2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GNU GPL v2.
9 #include "qemu/osdep.h"
12 #include "exec/helper-proto.h"
13 #include "fpu/softfloat.h"
15 #define SIGNBIT (uint32_t)0x80000000
16 #define SIGNBIT64 ((uint64_t)1 << 63)
18 #define SET_QC() env->vfp.qc[0] = 1
20 #define NEON_TYPE1(name, type) \
25 #ifdef HOST_WORDS_BIGENDIAN
26 #define NEON_TYPE2(name, type) \
32 #define NEON_TYPE4(name, type) \
41 #define NEON_TYPE2(name, type) \
47 #define NEON_TYPE4(name, type) \
57 NEON_TYPE4(s8, int8_t)
58 NEON_TYPE4(u8, uint8_t)
59 NEON_TYPE2(s16, int16_t)
60 NEON_TYPE2(u16, uint16_t)
61 NEON_TYPE1(s32, int32_t)
62 NEON_TYPE1(u32, uint32_t)
67 /* Copy from a uint32_t to a vector structure type. */
68 #define NEON_UNPACK(vtype, dest, val) do { \
77 /* Copy from a vector structure type to a uint32_t. */
78 #define NEON_PACK(vtype, dest, val) do { \
88 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
91 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
95 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
96 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98 #define NEON_VOP_BODY(vtype, n) \
104 NEON_UNPACK(vtype, vsrc1, arg1); \
105 NEON_UNPACK(vtype, vsrc2, arg2); \
107 NEON_PACK(vtype, res, vdest); \
111 #define NEON_VOP(name, vtype, n) \
112 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
113 NEON_VOP_BODY(vtype, n)
115 #define NEON_VOP_ENV(name, vtype, n) \
116 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
117 NEON_VOP_BODY(vtype, n)
119 /* Pairwise operations. */
120 /* For 32-bit elements each segment only contains a single element, so
121 the elementwise and pairwise operations are the same. */
123 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
124 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
127 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
128 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
129 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131 #define NEON_POP(name, vtype, n) \
132 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
138 NEON_UNPACK(vtype, vsrc1, arg1); \
139 NEON_UNPACK(vtype, vsrc2, arg2); \
141 NEON_PACK(vtype, res, vdest); \
145 /* Unary operators. */
146 #define NEON_VOP1(name, vtype, n) \
147 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
151 NEON_UNPACK(vtype, vsrc1, arg); \
153 NEON_PACK(vtype, arg, vdest); \
158 #define NEON_USAT(dest, src1, src2, type) do { \
159 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
160 if (tmp != (type)tmp) { \
166 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
167 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
169 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
170 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
174 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176 uint32_t res = a + b;
184 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
196 #define NEON_SSAT(dest, src1, src2, type) do { \
197 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
198 if (tmp != (type)tmp) { \
201 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203 tmp = 1 << (sizeof(type) * 8 - 1); \
208 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
209 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
211 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
212 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
216 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
226 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
231 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
238 /* Unsigned saturating accumulate of signed value
240 * Op1/Rn is treated as signed
241 * Op2/Rd is treated as unsigned
243 * Explicit casting is used to ensure the correct sign extension of
244 * inputs. The result is treated as a unsigned value and saturated as such.
246 * We use a macro for the 8/16 bit cases which expects signed integers of va,
247 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
250 #define USATACC(bits, shift) \
252 va = sextract32(a, shift, bits); \
253 vb = extract32(b, shift, bits); \
255 if (vr > UINT##bits##_MAX) { \
257 vr = UINT##bits##_MAX; \
258 } else if (vr < 0) { \
262 r = deposit32(r, shift, bits, vr); \
265 uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
277 uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
289 uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
291 int64_t va = (int32_t)a;
292 int64_t vb = (uint32_t)b;
293 int64_t vr = va + vb;
294 if (vr > UINT32_MAX) {
304 uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
308 /* We only need to look at the pattern of SIGN bits to detect
311 if (~a & b & ~res & SIGNBIT64) {
314 } else if (a & ~b & res & SIGNBIT64) {
321 /* Signed saturating accumulate of unsigned value
323 * Op1/Rn is treated as unsigned
324 * Op2/Rd is treated as signed
326 * The result is treated as a signed value and saturated as such
328 * We use a macro for the 8/16 bit cases which expects signed integers of va,
329 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
332 #define SSATACC(bits, shift) \
334 va = extract32(a, shift, bits); \
335 vb = sextract32(b, shift, bits); \
337 if (vr > INT##bits##_MAX) { \
339 vr = INT##bits##_MAX; \
340 } else if (vr < INT##bits##_MIN) { \
342 vr = INT##bits##_MIN; \
344 r = deposit32(r, shift, bits, vr); \
347 uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
359 uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
372 uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
375 int64_t op1 = (uint32_t)a;
376 int64_t op2 = (int32_t)b;
378 if (res > INT32_MAX) {
381 } else if (res < INT32_MIN) {
388 uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
392 /* We only need to look at the pattern of SIGN bits to detect an overflow */
395 | (a & ~b)) & SIGNBIT64) {
403 #define NEON_USAT(dest, src1, src2, type) do { \
404 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
405 if (tmp != (type)tmp) { \
411 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
412 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
414 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
415 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
419 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
421 uint32_t res = a - b;
429 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
442 #define NEON_SSAT(dest, src1, src2, type) do { \
443 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
444 if (tmp != (type)tmp) { \
447 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
449 tmp = 1 << (sizeof(type) * 8 - 1); \
454 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
455 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
457 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
458 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
462 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
464 uint32_t res = a - b;
465 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
467 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
472 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
477 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
479 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
484 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
485 NEON_VOP(hadd_s8, neon_s8, 4)
486 NEON_VOP(hadd_u8, neon_u8, 4)
487 NEON_VOP(hadd_s16, neon_s16, 2)
488 NEON_VOP(hadd_u16, neon_u16, 2)
491 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
495 dest = (src1 >> 1) + (src2 >> 1);
501 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
505 dest = (src1 >> 1) + (src2 >> 1);
511 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
512 NEON_VOP(rhadd_s8, neon_s8, 4)
513 NEON_VOP(rhadd_u8, neon_u8, 4)
514 NEON_VOP(rhadd_s16, neon_s16, 2)
515 NEON_VOP(rhadd_u16, neon_u16, 2)
518 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
522 dest = (src1 >> 1) + (src2 >> 1);
523 if ((src1 | src2) & 1)
528 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
532 dest = (src1 >> 1) + (src2 >> 1);
533 if ((src1 | src2) & 1)
538 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
539 NEON_VOP(hsub_s8, neon_s8, 4)
540 NEON_VOP(hsub_u8, neon_u8, 4)
541 NEON_VOP(hsub_s16, neon_s16, 2)
542 NEON_VOP(hsub_u16, neon_u16, 2)
545 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
549 dest = (src1 >> 1) - (src2 >> 1);
550 if ((~src1) & src2 & 1)
555 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
559 dest = (src1 >> 1) - (src2 >> 1);
560 if ((~src1) & src2 & 1)
565 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
566 NEON_VOP(cgt_s8, neon_s8, 4)
567 NEON_VOP(cgt_u8, neon_u8, 4)
568 NEON_VOP(cgt_s16, neon_s16, 2)
569 NEON_VOP(cgt_u16, neon_u16, 2)
570 NEON_VOP(cgt_s32, neon_s32, 1)
571 NEON_VOP(cgt_u32, neon_u32, 1)
574 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
575 NEON_VOP(cge_s8, neon_s8, 4)
576 NEON_VOP(cge_u8, neon_u8, 4)
577 NEON_VOP(cge_s16, neon_s16, 2)
578 NEON_VOP(cge_u16, neon_u16, 2)
579 NEON_VOP(cge_s32, neon_s32, 1)
580 NEON_VOP(cge_u32, neon_u32, 1)
583 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
584 NEON_POP(pmin_s8, neon_s8, 4)
585 NEON_POP(pmin_u8, neon_u8, 4)
586 NEON_POP(pmin_s16, neon_s16, 2)
587 NEON_POP(pmin_u16, neon_u16, 2)
590 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
591 NEON_POP(pmax_s8, neon_s8, 4)
592 NEON_POP(pmax_u8, neon_u8, 4)
593 NEON_POP(pmax_s16, neon_s16, 2)
594 NEON_POP(pmax_u16, neon_u16, 2)
597 #define NEON_FN(dest, src1, src2) \
598 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
599 NEON_VOP(abd_s8, neon_s8, 4)
600 NEON_VOP(abd_u8, neon_u8, 4)
601 NEON_VOP(abd_s16, neon_s16, 2)
602 NEON_VOP(abd_u16, neon_u16, 2)
603 NEON_VOP(abd_s32, neon_s32, 1)
604 NEON_VOP(abd_u32, neon_u32, 1)
607 #define NEON_FN(dest, src1, src2) do { \
609 tmp = (int8_t)src2; \
610 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
611 tmp <= -(ssize_t)sizeof(src1) * 8) { \
613 } else if (tmp < 0) { \
614 dest = src1 >> -tmp; \
616 dest = src1 << tmp; \
618 NEON_VOP(shl_u8, neon_u8, 4)
619 NEON_VOP(shl_u16, neon_u16, 2)
620 NEON_VOP(shl_u32, neon_u32, 1)
623 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
625 int8_t shift = (int8_t)shiftop;
626 if (shift >= 64 || shift <= -64) {
628 } else if (shift < 0) {
636 #define NEON_FN(dest, src1, src2) do { \
638 tmp = (int8_t)src2; \
639 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
641 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
642 dest = src1 >> (sizeof(src1) * 8 - 1); \
643 } else if (tmp < 0) { \
644 dest = src1 >> -tmp; \
646 dest = src1 << tmp; \
648 NEON_VOP(shl_s8, neon_s8, 4)
649 NEON_VOP(shl_s16, neon_s16, 2)
650 NEON_VOP(shl_s32, neon_s32, 1)
653 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
655 int8_t shift = (int8_t)shiftop;
659 } else if (shift <= -64) {
661 } else if (shift < 0) {
669 #define NEON_FN(dest, src1, src2) do { \
671 tmp = (int8_t)src2; \
672 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
673 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
675 } else if (tmp < 0) { \
676 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
678 dest = src1 << tmp; \
680 NEON_VOP(rshl_s8, neon_s8, 4)
681 NEON_VOP(rshl_s16, neon_s16, 2)
684 /* The addition of the rounding constant may overflow, so we use an
685 * intermediate 64 bit accumulator. */
686 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
689 int32_t val = (int32_t)valop;
690 int8_t shift = (int8_t)shiftop;
691 if ((shift >= 32) || (shift <= -32)) {
693 } else if (shift < 0) {
694 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
695 dest = big_dest >> -shift;
702 /* Handling addition overflow with 64 bit input values is more
703 * tricky than with 32 bit values. */
704 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
706 int8_t shift = (int8_t)shiftop;
708 if ((shift >= 64) || (shift <= -64)) {
710 } else if (shift < 0) {
711 val >>= (-shift - 1);
712 if (val == INT64_MAX) {
713 /* In this case, it means that the rounding constant is 1,
714 * and the addition would overflow. Return the actual
715 * result directly. */
716 val = 0x4000000000000000LL;
727 #define NEON_FN(dest, src1, src2) do { \
729 tmp = (int8_t)src2; \
730 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
731 tmp < -(ssize_t)sizeof(src1) * 8) { \
733 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
734 dest = src1 >> (-tmp - 1); \
735 } else if (tmp < 0) { \
736 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
738 dest = src1 << tmp; \
740 NEON_VOP(rshl_u8, neon_u8, 4)
741 NEON_VOP(rshl_u16, neon_u16, 2)
744 /* The addition of the rounding constant may overflow, so we use an
745 * intermediate 64 bit accumulator. */
746 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
749 int8_t shift = (int8_t)shiftop;
750 if (shift >= 32 || shift < -32) {
752 } else if (shift == -32) {
754 } else if (shift < 0) {
755 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
756 dest = big_dest >> -shift;
763 /* Handling addition overflow with 64 bit input values is more
764 * tricky than with 32 bit values. */
765 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
767 int8_t shift = (uint8_t)shiftop;
768 if (shift >= 64 || shift < -64) {
770 } else if (shift == -64) {
771 /* Rounding a 1-bit result just preserves that bit. */
773 } else if (shift < 0) {
774 val >>= (-shift - 1);
775 if (val == UINT64_MAX) {
776 /* In this case, it means that the rounding constant is 1,
777 * and the addition would overflow. Return the actual
778 * result directly. */
779 val = 0x8000000000000000ULL;
790 #define NEON_FN(dest, src1, src2) do { \
792 tmp = (int8_t)src2; \
793 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
800 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
802 } else if (tmp < 0) { \
803 dest = src1 >> -tmp; \
805 dest = src1 << tmp; \
806 if ((dest >> tmp) != src1) { \
811 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
812 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
813 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
816 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
818 int8_t shift = (int8_t)shiftop;
824 } else if (shift <= -64) {
826 } else if (shift < 0) {
831 if ((val >> shift) != tmp) {
839 #define NEON_FN(dest, src1, src2) do { \
841 tmp = (int8_t)src2; \
842 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
845 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
852 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
854 } else if (tmp < 0) { \
855 dest = src1 >> -tmp; \
857 dest = src1 << tmp; \
858 if ((dest >> tmp) != src1) { \
860 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
866 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
867 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
868 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
871 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
873 int8_t shift = (uint8_t)shiftop;
878 val = (val >> 63) ^ ~SIGNBIT64;
880 } else if (shift <= -64) {
882 } else if (shift < 0) {
887 if ((val >> shift) != tmp) {
889 val = (tmp >> 63) ^ ~SIGNBIT64;
895 #define NEON_FN(dest, src1, src2) do { \
896 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
901 tmp = (int8_t)src2; \
902 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
909 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
911 } else if (tmp < 0) { \
912 dest = src1 >> -tmp; \
914 dest = src1 << tmp; \
915 if ((dest >> tmp) != src1) { \
921 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
922 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
925 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
927 if ((int32_t)valop < 0) {
931 return helper_neon_qshl_u32(env, valop, shiftop);
934 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
936 if ((int64_t)valop < 0) {
940 return helper_neon_qshl_u64(env, valop, shiftop);
943 #define NEON_FN(dest, src1, src2) do { \
945 tmp = (int8_t)src2; \
946 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
953 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
955 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
956 dest = src1 >> (sizeof(src1) * 8 - 1); \
957 } else if (tmp < 0) { \
958 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
960 dest = src1 << tmp; \
961 if ((dest >> tmp) != src1) { \
966 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
967 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
970 /* The addition of the rounding constant may overflow, so we use an
971 * intermediate 64 bit accumulator. */
972 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
975 int8_t shift = (int8_t)shiftop;
983 } else if (shift < -32) {
985 } else if (shift == -32) {
987 } else if (shift < 0) {
988 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
989 dest = big_dest >> -shift;
992 if ((dest >> shift) != val) {
1000 /* Handling addition overflow with 64 bit input values is more
1001 * tricky than with 32 bit values. */
1002 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
1004 int8_t shift = (int8_t)shiftop;
1010 } else if (shift < -64) {
1012 } else if (shift == -64) {
1014 } else if (shift < 0) {
1015 val >>= (-shift - 1);
1016 if (val == UINT64_MAX) {
1017 /* In this case, it means that the rounding constant is 1,
1018 * and the addition would overflow. Return the actual
1019 * result directly. */
1020 val = 0x8000000000000000ULL;
1028 if ((val >> shift) != tmp) {
1036 #define NEON_FN(dest, src1, src2) do { \
1038 tmp = (int8_t)src2; \
1039 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
1042 dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
1049 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
1051 } else if (tmp < 0) { \
1052 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1054 dest = src1 << tmp; \
1055 if ((dest >> tmp) != src1) { \
1057 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1063 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1064 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1067 /* The addition of the rounding constant may overflow, so we use an
1068 * intermediate 64 bit accumulator. */
1069 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1072 int32_t val = (int32_t)valop;
1073 int8_t shift = (int8_t)shiftop;
1077 dest = (val >> 31) ^ ~SIGNBIT;
1081 } else if (shift <= -32) {
1083 } else if (shift < 0) {
1084 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1085 dest = big_dest >> -shift;
1087 dest = val << shift;
1088 if ((dest >> shift) != val) {
1090 dest = (val >> 31) ^ ~SIGNBIT;
1096 /* Handling addition overflow with 64 bit input values is more
1097 * tricky than with 32 bit values. */
1098 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1100 int8_t shift = (uint8_t)shiftop;
1101 int64_t val = valop;
1106 val = (val >> 63) ^ ~SIGNBIT64;
1108 } else if (shift <= -64) {
1110 } else if (shift < 0) {
1111 val >>= (-shift - 1);
1112 if (val == INT64_MAX) {
1113 /* In this case, it means that the rounding constant is 1,
1114 * and the addition would overflow. Return the actual
1115 * result directly. */
1116 val = 0x4000000000000000ULL;
1124 if ((val >> shift) != tmp) {
1126 val = (tmp >> 63) ^ ~SIGNBIT64;
1132 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1135 mask = (a ^ b) & 0x80808080u;
1138 return (a + b) ^ mask;
1141 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1144 mask = (a ^ b) & 0x80008000u;
1147 return (a + b) ^ mask;
1150 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1151 NEON_POP(padd_u8, neon_u8, 4)
1152 NEON_POP(padd_u16, neon_u16, 2)
1155 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1156 NEON_VOP(sub_u8, neon_u8, 4)
1157 NEON_VOP(sub_u16, neon_u16, 2)
1160 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1161 NEON_VOP(mul_u8, neon_u8, 4)
1162 NEON_VOP(mul_u16, neon_u16, 2)
1165 /* Polynomial multiplication is like integer multiplication except the
1166 partial products are XORed, not added. */
1167 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1177 mask |= (0xff << 8);
1178 if (op1 & (1 << 16))
1179 mask |= (0xff << 16);
1180 if (op1 & (1 << 24))
1181 mask |= (0xff << 24);
1182 result ^= op2 & mask;
1183 op1 = (op1 >> 1) & 0x7f7f7f7f;
1184 op2 = (op2 << 1) & 0xfefefefe;
1189 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1191 uint64_t result = 0;
1193 uint64_t op2ex = op2;
1194 op2ex = (op2ex & 0xff) |
1195 ((op2ex & 0xff00) << 8) |
1196 ((op2ex & 0xff0000) << 16) |
1197 ((op2ex & 0xff000000) << 24);
1203 if (op1 & (1 << 8)) {
1204 mask |= (0xffffU << 16);
1206 if (op1 & (1 << 16)) {
1207 mask |= (0xffffULL << 32);
1209 if (op1 & (1 << 24)) {
1210 mask |= (0xffffULL << 48);
1212 result ^= op2ex & mask;
1213 op1 = (op1 >> 1) & 0x7f7f7f7f;
1219 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1220 NEON_VOP(tst_u8, neon_u8, 4)
1221 NEON_VOP(tst_u16, neon_u16, 2)
1222 NEON_VOP(tst_u32, neon_u32, 1)
1225 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1226 NEON_VOP(ceq_u8, neon_u8, 4)
1227 NEON_VOP(ceq_u16, neon_u16, 2)
1228 NEON_VOP(ceq_u32, neon_u32, 1)
1231 /* Count Leading Sign/Zero Bits. */
1232 static inline int do_clz8(uint8_t x)
1240 static inline int do_clz16(uint16_t x)
1243 for (n = 16; x; n--)
1248 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1249 NEON_VOP1(clz_u8, neon_u8, 4)
1252 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1253 NEON_VOP1(clz_u16, neon_u16, 2)
1256 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1257 NEON_VOP1(cls_s8, neon_s8, 4)
1260 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1261 NEON_VOP1(cls_s16, neon_s16, 2)
1264 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1269 for (count = 32; x; count--)
1275 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1277 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1278 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1279 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1283 /* Reverse bits in each 8 bit word */
1284 uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1286 x = ((x & 0xf0f0f0f0) >> 4)
1287 | ((x & 0x0f0f0f0f) << 4);
1288 x = ((x & 0x88888888) >> 3)
1289 | ((x & 0x44444444) >> 1)
1290 | ((x & 0x22222222) << 1)
1291 | ((x & 0x11111111) << 3);
1295 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1296 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1297 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1299 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1304 int32_t old = tmp; \
1306 if ((int32_t)tmp < old) { \
1308 tmp = SIGNBIT - 1; \
1313 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1314 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1316 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1317 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1319 #undef NEON_QDMULH16
1321 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1322 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1323 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1325 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1330 int64_t old = tmp; \
1331 tmp += (int64_t)1 << 31; \
1332 if ((int64_t)tmp < old) { \
1334 tmp = SIGNBIT64 - 1; \
1339 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1340 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1342 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1343 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1345 #undef NEON_QDMULH32
1347 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1349 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1350 | ((x >> 24) & 0xff000000u);
1353 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1355 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1358 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1360 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1361 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1364 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1366 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1369 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1371 x &= 0xff80ff80ff80ff80ull;
1372 x += 0x0080008000800080ull;
1373 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1374 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1377 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1379 x &= 0xffff8000ffff8000ull;
1380 x += 0x0000800000008000ull;
1381 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1384 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1400 res |= (uint32_t)d << (n / 2); \
1411 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1424 res |= (uint32_t)d << (n / 2);
1434 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1441 if (s != (int8_t)s) { \
1442 d = (s >> 15) ^ 0x7f; \
1447 res |= (uint32_t)d << (n / 2);
1457 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1462 if (low & 0x80000000) {
1465 } else if (low > 0xffff) {
1470 if (high & 0x80000000) {
1473 } else if (high > 0xffff) {
1477 return low | (high << 16);
1480 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1490 if (high > 0xffff) {
1494 return low | (high << 16);
1497 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1502 if (low != (int16_t)low) {
1503 low = (low >> 31) ^ 0x7fff;
1507 if (high != (int16_t)high) {
1508 high = (high >> 31) ^ 0x7fff;
1511 return (uint16_t)low | (high << 16);
1514 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1516 if (x & 0x8000000000000000ull) {
1520 if (x > 0xffffffffu) {
1527 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1529 if (x > 0xffffffffu) {
1536 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1538 if ((int64_t)x != (int32_t)x) {
1540 return ((int64_t)x >> 63) ^ 0x7fffffff;
1545 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1550 tmp = (uint8_t)(x >> 8);
1552 tmp = (uint8_t)(x >> 16);
1554 tmp = (uint8_t)(x >> 24);
1559 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1563 ret = (uint16_t)(int8_t)x;
1564 tmp = (uint16_t)(int8_t)(x >> 8);
1566 tmp = (uint16_t)(int8_t)(x >> 16);
1568 tmp = (uint16_t)(int8_t)(x >> 24);
1573 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1575 uint64_t high = (uint16_t)(x >> 16);
1576 return ((uint16_t)x) | (high << 32);
1579 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1581 uint64_t high = (int16_t)(x >> 16);
1582 return ((uint32_t)(int16_t)x) | (high << 32);
1585 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1588 mask = (a ^ b) & 0x8000800080008000ull;
1589 a &= ~0x8000800080008000ull;
1590 b &= ~0x8000800080008000ull;
1591 return (a + b) ^ mask;
1594 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1597 mask = (a ^ b) & 0x8000000080000000ull;
1598 a &= ~0x8000000080000000ull;
1599 b &= ~0x8000000080000000ull;
1600 return (a + b) ^ mask;
1603 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1608 tmp = a & 0x0000ffff0000ffffull;
1609 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1610 tmp2 = b & 0xffff0000ffff0000ull;
1611 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1612 return ( tmp & 0xffff)
1613 | ((tmp >> 16) & 0xffff0000ull)
1614 | ((tmp2 << 16) & 0xffff00000000ull)
1615 | ( tmp2 & 0xffff000000000000ull);
1618 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1620 uint32_t low = a + (a >> 32);
1621 uint32_t high = b + (b >> 32);
1622 return low + ((uint64_t)high << 32);
1625 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1628 mask = (a ^ ~b) & 0x8000800080008000ull;
1629 a |= 0x8000800080008000ull;
1630 b &= ~0x8000800080008000ull;
1631 return (a - b) ^ mask;
1634 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1637 mask = (a ^ ~b) & 0x8000000080000000ull;
1638 a |= 0x8000000080000000ull;
1639 b &= ~0x8000000080000000ull;
1640 return (a - b) ^ mask;
1643 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1651 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1653 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1658 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1660 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1662 return low | ((uint64_t)high << 32);
1665 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1670 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1672 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1677 /* We have to do the arithmetic in a larger type than
1678 * the input type, because for example with a signed 32 bit
1679 * op the absolute difference can overflow a signed 32 bit value.
1681 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1682 arithtype tmp_x = (intype)(x); \
1683 arithtype tmp_y = (intype)(y); \
1684 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1687 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1691 DO_ABD(result, a, b, uint8_t, uint32_t);
1692 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1693 result |= tmp << 16;
1694 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1695 result |= tmp << 32;
1696 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1697 result |= tmp << 48;
1701 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1705 DO_ABD(result, a, b, int8_t, int32_t);
1706 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1707 result |= tmp << 16;
1708 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1709 result |= tmp << 32;
1710 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1711 result |= tmp << 48;
1715 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1719 DO_ABD(result, a, b, uint16_t, uint32_t);
1720 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1721 return result | (tmp << 32);
1724 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1728 DO_ABD(result, a, b, int16_t, int32_t);
1729 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1730 return result | (tmp << 32);
1733 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1736 DO_ABD(result, a, b, uint32_t, uint64_t);
1740 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1743 DO_ABD(result, a, b, int32_t, int64_t);
1748 /* Widening multiply. Named type is the source type. */
1749 #define DO_MULL(dest, x, y, type1, type2) do { \
1752 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1755 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1760 DO_MULL(result, a, b, uint8_t, uint16_t);
1761 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1762 result |= tmp << 16;
1763 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1764 result |= tmp << 32;
1765 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1766 result |= tmp << 48;
1770 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1775 DO_MULL(result, a, b, int8_t, uint16_t);
1776 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1777 result |= tmp << 16;
1778 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1779 result |= tmp << 32;
1780 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1781 result |= tmp << 48;
1785 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1790 DO_MULL(result, a, b, uint16_t, uint32_t);
1791 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1792 return result | (tmp << 32);
1795 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1800 DO_MULL(result, a, b, int16_t, uint32_t);
1801 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1802 return result | (tmp << 32);
1805 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1809 result = (uint16_t)-x;
1811 result |= (uint64_t)tmp << 16;
1813 result |= (uint64_t)tmp << 32;
1815 result |= (uint64_t)tmp << 48;
1819 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1822 uint32_t high = -(x >> 32);
1823 return low | ((uint64_t)high << 32);
1826 /* Saturating sign manipulation. */
1827 /* ??? Make these use NEON_VOP1 */
1828 #define DO_QABS8(x) do { \
1829 if (x == (int8_t)0x80) { \
1832 } else if (x < 0) { \
1835 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1838 NEON_UNPACK(neon_s8, vec, x);
1843 NEON_PACK(neon_s8, x, vec);
1848 #define DO_QNEG8(x) do { \
1849 if (x == (int8_t)0x80) { \
1855 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1858 NEON_UNPACK(neon_s8, vec, x);
1863 NEON_PACK(neon_s8, x, vec);
1868 #define DO_QABS16(x) do { \
1869 if (x == (int16_t)0x8000) { \
1872 } else if (x < 0) { \
1875 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1878 NEON_UNPACK(neon_s16, vec, x);
1881 NEON_PACK(neon_s16, x, vec);
1886 #define DO_QNEG16(x) do { \
1887 if (x == (int16_t)0x8000) { \
1893 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1896 NEON_UNPACK(neon_s16, vec, x);
1899 NEON_PACK(neon_s16, x, vec);
1904 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1909 } else if ((int32_t)x < 0) {
1915 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1926 uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1928 if (x == SIGNBIT64) {
1931 } else if ((int64_t)x < 0) {
1937 uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1939 if (x == SIGNBIT64) {
1948 /* NEON Float helpers. */
1949 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1951 float_status *fpst = fpstp;
1952 float32 f0 = make_float32(a);
1953 float32 f1 = make_float32(b);
1954 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1957 /* Floating point comparisons produce an integer result.
1958 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1959 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1961 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1963 float_status *fpst = fpstp;
1964 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1967 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1969 float_status *fpst = fpstp;
1970 return -float32_le(make_float32(b), make_float32(a), fpst);
1973 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1975 float_status *fpst = fpstp;
1976 return -float32_lt(make_float32(b), make_float32(a), fpst);
1979 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1981 float_status *fpst = fpstp;
1982 float32 f0 = float32_abs(make_float32(a));
1983 float32 f1 = float32_abs(make_float32(b));
1984 return -float32_le(f1, f0, fpst);
1987 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1989 float_status *fpst = fpstp;
1990 float32 f0 = float32_abs(make_float32(a));
1991 float32 f1 = float32_abs(make_float32(b));
1992 return -float32_lt(f1, f0, fpst);
1995 uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
1997 float_status *fpst = fpstp;
1998 float64 f0 = float64_abs(make_float64(a));
1999 float64 f1 = float64_abs(make_float64(b));
2000 return -float64_le(f1, f0, fpst);
2003 uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
2005 float_status *fpst = fpstp;
2006 float64 f0 = float64_abs(make_float64(a));
2007 float64 f1 = float64_abs(make_float64(b));
2008 return -float64_lt(f1, f0, fpst);
2011 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
2013 void HELPER(neon_qunzip8)(void *vd, void *vm)
2015 uint64_t *rd = vd, *rm = vm;
2016 uint64_t zd0 = rd[0], zd1 = rd[1];
2017 uint64_t zm0 = rm[0], zm1 = rm[1];
2019 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
2020 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
2021 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
2022 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
2023 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
2024 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
2025 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2026 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
2027 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
2028 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
2029 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
2030 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
2031 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
2032 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
2033 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
2034 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2042 void HELPER(neon_qunzip16)(void *vd, void *vm)
2044 uint64_t *rd = vd, *rm = vm;
2045 uint64_t zd0 = rd[0], zd1 = rd[1];
2046 uint64_t zm0 = rm[0], zm1 = rm[1];
2048 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
2049 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
2050 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
2051 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
2052 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
2053 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
2054 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
2055 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2063 void HELPER(neon_qunzip32)(void *vd, void *vm)
2065 uint64_t *rd = vd, *rm = vm;
2066 uint64_t zd0 = rd[0], zd1 = rd[1];
2067 uint64_t zm0 = rm[0], zm1 = rm[1];
2069 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
2070 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2071 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
2072 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2080 void HELPER(neon_unzip8)(void *vd, void *vm)
2082 uint64_t *rd = vd, *rm = vm;
2083 uint64_t zd = rd[0], zm = rm[0];
2085 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
2086 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
2087 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2088 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
2089 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
2090 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
2091 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
2092 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2098 void HELPER(neon_unzip16)(void *vd, void *vm)
2100 uint64_t *rd = vd, *rm = vm;
2101 uint64_t zd = rd[0], zm = rm[0];
2103 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
2104 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
2105 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
2106 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2112 void HELPER(neon_qzip8)(void *vd, void *vm)
2114 uint64_t *rd = vd, *rm = vm;
2115 uint64_t zd0 = rd[0], zd1 = rd[1];
2116 uint64_t zm0 = rm[0], zm1 = rm[1];
2118 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2119 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2120 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2121 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2122 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2123 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2124 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2125 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2126 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2127 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2128 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2129 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2130 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2131 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2132 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2133 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2141 void HELPER(neon_qzip16)(void *vd, void *vm)
2143 uint64_t *rd = vd, *rm = vm;
2144 uint64_t zd0 = rd[0], zd1 = rd[1];
2145 uint64_t zm0 = rm[0], zm1 = rm[1];
2147 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2148 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2149 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2150 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2151 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2152 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2153 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2154 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2162 void HELPER(neon_qzip32)(void *vd, void *vm)
2164 uint64_t *rd = vd, *rm = vm;
2165 uint64_t zd0 = rd[0], zd1 = rd[1];
2166 uint64_t zm0 = rm[0], zm1 = rm[1];
2168 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2169 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2170 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2171 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2179 void HELPER(neon_zip8)(void *vd, void *vm)
2181 uint64_t *rd = vd, *rm = vm;
2182 uint64_t zd = rd[0], zm = rm[0];
2184 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2185 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2186 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2187 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2188 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2189 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2190 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2191 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2197 void HELPER(neon_zip16)(void *vd, void *vm)
2199 uint64_t *rd = vd, *rm = vm;
2200 uint64_t zd = rd[0], zm = rm[0];
2202 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2203 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2204 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2205 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2211 /* Helper function for 64 bit polynomial multiply case:
2212 * perform PolynomialMult(op1, op2) and return either the top or
2213 * bottom half of the 128 bit result.
2215 uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
2220 for (bitnum = 0; bitnum < 64; bitnum++) {
2221 if (op1 & (1ULL << bitnum)) {
2222 res ^= op2 << bitnum;
2227 uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
2232 /* bit 0 of op1 can't influence the high 64 bits at all */
2233 for (bitnum = 1; bitnum < 64; bitnum++) {
2234 if (op1 & (1ULL << bitnum)) {
2235 res ^= op2 >> (64 - bitnum);