10 static uint32_t cortexa8_cp15_c0_c1[8] =
11 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
13 static uint32_t cortexa8_cp15_c0_c2[8] =
14 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
16 static uint32_t mpcore_cp15_c0_c1[8] =
17 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
19 static uint32_t mpcore_cp15_c0_c2[8] =
20 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
22 static uint32_t arm1136_cp15_c0_c1[8] =
23 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
25 static uint32_t arm1136_cp15_c0_c2[8] =
26 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
28 static uint32_t cpu_arm_find_by_name(const char *name);
30 static inline void set_feature(CPUARMState *env, int feature)
32 env->features |= 1u << feature;
35 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
37 env->cp15.c0_cpuid = id;
39 case ARM_CPUID_ARM926:
40 set_feature(env, ARM_FEATURE_VFP);
41 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
42 env->cp15.c0_cachetype = 0x1dd20d2;
43 env->cp15.c1_sys = 0x00090078;
45 case ARM_CPUID_ARM946:
46 set_feature(env, ARM_FEATURE_MPU);
47 env->cp15.c0_cachetype = 0x0f004006;
48 env->cp15.c1_sys = 0x00000078;
50 case ARM_CPUID_ARM1026:
51 set_feature(env, ARM_FEATURE_VFP);
52 set_feature(env, ARM_FEATURE_AUXCR);
53 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
54 env->cp15.c0_cachetype = 0x1dd20d2;
55 env->cp15.c1_sys = 0x00090078;
57 case ARM_CPUID_ARM1136:
58 set_feature(env, ARM_FEATURE_V6);
59 set_feature(env, ARM_FEATURE_VFP);
60 set_feature(env, ARM_FEATURE_AUXCR);
61 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
62 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
63 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
64 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
65 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
66 env->cp15.c0_cachetype = 0x1dd20d2;
68 case ARM_CPUID_ARM11MPCORE:
69 set_feature(env, ARM_FEATURE_V6);
70 set_feature(env, ARM_FEATURE_V6K);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
80 case ARM_CPUID_CORTEXA8:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_V7);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 set_feature(env, ARM_FEATURE_THUMB2);
86 set_feature(env, ARM_FEATURE_VFP);
87 set_feature(env, ARM_FEATURE_VFP3);
88 set_feature(env, ARM_FEATURE_NEON);
89 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
90 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
91 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
92 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
93 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
94 env->cp15.c0_cachetype = 0x1dd20d2;
96 case ARM_CPUID_CORTEXM3:
97 set_feature(env, ARM_FEATURE_V6);
98 set_feature(env, ARM_FEATURE_THUMB2);
99 set_feature(env, ARM_FEATURE_V7);
100 set_feature(env, ARM_FEATURE_M);
101 set_feature(env, ARM_FEATURE_DIV);
103 case ARM_CPUID_ANY: /* For userspace emulation. */
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_V6K);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_THUMB2);
108 set_feature(env, ARM_FEATURE_VFP);
109 set_feature(env, ARM_FEATURE_VFP3);
110 set_feature(env, ARM_FEATURE_NEON);
111 set_feature(env, ARM_FEATURE_DIV);
113 case ARM_CPUID_TI915T:
114 case ARM_CPUID_TI925T:
115 set_feature(env, ARM_FEATURE_OMAPCP);
116 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
117 env->cp15.c0_cachetype = 0x5109149;
118 env->cp15.c1_sys = 0x00000070;
119 env->cp15.c15_i_max = 0x000;
120 env->cp15.c15_i_min = 0xff0;
122 case ARM_CPUID_PXA250:
123 case ARM_CPUID_PXA255:
124 case ARM_CPUID_PXA260:
125 case ARM_CPUID_PXA261:
126 case ARM_CPUID_PXA262:
127 set_feature(env, ARM_FEATURE_XSCALE);
128 /* JTAG_ID is ((id << 28) | 0x09265013) */
129 env->cp15.c0_cachetype = 0xd172172;
130 env->cp15.c1_sys = 0x00000078;
132 case ARM_CPUID_PXA270_A0:
133 case ARM_CPUID_PXA270_A1:
134 case ARM_CPUID_PXA270_B0:
135 case ARM_CPUID_PXA270_B1:
136 case ARM_CPUID_PXA270_C0:
137 case ARM_CPUID_PXA270_C5:
138 set_feature(env, ARM_FEATURE_XSCALE);
139 /* JTAG_ID is ((id << 28) | 0x09265013) */
140 set_feature(env, ARM_FEATURE_IWMMXT);
141 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142 env->cp15.c0_cachetype = 0xd172172;
143 env->cp15.c1_sys = 0x00000078;
146 cpu_abort(env, "Bad CPU ID: %x\n", id);
151 void cpu_reset(CPUARMState *env)
154 id = env->cp15.c0_cpuid;
155 memset(env, 0, offsetof(CPUARMState, breakpoints));
157 cpu_reset_model_id(env, id);
158 #if defined (CONFIG_USER_ONLY)
159 env->uncached_cpsr = ARM_CPU_MODE_USR;
160 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
162 /* SVC mode with interrupts disabled. */
163 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
164 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
167 env->uncached_cpsr &= ~CPSR_I;
168 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
174 CPUARMState *cpu_arm_init(const char *cpu_model)
178 static int inited = 0;
180 id = cpu_arm_find_by_name(cpu_model);
183 env = qemu_mallocz(sizeof(CPUARMState));
189 arm_translate_init();
192 env->cpu_model_str = cpu_model;
193 env->cp15.c0_cpuid = id;
203 static const struct arm_cpu_t arm_cpu_names[] = {
204 { ARM_CPUID_ARM926, "arm926"},
205 { ARM_CPUID_ARM946, "arm946"},
206 { ARM_CPUID_ARM1026, "arm1026"},
207 { ARM_CPUID_ARM1136, "arm1136"},
208 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
209 { ARM_CPUID_CORTEXM3, "cortex-m3"},
210 { ARM_CPUID_CORTEXA8, "cortex-a8"},
211 { ARM_CPUID_TI925T, "ti925t" },
212 { ARM_CPUID_PXA250, "pxa250" },
213 { ARM_CPUID_PXA255, "pxa255" },
214 { ARM_CPUID_PXA260, "pxa260" },
215 { ARM_CPUID_PXA261, "pxa261" },
216 { ARM_CPUID_PXA262, "pxa262" },
217 { ARM_CPUID_PXA270, "pxa270" },
218 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
219 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
220 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
221 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
222 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
223 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
224 { ARM_CPUID_ANY, "any"},
228 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
232 (*cpu_fprintf)(f, "Available CPUs:\n");
233 for (i = 0; arm_cpu_names[i].name; i++) {
234 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
238 /* return 0 if not found */
239 static uint32_t cpu_arm_find_by_name(const char *name)
245 for (i = 0; arm_cpu_names[i].name; i++) {
246 if (strcmp(name, arm_cpu_names[i].name) == 0) {
247 id = arm_cpu_names[i].id;
254 void cpu_arm_close(CPUARMState *env)
259 /* Polynomial multiplication is like integer multiplcation except the
260 partial products are XORed, not added. */
261 uint32_t helper_neon_mul_p8(uint32_t op1, uint32_t op2)
273 mask |= (0xff << 16);
275 mask |= (0xff << 24);
276 result ^= op2 & mask;
277 op1 = (op1 >> 1) & 0x7f7f7f7f;
278 op2 = (op2 << 1) & 0xfefefefe;
283 uint32_t cpsr_read(CPUARMState *env)
286 ZF = (env->NZF == 0);
287 return env->uncached_cpsr | (env->NZF & 0x80000000) | (ZF << 30) |
288 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
289 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
290 | ((env->condexec_bits & 0xfc) << 8)
294 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
296 /* NOTE: N = 1 and Z = 1 cannot be stored currently */
297 if (mask & CPSR_NZCV) {
298 env->NZF = (val & 0xc0000000) ^ 0x40000000;
299 env->CF = (val >> 29) & 1;
300 env->VF = (val << 3) & 0x80000000;
303 env->QF = ((val & CPSR_Q) != 0);
305 env->thumb = ((val & CPSR_T) != 0);
306 if (mask & CPSR_IT_0_1) {
307 env->condexec_bits &= ~3;
308 env->condexec_bits |= (val >> 25) & 3;
310 if (mask & CPSR_IT_2_7) {
311 env->condexec_bits &= 3;
312 env->condexec_bits |= (val >> 8) & 0xfc;
314 if (mask & CPSR_GE) {
315 env->GE = (val >> 16) & 0xf;
318 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
319 switch_mode(env, val & CPSR_M);
321 mask &= ~CACHED_CPSR_BITS;
322 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
325 /* Sign/zero extend */
326 uint32_t HELPER(sxtb16)(uint32_t x)
329 res = (uint16_t)(int8_t)x;
330 res |= (uint32_t)(int8_t)(x >> 16) << 16;
334 uint32_t HELPER(uxtb16)(uint32_t x)
337 res = (uint16_t)(uint8_t)x;
338 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
342 uint32_t HELPER(clz)(uint32_t x)
345 for (count = 32; x; count--)
350 int32_t HELPER(sdiv)(int32_t num, int32_t den)
357 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
364 uint32_t HELPER(rbit)(uint32_t x)
366 x = ((x & 0xff000000) >> 24)
367 | ((x & 0x00ff0000) >> 8)
368 | ((x & 0x0000ff00) << 8)
369 | ((x & 0x000000ff) << 24);
370 x = ((x & 0xf0f0f0f0) >> 4)
371 | ((x & 0x0f0f0f0f) << 4);
372 x = ((x & 0x88888888) >> 3)
373 | ((x & 0x44444444) >> 1)
374 | ((x & 0x22222222) << 1)
375 | ((x & 0x11111111) << 3);
379 #if defined(CONFIG_USER_ONLY)
381 void do_interrupt (CPUState *env)
383 env->exception_index = -1;
386 /* Structure used to record exclusive memory locations. */
387 typedef struct mmon_state {
388 struct mmon_state *next;
389 CPUARMState *cpu_env;
393 /* Chain of current locks. */
394 static mmon_state* mmon_head = NULL;
396 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
397 int mmu_idx, int is_softmmu)
400 env->exception_index = EXCP_PREFETCH_ABORT;
401 env->cp15.c6_insn = address;
403 env->exception_index = EXCP_DATA_ABORT;
404 env->cp15.c6_data = address;
409 static void allocate_mmon_state(CPUState *env)
411 env->mmon_entry = malloc(sizeof (mmon_state));
412 if (!env->mmon_entry)
414 memset (env->mmon_entry, 0, sizeof (mmon_state));
415 env->mmon_entry->cpu_env = env;
416 mmon_head = env->mmon_entry;
419 /* Flush any monitor locks for the specified address. */
420 static void flush_mmon(uint32_t addr)
424 for (mon = mmon_head; mon; mon = mon->next)
426 if (mon->addr != addr)
434 /* Mark an address for exclusive access. */
435 void helper_mark_exclusive(CPUState *env, uint32_t addr)
437 if (!env->mmon_entry)
438 allocate_mmon_state(env);
439 /* Clear any previous locks. */
441 env->mmon_entry->addr = addr;
444 /* Test if an exclusive address is still exclusive. Returns zero
445 if the address is still exclusive. */
446 int helper_test_exclusive(CPUState *env, uint32_t addr)
450 if (!env->mmon_entry)
452 if (env->mmon_entry->addr == addr)
460 void helper_clrex(CPUState *env)
462 if (!(env->mmon_entry && env->mmon_entry->addr))
464 flush_mmon(env->mmon_entry->addr);
467 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
472 /* These should probably raise undefined insn exceptions. */
473 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
475 int op1 = (insn >> 8) & 0xf;
476 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
480 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
482 int op1 = (insn >> 8) & 0xf;
483 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
487 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
489 cpu_abort(env, "cp15 insn %08x\n", insn);
492 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
494 cpu_abort(env, "cp15 insn %08x\n", insn);
498 /* These should probably raise undefined insn exceptions. */
499 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
501 cpu_abort(env, "v7m_mrs %d\n", reg);
504 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
506 cpu_abort(env, "v7m_mrs %d\n", reg);
510 void switch_mode(CPUState *env, int mode)
512 if (mode != ARM_CPU_MODE_USR)
513 cpu_abort(env, "Tried to switch out of user mode\n");
516 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
518 cpu_abort(env, "banked r13 write\n");
521 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
523 cpu_abort(env, "banked r13 read\n");
529 extern int semihosting_enabled;
531 /* Map CPU modes onto saved register banks. */
532 static inline int bank_number (int mode)
535 case ARM_CPU_MODE_USR:
536 case ARM_CPU_MODE_SYS:
538 case ARM_CPU_MODE_SVC:
540 case ARM_CPU_MODE_ABT:
542 case ARM_CPU_MODE_UND:
544 case ARM_CPU_MODE_IRQ:
546 case ARM_CPU_MODE_FIQ:
549 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
553 void switch_mode(CPUState *env, int mode)
558 old_mode = env->uncached_cpsr & CPSR_M;
559 if (mode == old_mode)
562 if (old_mode == ARM_CPU_MODE_FIQ) {
563 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
564 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
565 } else if (mode == ARM_CPU_MODE_FIQ) {
566 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
567 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
570 i = bank_number(old_mode);
571 env->banked_r13[i] = env->regs[13];
572 env->banked_r14[i] = env->regs[14];
573 env->banked_spsr[i] = env->spsr;
575 i = bank_number(mode);
576 env->regs[13] = env->banked_r13[i];
577 env->regs[14] = env->banked_r14[i];
578 env->spsr = env->banked_spsr[i];
581 static void v7m_push(CPUARMState *env, uint32_t val)
584 stl_phys(env->regs[13], val);
587 static uint32_t v7m_pop(CPUARMState *env)
590 val = ldl_phys(env->regs[13]);
595 /* Switch to V7M main or process stack pointer. */
596 static void switch_v7m_sp(CPUARMState *env, int process)
599 if (env->v7m.current_sp != process) {
600 tmp = env->v7m.other_sp;
601 env->v7m.other_sp = env->regs[13];
603 env->v7m.current_sp = process;
607 static void do_v7m_exception_exit(CPUARMState *env)
612 type = env->regs[15];
613 if (env->v7m.exception != 0)
614 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
616 /* Switch to the target stack. */
617 switch_v7m_sp(env, (type & 4) != 0);
619 env->regs[0] = v7m_pop(env);
620 env->regs[1] = v7m_pop(env);
621 env->regs[2] = v7m_pop(env);
622 env->regs[3] = v7m_pop(env);
623 env->regs[12] = v7m_pop(env);
624 env->regs[14] = v7m_pop(env);
625 env->regs[15] = v7m_pop(env);
627 xpsr_write(env, xpsr, 0xfffffdff);
628 /* Undo stack alignment. */
631 /* ??? The exception return type specifies Thread/Handler mode. However
632 this is also implied by the xPSR value. Not sure what to do
633 if there is a mismatch. */
634 /* ??? Likewise for mismatches between the CONTROL register and the stack
638 void do_interrupt_v7m(CPUARMState *env)
640 uint32_t xpsr = xpsr_read(env);
645 if (env->v7m.current_sp)
647 if (env->v7m.exception == 0)
650 /* For exceptions we just mark as pending on the NVIC, and let that
652 /* TODO: Need to escalate if the current priority is higher than the
653 one we're raising. */
654 switch (env->exception_index) {
656 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
660 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
662 case EXCP_PREFETCH_ABORT:
663 case EXCP_DATA_ABORT:
664 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
667 if (semihosting_enabled) {
669 nr = lduw_code(env->regs[15]) & 0xff;
672 env->regs[0] = do_arm_semihosting(env);
676 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
679 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
681 case EXCP_EXCEPTION_EXIT:
682 do_v7m_exception_exit(env);
685 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
686 return; /* Never happens. Keep compiler happy. */
689 /* Align stack pointer. */
690 /* ??? Should only do this if Configuration Control Register
691 STACKALIGN bit is set. */
692 if (env->regs[13] & 4) {
696 /* Switch to the hander mode. */
698 v7m_push(env, env->regs[15]);
699 v7m_push(env, env->regs[14]);
700 v7m_push(env, env->regs[12]);
701 v7m_push(env, env->regs[3]);
702 v7m_push(env, env->regs[2]);
703 v7m_push(env, env->regs[1]);
704 v7m_push(env, env->regs[0]);
705 switch_v7m_sp(env, 0);
706 env->uncached_cpsr &= ~CPSR_IT;
708 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
709 env->regs[15] = addr & 0xfffffffe;
710 env->thumb = addr & 1;
713 /* Handle a CPU exception. */
714 void do_interrupt(CPUARMState *env)
722 do_interrupt_v7m(env);
725 /* TODO: Vectored interrupt controller. */
726 switch (env->exception_index) {
728 new_mode = ARM_CPU_MODE_UND;
737 if (semihosting_enabled) {
738 /* Check for semihosting interrupt. */
740 mask = lduw_code(env->regs[15] - 2) & 0xff;
742 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
744 /* Only intercept calls from privileged modes, to provide some
745 semblance of security. */
746 if (((mask == 0x123456 && !env->thumb)
747 || (mask == 0xab && env->thumb))
748 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
749 env->regs[0] = do_arm_semihosting(env);
753 new_mode = ARM_CPU_MODE_SVC;
756 /* The PC already points to the next instructon. */
760 /* See if this is a semihosting syscall. */
761 if (env->thumb && semihosting_enabled) {
762 mask = lduw_code(env->regs[15]) & 0xff;
764 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
766 env->regs[0] = do_arm_semihosting(env);
770 /* Fall through to prefetch abort. */
771 case EXCP_PREFETCH_ABORT:
772 new_mode = ARM_CPU_MODE_ABT;
774 mask = CPSR_A | CPSR_I;
777 case EXCP_DATA_ABORT:
778 new_mode = ARM_CPU_MODE_ABT;
780 mask = CPSR_A | CPSR_I;
784 new_mode = ARM_CPU_MODE_IRQ;
786 /* Disable IRQ and imprecise data aborts. */
787 mask = CPSR_A | CPSR_I;
791 new_mode = ARM_CPU_MODE_FIQ;
793 /* Disable FIQ, IRQ and imprecise data aborts. */
794 mask = CPSR_A | CPSR_I | CPSR_F;
798 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
799 return; /* Never happens. Keep compiler happy. */
802 if (env->cp15.c1_sys & (1 << 13)) {
805 switch_mode (env, new_mode);
806 env->spsr = cpsr_read(env);
808 env->condexec_bits = 0;
809 /* Switch to the new mode, and switch to Arm mode. */
810 /* ??? Thumb interrupt handlers not implemented. */
811 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
812 env->uncached_cpsr |= mask;
814 env->regs[14] = env->regs[15] + offset;
815 env->regs[15] = addr;
816 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
819 /* Check section/page access permissions.
820 Returns the page protection flags, or zero if the access is not
822 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
828 return PAGE_READ | PAGE_WRITE;
830 if (access_type == 1)
837 if (access_type == 1)
839 switch ((env->cp15.c1_sys >> 8) & 3) {
841 return is_user ? 0 : PAGE_READ;
848 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
853 return PAGE_READ | PAGE_WRITE;
855 return PAGE_READ | PAGE_WRITE;
856 case 4: case 7: /* Reserved. */
859 return is_user ? 0 : prot_ro;
867 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
868 int is_user, uint32_t *phys_ptr, int *prot)
878 /* Pagetable walk. */
879 /* Lookup l1 descriptor. */
880 if (address & env->cp15.c2_mask)
881 table = env->cp15.c2_base1;
883 table = env->cp15.c2_base0;
884 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
885 desc = ldl_phys(table);
887 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
889 /* Secton translation fault. */
893 if (domain == 0 || domain == 2) {
895 code = 9; /* Section domain fault. */
897 code = 11; /* Page domain fault. */
902 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
903 ap = (desc >> 10) & 3;
906 /* Lookup l2 entry. */
908 /* Coarse pagetable. */
909 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
911 /* Fine pagetable. */
912 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
914 desc = ldl_phys(table);
916 case 0: /* Page translation fault. */
919 case 1: /* 64k page. */
920 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
921 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
923 case 2: /* 4k page. */
924 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
925 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
927 case 3: /* 1k page. */
929 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
930 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
932 /* Page translation fault. */
937 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
939 ap = (desc >> 4) & 3;
942 /* Never happens, but compiler isn't smart enough to tell. */
947 *prot = check_ap(env, ap, domain, access_type, is_user);
949 /* Access permission fault. */
952 *phys_ptr = phys_addr;
955 return code | (domain << 4);
958 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
959 int is_user, uint32_t *phys_ptr, int *prot)
970 /* Pagetable walk. */
971 /* Lookup l1 descriptor. */
972 if (address & env->cp15.c2_mask)
973 table = env->cp15.c2_base1;
975 table = env->cp15.c2_base0;
976 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
977 desc = ldl_phys(table);
980 /* Secton translation fault. */
984 } else if (type == 2 && (desc & (1 << 18))) {
988 /* Section or page. */
989 domain = (desc >> 4) & 0x1e;
991 domain = (env->cp15.c3 >> domain) & 3;
992 if (domain == 0 || domain == 2) {
994 code = 9; /* Section domain fault. */
996 code = 11; /* Page domain fault. */
1000 if (desc & (1 << 18)) {
1002 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1005 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1007 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1008 xn = desc & (1 << 4);
1011 /* Lookup l2 entry. */
1012 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1013 desc = ldl_phys(table);
1014 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1016 case 0: /* Page translation fault. */
1019 case 1: /* 64k page. */
1020 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1021 xn = desc & (1 << 15);
1023 case 2: case 3: /* 4k page. */
1024 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1028 /* Never happens, but compiler isn't smart enough to tell. */
1033 if (xn && access_type == 2)
1036 *prot = check_ap(env, ap, domain, access_type, is_user);
1038 /* Access permission fault. */
1041 *phys_ptr = phys_addr;
1044 return code | (domain << 4);
1047 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1048 int is_user, uint32_t *phys_ptr, int *prot)
1054 *phys_ptr = address;
1055 for (n = 7; n >= 0; n--) {
1056 base = env->cp15.c6_region[n];
1057 if ((base & 1) == 0)
1059 mask = 1 << ((base >> 1) & 0x1f);
1060 /* Keep this shift separate from the above to avoid an
1061 (undefined) << 32. */
1062 mask = (mask << 1) - 1;
1063 if (((base ^ address) & ~mask) == 0)
1069 if (access_type == 2) {
1070 mask = env->cp15.c5_insn;
1072 mask = env->cp15.c5_data;
1074 mask = (mask >> (n * 4)) & 0xf;
1081 *prot = PAGE_READ | PAGE_WRITE;
1086 *prot |= PAGE_WRITE;
1089 *prot = PAGE_READ | PAGE_WRITE;
1100 /* Bad permission. */
1106 static inline int get_phys_addr(CPUState *env, uint32_t address,
1107 int access_type, int is_user,
1108 uint32_t *phys_ptr, int *prot)
1110 /* Fast Context Switch Extension. */
1111 if (address < 0x02000000)
1112 address += env->cp15.c13_fcse;
1114 if ((env->cp15.c1_sys & 1) == 0) {
1115 /* MMU/MPU disabled. */
1116 *phys_ptr = address;
1117 *prot = PAGE_READ | PAGE_WRITE;
1119 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1120 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1122 } else if (env->cp15.c1_sys & (1 << 23)) {
1123 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1126 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1131 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1132 int access_type, int mmu_idx, int is_softmmu)
1138 is_user = mmu_idx == MMU_USER_IDX;
1139 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1141 /* Map a single [sub]page. */
1142 phys_addr &= ~(uint32_t)0x3ff;
1143 address &= ~(uint32_t)0x3ff;
1144 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1148 if (access_type == 2) {
1149 env->cp15.c5_insn = ret;
1150 env->cp15.c6_insn = address;
1151 env->exception_index = EXCP_PREFETCH_ABORT;
1153 env->cp15.c5_data = ret;
1154 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1155 env->cp15.c5_data |= (1 << 11);
1156 env->cp15.c6_data = address;
1157 env->exception_index = EXCP_DATA_ABORT;
1162 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1168 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1176 /* Not really implemented. Need to figure out a sane way of doing this.
1177 Maybe add generic watchpoint support and use that. */
1179 void helper_mark_exclusive(CPUState *env, uint32_t addr)
1181 env->mmon_addr = addr;
1184 int helper_test_exclusive(CPUState *env, uint32_t addr)
1186 return (env->mmon_addr != addr);
1189 void helper_clrex(CPUState *env)
1191 env->mmon_addr = -1;
1194 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1196 int cp_num = (insn >> 8) & 0xf;
1197 int cp_info = (insn >> 5) & 7;
1198 int src = (insn >> 16) & 0xf;
1199 int operand = insn & 0xf;
1201 if (env->cp[cp_num].cp_write)
1202 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1203 cp_info, src, operand, val);
1206 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1208 int cp_num = (insn >> 8) & 0xf;
1209 int cp_info = (insn >> 5) & 7;
1210 int dest = (insn >> 16) & 0xf;
1211 int operand = insn & 0xf;
1213 if (env->cp[cp_num].cp_read)
1214 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1215 cp_info, dest, operand);
1219 /* Return basic MPU access permission bits. */
1220 static uint32_t simple_mpu_ap_bits(uint32_t val)
1227 for (i = 0; i < 16; i += 2) {
1228 ret |= (val >> i) & mask;
1234 /* Pad basic MPU access permission bits to extended format. */
1235 static uint32_t extended_mpu_ap_bits(uint32_t val)
1242 for (i = 0; i < 16; i += 2) {
1243 ret |= (val & mask) << i;
1249 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1255 op1 = (insn >> 21) & 7;
1256 op2 = (insn >> 5) & 7;
1258 switch ((insn >> 16) & 0xf) {
1260 if (((insn >> 21) & 7) == 2) {
1261 /* ??? Select cache level. Ignore. */
1265 if (arm_feature(env, ARM_FEATURE_XSCALE))
1267 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1270 case 1: /* System configuration. */
1271 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1275 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1276 env->cp15.c1_sys = val;
1277 /* ??? Lots of these bits are not implemented. */
1278 /* This may enable/disable the MMU, so do a TLB flush. */
1281 case 1: /* Auxiliary cotrol register. */
1282 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1283 env->cp15.c1_xscaleauxcr = val;
1286 /* Not implemented. */
1289 if (arm_feature(env, ARM_FEATURE_XSCALE))
1291 env->cp15.c1_coproc = val;
1292 /* ??? Is this safe when called from within a TB? */
1299 case 2: /* MMU Page table control / MPU cache control. */
1300 if (arm_feature(env, ARM_FEATURE_MPU)) {
1303 env->cp15.c2_data = val;
1306 env->cp15.c2_insn = val;
1314 env->cp15.c2_base0 = val;
1317 env->cp15.c2_base1 = val;
1320 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1327 case 3: /* MMU Domain access control / MPU write buffer control. */
1329 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1331 case 4: /* Reserved. */
1333 case 5: /* MMU Fault status / MPU access permission. */
1334 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1338 if (arm_feature(env, ARM_FEATURE_MPU))
1339 val = extended_mpu_ap_bits(val);
1340 env->cp15.c5_data = val;
1343 if (arm_feature(env, ARM_FEATURE_MPU))
1344 val = extended_mpu_ap_bits(val);
1345 env->cp15.c5_insn = val;
1348 if (!arm_feature(env, ARM_FEATURE_MPU))
1350 env->cp15.c5_data = val;
1353 if (!arm_feature(env, ARM_FEATURE_MPU))
1355 env->cp15.c5_insn = val;
1361 case 6: /* MMU Fault address / MPU base/size. */
1362 if (arm_feature(env, ARM_FEATURE_MPU)) {
1365 env->cp15.c6_region[crm] = val;
1367 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1371 env->cp15.c6_data = val;
1373 case 1: /* ??? This is WFAR on armv6 */
1375 env->cp15.c6_insn = val;
1382 case 7: /* Cache control. */
1383 env->cp15.c15_i_max = 0x000;
1384 env->cp15.c15_i_min = 0xff0;
1385 /* No cache, so nothing to do. */
1386 /* ??? MPCore has VA to PA translation functions. */
1388 case 8: /* MMU TLB control. */
1390 case 0: /* Invalidate all. */
1393 case 1: /* Invalidate single TLB entry. */
1395 /* ??? This is wrong for large pages and sections. */
1396 /* As an ugly hack to make linux work we always flush a 4K
1399 tlb_flush_page(env, val);
1400 tlb_flush_page(env, val + 0x400);
1401 tlb_flush_page(env, val + 0x800);
1402 tlb_flush_page(env, val + 0xc00);
1407 case 2: /* Invalidate on ASID. */
1408 tlb_flush(env, val == 0);
1410 case 3: /* Invalidate single entry on MVA. */
1411 /* ??? This is like case 1, but ignores ASID. */
1419 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1422 case 0: /* Cache lockdown. */
1424 case 0: /* L1 cache. */
1427 env->cp15.c9_data = val;
1430 env->cp15.c9_insn = val;
1436 case 1: /* L2 cache. */
1437 /* Ignore writes to L2 lockdown/auxiliary registers. */
1443 case 1: /* TCM memory region registers. */
1444 /* Not implemented. */
1450 case 10: /* MMU TLB lockdown. */
1451 /* ??? TLB lockdown not implemented. */
1453 case 12: /* Reserved. */
1455 case 13: /* Process ID. */
1458 /* Unlike real hardware the qemu TLB uses virtual addresses,
1459 not modified virtual addresses, so this causes a TLB flush.
1461 if (env->cp15.c13_fcse != val)
1463 env->cp15.c13_fcse = val;
1466 /* This changes the ASID, so do a TLB flush. */
1467 if (env->cp15.c13_context != val
1468 && !arm_feature(env, ARM_FEATURE_MPU))
1470 env->cp15.c13_context = val;
1473 env->cp15.c13_tls1 = val;
1476 env->cp15.c13_tls2 = val;
1479 env->cp15.c13_tls3 = val;
1485 case 14: /* Reserved. */
1487 case 15: /* Implementation specific. */
1488 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1489 if (op2 == 0 && crm == 1) {
1490 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1491 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1493 env->cp15.c15_cpar = val & 0x3fff;
1499 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1503 case 1: /* Set TI925T configuration. */
1504 env->cp15.c15_ticonfig = val & 0xe7;
1505 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1506 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1508 case 2: /* Set I_max. */
1509 env->cp15.c15_i_max = val;
1511 case 3: /* Set I_min. */
1512 env->cp15.c15_i_min = val;
1514 case 4: /* Set thread-ID. */
1515 env->cp15.c15_threadid = val & 0xffff;
1517 case 8: /* Wait-for-interrupt (deprecated). */
1518 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1528 /* ??? For debugging only. Should raise illegal instruction exception. */
1529 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1530 (insn >> 16) & 0xf, crm, op1, op2);
1533 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1539 op1 = (insn >> 21) & 7;
1540 op2 = (insn >> 5) & 7;
1542 switch ((insn >> 16) & 0xf) {
1543 case 0: /* ID codes. */
1549 case 0: /* Device ID. */
1550 return env->cp15.c0_cpuid;
1551 case 1: /* Cache Type. */
1552 return env->cp15.c0_cachetype;
1553 case 2: /* TCM status. */
1555 case 3: /* TLB type register. */
1556 return 0; /* No lockable TLB entries. */
1557 case 5: /* CPU ID */
1558 return env->cpu_index;
1563 if (!arm_feature(env, ARM_FEATURE_V6))
1565 return env->cp15.c0_c1[op2];
1567 if (!arm_feature(env, ARM_FEATURE_V6))
1569 return env->cp15.c0_c2[op2];
1570 case 3: case 4: case 5: case 6: case 7:
1576 /* These registers aren't documented on arm11 cores. However
1577 Linux looks at them anyway. */
1578 if (!arm_feature(env, ARM_FEATURE_V6))
1582 if (arm_feature(env, ARM_FEATURE_XSCALE))
1588 case 1: /* System configuration. */
1589 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1592 case 0: /* Control register. */
1593 return env->cp15.c1_sys;
1594 case 1: /* Auxiliary control register. */
1595 if (arm_feature(env, ARM_FEATURE_XSCALE))
1596 return env->cp15.c1_xscaleauxcr;
1597 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1599 switch (ARM_CPUID(env)) {
1600 case ARM_CPUID_ARM1026:
1602 case ARM_CPUID_ARM1136:
1604 case ARM_CPUID_ARM11MPCORE:
1606 case ARM_CPUID_CORTEXA8:
1611 case 2: /* Coprocessor access register. */
1612 if (arm_feature(env, ARM_FEATURE_XSCALE))
1614 return env->cp15.c1_coproc;
1618 case 2: /* MMU Page table control / MPU cache control. */
1619 if (arm_feature(env, ARM_FEATURE_MPU)) {
1622 return env->cp15.c2_data;
1625 return env->cp15.c2_insn;
1633 return env->cp15.c2_base0;
1635 return env->cp15.c2_base1;
1641 mask = env->cp15.c2_mask;
1652 case 3: /* MMU Domain access control / MPU write buffer control. */
1653 return env->cp15.c3;
1654 case 4: /* Reserved. */
1656 case 5: /* MMU Fault status / MPU access permission. */
1657 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1661 if (arm_feature(env, ARM_FEATURE_MPU))
1662 return simple_mpu_ap_bits(env->cp15.c5_data);
1663 return env->cp15.c5_data;
1665 if (arm_feature(env, ARM_FEATURE_MPU))
1666 return simple_mpu_ap_bits(env->cp15.c5_data);
1667 return env->cp15.c5_insn;
1669 if (!arm_feature(env, ARM_FEATURE_MPU))
1671 return env->cp15.c5_data;
1673 if (!arm_feature(env, ARM_FEATURE_MPU))
1675 return env->cp15.c5_insn;
1679 case 6: /* MMU Fault address. */
1680 if (arm_feature(env, ARM_FEATURE_MPU)) {
1683 return env->cp15.c6_region[crm];
1685 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1689 return env->cp15.c6_data;
1691 if (arm_feature(env, ARM_FEATURE_V6)) {
1692 /* Watchpoint Fault Adrress. */
1693 return 0; /* Not implemented. */
1695 /* Instruction Fault Adrress. */
1696 /* Arm9 doesn't have an IFAR, but implementing it anyway
1697 shouldn't do any harm. */
1698 return env->cp15.c6_insn;
1701 if (arm_feature(env, ARM_FEATURE_V6)) {
1702 /* Instruction Fault Adrress. */
1703 return env->cp15.c6_insn;
1711 case 7: /* Cache control. */
1712 /* ??? This is for test, clean and invaidate operations that set the
1713 Z flag. We can't represent N = Z = 1, so it also clears
1714 the N flag. Oh well. */
1717 case 8: /* MMU TLB control. */
1719 case 9: /* Cache lockdown. */
1721 case 0: /* L1 cache. */
1722 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1726 return env->cp15.c9_data;
1728 return env->cp15.c9_insn;
1732 case 1: /* L2 cache */
1735 /* L2 Lockdown and Auxiliary control. */
1740 case 10: /* MMU TLB lockdown. */
1741 /* ??? TLB lockdown not implemented. */
1743 case 11: /* TCM DMA control. */
1744 case 12: /* Reserved. */
1746 case 13: /* Process ID. */
1749 return env->cp15.c13_fcse;
1751 return env->cp15.c13_context;
1753 return env->cp15.c13_tls1;
1755 return env->cp15.c13_tls2;
1757 return env->cp15.c13_tls3;
1761 case 14: /* Reserved. */
1763 case 15: /* Implementation specific. */
1764 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1765 if (op2 == 0 && crm == 1)
1766 return env->cp15.c15_cpar;
1770 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1774 case 1: /* Read TI925T configuration. */
1775 return env->cp15.c15_ticonfig;
1776 case 2: /* Read I_max. */
1777 return env->cp15.c15_i_max;
1778 case 3: /* Read I_min. */
1779 return env->cp15.c15_i_min;
1780 case 4: /* Read thread-ID. */
1781 return env->cp15.c15_threadid;
1782 case 8: /* TI925T_status */
1790 /* ??? For debugging only. Should raise illegal instruction exception. */
1791 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1792 (insn >> 16) & 0xf, crm, op1, op2);
1796 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1798 env->banked_r13[bank_number(mode)] = val;
1801 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1803 return env->banked_r13[bank_number(mode)];
1806 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1810 return xpsr_read(env) & 0xf8000000;
1812 return xpsr_read(env) & 0xf80001ff;
1814 return xpsr_read(env) & 0xff00fc00;
1816 return xpsr_read(env) & 0xff00fdff;
1818 return xpsr_read(env) & 0x000001ff;
1820 return xpsr_read(env) & 0x0700fc00;
1822 return xpsr_read(env) & 0x0700edff;
1824 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1826 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1827 case 16: /* PRIMASK */
1828 return (env->uncached_cpsr & CPSR_I) != 0;
1829 case 17: /* FAULTMASK */
1830 return (env->uncached_cpsr & CPSR_F) != 0;
1831 case 18: /* BASEPRI */
1832 case 19: /* BASEPRI_MAX */
1833 return env->v7m.basepri;
1834 case 20: /* CONTROL */
1835 return env->v7m.control;
1837 /* ??? For debugging only. */
1838 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1843 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1847 xpsr_write(env, val, 0xf8000000);
1850 xpsr_write(env, val, 0xf8000000);
1853 xpsr_write(env, val, 0xfe00fc00);
1856 xpsr_write(env, val, 0xfe00fc00);
1859 /* IPSR bits are readonly. */
1862 xpsr_write(env, val, 0x0600fc00);
1865 xpsr_write(env, val, 0x0600fc00);
1868 if (env->v7m.current_sp)
1869 env->v7m.other_sp = val;
1871 env->regs[13] = val;
1874 if (env->v7m.current_sp)
1875 env->regs[13] = val;
1877 env->v7m.other_sp = val;
1879 case 16: /* PRIMASK */
1881 env->uncached_cpsr |= CPSR_I;
1883 env->uncached_cpsr &= ~CPSR_I;
1885 case 17: /* FAULTMASK */
1887 env->uncached_cpsr |= CPSR_F;
1889 env->uncached_cpsr &= ~CPSR_F;
1891 case 18: /* BASEPRI */
1892 env->v7m.basepri = val & 0xff;
1894 case 19: /* BASEPRI_MAX */
1896 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1897 env->v7m.basepri = val;
1899 case 20: /* CONTROL */
1900 env->v7m.control = val & 3;
1901 switch_v7m_sp(env, (val & 2) != 0);
1904 /* ??? For debugging only. */
1905 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1910 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1911 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1914 if (cpnum < 0 || cpnum > 14) {
1915 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1919 env->cp[cpnum].cp_read = cp_read;
1920 env->cp[cpnum].cp_write = cp_write;
1921 env->cp[cpnum].opaque = opaque;
1926 /* Note that signed overflow is undefined in C. The following routines are
1927 careful to use unsigned types where modulo arithmetic is required.
1928 Failure to do so _will_ break on newer gcc. */
1930 /* Signed saturating arithmetic. */
1932 /* Perform 16-bit signed satruating addition. */
1933 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1938 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1947 /* Perform 8-bit signed satruating addition. */
1948 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1953 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1962 /* Perform 16-bit signed satruating subtraction. */
1963 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1968 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1977 /* Perform 8-bit signed satruating subtraction. */
1978 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1983 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
1992 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1993 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1994 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
1995 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
1998 #include "op_addsub.h"
2000 /* Unsigned saturating arithmetic. */
2001 static inline uint16_t add16_usat(uint16_t a, uint8_t b)
2010 static inline uint16_t sub16_usat(uint16_t a, uint8_t b)
2018 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2027 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2035 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2036 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2037 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2038 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2041 #include "op_addsub.h"
2043 /* Signed modulo arithmetic. */
2044 #define SARITH16(a, b, n, op) do { \
2046 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2047 RESULT(sum, n, 16); \
2049 ge |= 3 << (n * 2); \
2052 #define SARITH8(a, b, n, op) do { \
2054 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2055 RESULT(sum, n, 8); \
2061 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2062 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2063 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2064 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2068 #include "op_addsub.h"
2070 /* Unsigned modulo arithmetic. */
2071 #define ADD16(a, b, n) do { \
2073 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2074 RESULT(sum, n, 16); \
2075 if ((sum >> 16) == 0) \
2076 ge |= 3 << (n * 2); \
2079 #define ADD8(a, b, n) do { \
2081 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2082 RESULT(sum, n, 8); \
2083 if ((sum >> 8) == 0) \
2084 ge |= 3 << (n * 2); \
2087 #define SUB16(a, b, n) do { \
2089 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2090 RESULT(sum, n, 16); \
2091 if ((sum >> 16) == 0) \
2092 ge |= 3 << (n * 2); \
2095 #define SUB8(a, b, n) do { \
2097 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2098 RESULT(sum, n, 8); \
2099 if ((sum >> 8) == 0) \
2100 ge |= 3 << (n * 2); \
2106 #include "op_addsub.h"
2108 /* Halved signed arithmetic. */
2109 #define ADD16(a, b, n) \
2110 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2111 #define SUB16(a, b, n) \
2112 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2113 #define ADD8(a, b, n) \
2114 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2115 #define SUB8(a, b, n) \
2116 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2119 #include "op_addsub.h"
2121 /* Halved unsigned arithmetic. */
2122 #define ADD16(a, b, n) \
2123 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2124 #define SUB16(a, b, n) \
2125 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2126 #define ADD8(a, b, n) \
2127 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2128 #define SUB8(a, b, n) \
2129 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2132 #include "op_addsub.h"
2134 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2142 /* Unsigned sum of absolute byte differences. */
2143 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2146 sum = do_usad(a, b);
2147 sum += do_usad(a >> 8, b >> 8);
2148 sum += do_usad(a >> 16, b >>16);
2149 sum += do_usad(a >> 24, b >> 24);
2153 /* For ARMv6 SEL instruction. */
2154 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2167 return (a & mask) | (b & ~mask);
2170 uint32_t HELPER(logicq_cc)(uint64_t val)
2172 return (val >> 32) | (val != 0);
2175 /* VFP support. We follow the convention used for VFP instrunctions:
2176 Single precition routines have a "s" suffix, double precision a
2179 /* Convert host exception flags to vfp form. */
2180 static inline int vfp_exceptbits_from_host(int host_bits)
2182 int target_bits = 0;
2184 if (host_bits & float_flag_invalid)
2186 if (host_bits & float_flag_divbyzero)
2188 if (host_bits & float_flag_overflow)
2190 if (host_bits & float_flag_underflow)
2192 if (host_bits & float_flag_inexact)
2193 target_bits |= 0x10;
2197 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2202 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2203 | (env->vfp.vec_len << 16)
2204 | (env->vfp.vec_stride << 20);
2205 i = get_float_exception_flags(&env->vfp.fp_status);
2206 fpscr |= vfp_exceptbits_from_host(i);
2210 /* Convert vfp exception flags to target form. */
2211 static inline int vfp_exceptbits_to_host(int target_bits)
2215 if (target_bits & 1)
2216 host_bits |= float_flag_invalid;
2217 if (target_bits & 2)
2218 host_bits |= float_flag_divbyzero;
2219 if (target_bits & 4)
2220 host_bits |= float_flag_overflow;
2221 if (target_bits & 8)
2222 host_bits |= float_flag_underflow;
2223 if (target_bits & 0x10)
2224 host_bits |= float_flag_inexact;
2228 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2233 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2234 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2235 env->vfp.vec_len = (val >> 16) & 7;
2236 env->vfp.vec_stride = (val >> 20) & 3;
2239 if (changed & (3 << 22)) {
2240 i = (val >> 22) & 3;
2243 i = float_round_nearest_even;
2249 i = float_round_down;
2252 i = float_round_to_zero;
2255 set_float_rounding_mode(i, &env->vfp.fp_status);
2258 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2259 set_float_exception_flags(i, &env->vfp.fp_status);
2260 /* XXX: FZ and DN are not implemented. */
2263 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2265 #define VFP_BINOP(name) \
2266 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2268 return float32_ ## name (a, b, &env->vfp.fp_status); \
2270 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2272 return float64_ ## name (a, b, &env->vfp.fp_status); \
2280 float32 VFP_HELPER(neg, s)(float32 a)
2282 return float32_chs(a);
2285 float64 VFP_HELPER(neg, d)(float64 a)
2287 return float32_chs(a);
2290 float32 VFP_HELPER(abs, s)(float32 a)
2292 return float32_abs(a);
2295 float64 VFP_HELPER(abs, d)(float64 a)
2297 return float32_abs(a);
2300 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2302 return float32_sqrt(a, &env->vfp.fp_status);
2305 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2307 return float64_sqrt(a, &env->vfp.fp_status);
2310 /* XXX: check quiet/signaling case */
2311 #define DO_VFP_cmp(p, type) \
2312 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2315 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2316 case 0: flags = 0x6; break; \
2317 case -1: flags = 0x8; break; \
2318 case 1: flags = 0x2; break; \
2319 default: case 2: flags = 0x3; break; \
2321 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2322 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2324 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2327 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2328 case 0: flags = 0x6; break; \
2329 case -1: flags = 0x8; break; \
2330 case 1: flags = 0x2; break; \
2331 default: case 2: flags = 0x3; break; \
2333 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2334 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2336 DO_VFP_cmp(s, float32)
2337 DO_VFP_cmp(d, float64)
2340 /* Helper routines to perform bitwise copies between float and int. */
2341 static inline float32 vfp_itos(uint32_t i)
2352 static inline uint32_t vfp_stoi(float32 s)
2363 static inline float64 vfp_itod(uint64_t i)
2374 static inline uint64_t vfp_dtoi(float64 d)
2385 /* Integer to float conversion. */
2386 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2388 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2391 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2393 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2396 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2398 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2401 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2403 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2406 /* Float to integer conversion. */
2407 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2409 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2412 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2414 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2417 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2419 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2422 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2424 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2427 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2429 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2432 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2434 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2437 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2439 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2442 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2444 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2447 /* floating point conversion */
2448 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2450 return float32_to_float64(x, &env->vfp.fp_status);
2453 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2455 return float64_to_float32(x, &env->vfp.fp_status);
2458 /* VFP3 fixed point conversion. */
2459 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2460 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2463 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2464 &env->vfp.fp_status); \
2465 return ftype##_scalbn(tmp, shift, &env->vfp.fp_status); \
2467 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2470 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2471 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2472 &env->vfp.fp_status)); \
2475 VFP_CONV_FIX(sh, d, float64, int16, )
2476 VFP_CONV_FIX(sl, d, float64, int32, )
2477 VFP_CONV_FIX(uh, d, float64, uint16, u)
2478 VFP_CONV_FIX(ul, d, float64, uint32, u)
2479 VFP_CONV_FIX(sh, s, float32, int16, )
2480 VFP_CONV_FIX(sl, s, float32, int32, )
2481 VFP_CONV_FIX(uh, s, float32, uint16, u)
2482 VFP_CONV_FIX(ul, s, float32, uint32, u)
2485 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2487 float_status *s = &env->vfp.fp_status;
2488 float32 two = int32_to_float32(2, s);
2489 return float32_sub(two, float32_mul(a, b, s), s);
2492 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2494 float_status *s = &env->vfp.fp_status;
2495 float32 three = int32_to_float32(3, s);
2496 return float32_sub(three, float32_mul(a, b, s), s);
2499 /* TODO: The architecture specifies the value that the estimate functions
2500 should return. We return the exact reciprocal/root instead. */
2501 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2503 float_status *s = &env->vfp.fp_status;
2504 float32 one = int32_to_float32(1, s);
2505 return float32_div(one, a, s);
2508 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2510 float_status *s = &env->vfp.fp_status;
2511 float32 one = int32_to_float32(1, s);
2512 return float32_div(one, float32_sqrt(a, s), s);
2515 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2517 float_status *s = &env->vfp.fp_status;
2519 tmp = int32_to_float32(a, s);
2520 tmp = float32_scalbn(tmp, -32, s);
2521 tmp = helper_recpe_f32(tmp, env);
2522 tmp = float32_scalbn(tmp, 31, s);
2523 return float32_to_int32(tmp, s);
2526 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2528 float_status *s = &env->vfp.fp_status;
2530 tmp = int32_to_float32(a, s);
2531 tmp = float32_scalbn(tmp, -32, s);
2532 tmp = helper_rsqrte_f32(tmp, env);
2533 tmp = float32_scalbn(tmp, 31, s);
2534 return float32_to_int32(tmp, s);