS_HFLAG_BMASK;
1639 #elif defined(TARGET_SH4)
1640 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1643 cpu->icount_decr.u16.low++;
1644 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1647 /* This should never happen. */
1648 if (n > CF_COUNT_MASK) {
1649 cpu_abort(cpu, "TB too big during recompile");
1652 cflags = n | CF_LAST_IO;
1654 cs_base = tb->cs_base;
1656 tb_phys_invalidate(tb, -1);
1657 if (tb->cflags & CF_NOCACHE) {
1659 /* Invalidate original TB if this TB was generated in
1660 * cpu_exec_nocache() */
1661 tb_phys_invalidate(tb->orig_tb, -1);
1665 /* FIXME: In theory this could raise an exception. In practice
1666 we have already translated the block once so it's probably ok. */
1667 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1668 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1669 the first in the TB) then we end up generating a whole new TB and
1670 repeating the fault, which is horribly inefficient.
1671 Better would be to execute just this insn uncached, or generate a
1673 cpu_resume_from_signal(cpu, NULL);
1676 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1680 /* Discard jump cache entries for any tb which might potentially
1681 overlap the flushed page. */
1682 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1683 memset(&cpu->tb_jmp_cache[i], 0,
1684 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1686 i = tb_jmp_cache_hash_page(addr);
1687 memset(&cpu->tb_jmp_cache[i], 0,
1688 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1691 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1693 int i, target_code_size, max_target_code_size;
1694 int direct_jmp_count, direct_jmp2_count, cross_page;
1695 TranslationBlock *tb;
1697 target_code_size = 0;
1698 max_target_code_size = 0;
1700 direct_jmp_count = 0;
1701 direct_jmp2_count = 0;
1702 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1703 tb = &tcg_ctx.tb_ctx.tbs[i];
1704 target_code_size += tb->size;
1705 if (tb->size > max_target_code_size) {
1706 max_target_code_size = tb->size;
1708 if (tb->page_addr[1] != -1) {
1711 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1713 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1714 direct_jmp2_count++;
1718 /* XXX: avoid using doubles ? */
1719 cpu_fprintf(f, "Translation buffer state:\n");
1720 cpu_fprintf(f, "gen code size %td/%zd\n",
1721 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1722 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1723 cpu_fprintf(f, "TB count %d/%d\n",
1724 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1725 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1726 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1727 tcg_ctx.tb_ctx.nb_tbs : 0,
1728 max_target_code_size);
1729 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1730 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1731 tcg_ctx.code_gen_buffer) /
1732 tcg_ctx.tb_ctx.nb_tbs : 0,
1733 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1734 tcg_ctx.code_gen_buffer) /
1735 target_code_size : 0);
1736 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1737 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1738 tcg_ctx.tb_ctx.nb_tbs : 0);
1739 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1741 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1742 tcg_ctx.tb_ctx.nb_tbs : 0,
1744 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1745 tcg_ctx.tb_ctx.nb_tbs : 0);
1746 cpu_fprintf(f, "\nStatistics:\n");
1747 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1748 cpu_fprintf(f, "TB invalidate count %d\n",
1749 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1750 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1751 tcg_dump_info(f, cpu_fprintf);
1754 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1756 tcg_dump_op_count(f, cpu_fprintf);
1759 #else /* CONFIG_USER_ONLY */
1761 void cpu_interrupt(CPUState *cpu, int mask)
1763 cpu->interrupt_request |= mask;
1764 cpu->tcg_exit_req = 1;
1768 * Walks guest process memory "regions" one by one
1769 * and calls callback function 'fn' for each region.
1771 struct walk_memory_regions_data {
1772 walk_memory_regions_fn fn;
1778 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1779 target_ulong end, int new_prot)
1781 if (data->start != -1u) {
1782 int rc = data->fn(data->priv, data->start, end, data->prot);
1788 data->start = (new_prot ? end : -1u);
1789 data->prot = new_prot;
1794 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1795 target_ulong base, int level, void **lp)
1801 return walk_memory_regions_end(data, base, 0);
1807 for (i = 0; i < V_L2_SIZE; ++i) {
1808 int prot = pd[i].flags;
1810 pa = base | (i << TARGET_PAGE_BITS);
1811 if (prot != data->prot) {
1812 rc = walk_memory_regions_end(data, pa, prot);
1821 for (i = 0; i < V_L2_SIZE; ++i) {
1822 pa = base | ((target_ulong)i <<
1823 (TARGET_PAGE_BITS + V_L2_BITS * level));
1824 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1834 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1836 struct walk_memory_regions_data data;
1844 for (i = 0; i < V_L1_SIZE; i++) {
1845 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1846 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1852 return walk_memory_regions_end(&data, 0, 0);
1855 static int dump_region(void *priv, target_ulong start,
1856 target_ulong end, unsigned long prot)
1858 FILE *f = (FILE *)priv;
1860 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1861 " "TARGET_FMT_lx" %c%c%c\n",
1862 start, end, end - start,
1863 ((prot & PAGE_READ) ? 'r' : '-'),
1864 ((prot & PAGE_WRITE) ? 'w' : '-'),
1865 ((prot & PAGE_EXEC) ? 'x' : '-'));
1870 /* dump memory mappings */
1871 void page_dump(FILE *f)
1873 const int length = sizeof(target_ulong) * 2;
1874 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1875 length, "start", length, "end", length, "size", "prot");
1876 walk_memory_regions(f, dump_region);
1879 int page_get_flags(target_ulong address)
1883 p = page_find(address >> TARGET_PAGE_BITS);
1890 /* Modify the flags of a page and invalidate the code if necessary.
1891 The flag PAGE_WRITE_ORG is positioned automatically depending
1892 on PAGE_WRITE. The mmap_lock should already be held. */
1893 void page_set_flags(target_ulong start, target_ulong end, int flags)
1895 target_ulong addr, len;
1897 /* This function should never be called with addresses outside the
1898 guest address space. If this assert fires, it probably indicates
1899 a missing call to h2g_valid. */
1900 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1901 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1903 assert(start < end);
1905 start = start & TARGET_PAGE_MASK;
1906 end = TARGET_PAGE_ALIGN(end);
1908 if (flags & PAGE_WRITE) {
1909 flags |= PAGE_WRITE_ORG;
1912 for (addr = start, len = end - start;
1914 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1915 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1917 /* If the write protection bit is set, then we invalidate
1919 if (!(p->flags & PAGE_WRITE) &&
1920 (flags & PAGE_WRITE) &&
1922 tb_invalidate_phys_page(addr, 0, NULL, false);
1928 int page_check_range(target_ulong start, target_ulong len, int flags)
1934 /* This function should never be called with addresses outside the
1935 guest address space. If this assert fires, it probably indicates
1936 a missing call to h2g_valid. */
1937 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1938 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1944 if (start + len - 1 < start) {
1945 /* We've wrapped around. */
1949 /* must do before we loose bits in the next step */
1950 end = TARGET_PAGE_ALIGN(start + len);
1951 start = start & TARGET_PAGE_MASK;
1953 for (addr = start, len = end - start;
1955 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1956 p = page_find(addr >> TARGET_PAGE_BITS);
1960 if (!(p->flags & PAGE_VALID)) {
1964 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1967 if (flags & PAGE_WRITE) {
1968 if (!(p->flags & PAGE_WRITE_ORG)) {
1971 /* unprotect the page if it was put read-only because it
1972 contains translated code */
1973 if (!(p->flags & PAGE_WRITE)) {
1974 if (!page_unprotect(addr, 0, NULL)) {
1983 /* called from signal handler: invalidate the code and unprotect the
1984 page. Return TRUE if the fault was successfully handled. */
1985 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1989 target_ulong host_start, host_end, addr;
1991 /* Technically this isn't safe inside a signal handler. However we
1992 know this only ever happens in a synchronous SEGV handler, so in
1993 practice it seems to be ok. */
1996 p = page_find(address >> TARGET_PAGE_BITS);
2002 /* if the page was really writable, then we change its
2003 protection back to writable */
2004 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2005 host_start = address & qemu_host_page_mask;
2006 host_end = host_start + qemu_host_page_size;
2009 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2010 p = page_find(addr >> TARGET_PAGE_BITS);
2011 p->flags |= PAGE_WRITE;
2014 /* and since the content will be modified, we must invalidate
2015 the corresponding translated code. */
2016 tb_invalidate_phys_page(addr, pc, puc, true);
2017 #ifdef DEBUG_TB_CHECK
2018 tb_invalidate_check(addr);
2021 mprotect((void *)g2h(host_start), qemu_host_page_size,
2030 #endif /* CONFIG_USER_ONLY */